|
|
@@ -79,10 +79,9 @@ EXPORT_SYMBOL(div_s64_rem);
|
|
|
#endif
|
|
|
|
|
|
/**
|
|
|
- * div64_u64_rem - unsigned 64bit divide with 64bit divisor and 64bit remainder
|
|
|
+ * div64_u64 - unsigned 64bit divide with 64bit divisor
|
|
|
* @dividend: 64bit dividend
|
|
|
* @divisor: 64bit divisor
|
|
|
- * @remainder: 64bit remainder
|
|
|
*
|
|
|
* This implementation is a modified version of the algorithm proposed
|
|
|
* by the book 'Hacker's Delight'. The original source and full proof
|
|
|
@@ -90,33 +89,27 @@ EXPORT_SYMBOL(div_s64_rem);
|
|
|
*
|
|
|
* 'http://www.hackersdelight.org/HDcode/newCode/divDouble.c.txt'
|
|
|
*/
|
|
|
-#ifndef div64_u64_rem
|
|
|
-u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
|
|
|
+#ifndef div64_u64
|
|
|
+u64 div64_u64(u64 dividend, u64 divisor)
|
|
|
{
|
|
|
u32 high = divisor >> 32;
|
|
|
u64 quot;
|
|
|
|
|
|
if (high == 0) {
|
|
|
- u32 rem32;
|
|
|
- quot = div_u64_rem(dividend, divisor, &rem32);
|
|
|
- *remainder = rem32;
|
|
|
+ quot = div_u64(dividend, divisor);
|
|
|
} else {
|
|
|
int n = 1 + fls(high);
|
|
|
quot = div_u64(dividend >> n, divisor >> n);
|
|
|
|
|
|
if (quot != 0)
|
|
|
quot--;
|
|
|
-
|
|
|
- *remainder = dividend - quot * divisor;
|
|
|
- if (*remainder >= divisor) {
|
|
|
+ if ((dividend - quot * divisor) >= divisor)
|
|
|
quot++;
|
|
|
- *remainder -= divisor;
|
|
|
- }
|
|
|
}
|
|
|
|
|
|
return quot;
|
|
|
}
|
|
|
-EXPORT_SYMBOL(div64_u64_rem);
|
|
|
+EXPORT_SYMBOL(div64_u64);
|
|
|
#endif
|
|
|
|
|
|
/**
|