|
@@ -486,46 +486,6 @@ static struct request *bfq_choose_req(struct bfq_data *bfqd,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * See the comments on bfq_limit_depth for the purpose of
|
|
|
- * the depths set in the function.
|
|
|
- */
|
|
|
-static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
|
|
|
-{
|
|
|
- bfqd->sb_shift = bt->sb.shift;
|
|
|
-
|
|
|
- /*
|
|
|
- * In-word depths if no bfq_queue is being weight-raised:
|
|
|
- * leaving 25% of tags only for sync reads.
|
|
|
- *
|
|
|
- * In next formulas, right-shift the value
|
|
|
- * (1U<<bfqd->sb_shift), instead of computing directly
|
|
|
- * (1U<<(bfqd->sb_shift - something)), to be robust against
|
|
|
- * any possible value of bfqd->sb_shift, without having to
|
|
|
- * limit 'something'.
|
|
|
- */
|
|
|
- /* no more than 50% of tags for async I/O */
|
|
|
- bfqd->word_depths[0][0] = max((1U<<bfqd->sb_shift)>>1, 1U);
|
|
|
- /*
|
|
|
- * no more than 75% of tags for sync writes (25% extra tags
|
|
|
- * w.r.t. async I/O, to prevent async I/O from starving sync
|
|
|
- * writes)
|
|
|
- */
|
|
|
- bfqd->word_depths[0][1] = max(((1U<<bfqd->sb_shift) * 3)>>2, 1U);
|
|
|
-
|
|
|
- /*
|
|
|
- * In-word depths in case some bfq_queue is being weight-
|
|
|
- * raised: leaving ~63% of tags for sync reads. This is the
|
|
|
- * highest percentage for which, in our tests, application
|
|
|
- * start-up times didn't suffer from any regression due to tag
|
|
|
- * shortage.
|
|
|
- */
|
|
|
- /* no more than ~18% of tags for async I/O */
|
|
|
- bfqd->word_depths[1][0] = max(((1U<<bfqd->sb_shift) * 3)>>4, 1U);
|
|
|
- /* no more than ~37% of tags for sync writes (~20% extra tags) */
|
|
|
- bfqd->word_depths[1][1] = max(((1U<<bfqd->sb_shift) * 6)>>4, 1U);
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* Async I/O can easily starve sync I/O (both sync reads and sync
|
|
|
* writes), by consuming all tags. Similarly, storms of sync writes,
|
|
@@ -535,18 +495,11 @@ static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
|
|
|
*/
|
|
|
static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
|
|
|
{
|
|
|
- struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
|
|
|
struct bfq_data *bfqd = data->q->elevator->elevator_data;
|
|
|
- struct sbitmap_queue *bt;
|
|
|
|
|
|
if (op_is_sync(op) && !op_is_write(op))
|
|
|
return;
|
|
|
|
|
|
- bt = &tags->bitmap_tags;
|
|
|
-
|
|
|
- if (unlikely(bfqd->sb_shift != bt->sb.shift))
|
|
|
- bfq_update_depths(bfqd, bt);
|
|
|
-
|
|
|
data->shallow_depth =
|
|
|
bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
|
|
|
|
|
@@ -5126,6 +5079,55 @@ void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
|
|
|
__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * See the comments on bfq_limit_depth for the purpose of
|
|
|
+ * the depths set in the function.
|
|
|
+ */
|
|
|
+static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
|
|
|
+{
|
|
|
+ bfqd->sb_shift = bt->sb.shift;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * In-word depths if no bfq_queue is being weight-raised:
|
|
|
+ * leaving 25% of tags only for sync reads.
|
|
|
+ *
|
|
|
+ * In next formulas, right-shift the value
|
|
|
+ * (1U<<bfqd->sb_shift), instead of computing directly
|
|
|
+ * (1U<<(bfqd->sb_shift - something)), to be robust against
|
|
|
+ * any possible value of bfqd->sb_shift, without having to
|
|
|
+ * limit 'something'.
|
|
|
+ */
|
|
|
+ /* no more than 50% of tags for async I/O */
|
|
|
+ bfqd->word_depths[0][0] = max((1U<<bfqd->sb_shift)>>1, 1U);
|
|
|
+ /*
|
|
|
+ * no more than 75% of tags for sync writes (25% extra tags
|
|
|
+ * w.r.t. async I/O, to prevent async I/O from starving sync
|
|
|
+ * writes)
|
|
|
+ */
|
|
|
+ bfqd->word_depths[0][1] = max(((1U<<bfqd->sb_shift) * 3)>>2, 1U);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * In-word depths in case some bfq_queue is being weight-
|
|
|
+ * raised: leaving ~63% of tags for sync reads. This is the
|
|
|
+ * highest percentage for which, in our tests, application
|
|
|
+ * start-up times didn't suffer from any regression due to tag
|
|
|
+ * shortage.
|
|
|
+ */
|
|
|
+ /* no more than ~18% of tags for async I/O */
|
|
|
+ bfqd->word_depths[1][0] = max(((1U<<bfqd->sb_shift) * 3)>>4, 1U);
|
|
|
+ /* no more than ~37% of tags for sync writes (~20% extra tags) */
|
|
|
+ bfqd->word_depths[1][1] = max(((1U<<bfqd->sb_shift) * 6)>>4, 1U);
|
|
|
+}
|
|
|
+
|
|
|
+static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
|
|
|
+{
|
|
|
+ struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
|
|
|
+ struct blk_mq_tags *tags = hctx->sched_tags;
|
|
|
+
|
|
|
+ bfq_update_depths(bfqd, &tags->bitmap_tags);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
static void bfq_exit_queue(struct elevator_queue *e)
|
|
|
{
|
|
|
struct bfq_data *bfqd = e->elevator_data;
|
|
@@ -5547,6 +5549,7 @@ static struct elevator_type iosched_bfq_mq = {
|
|
|
.requests_merged = bfq_requests_merged,
|
|
|
.request_merged = bfq_request_merged,
|
|
|
.has_work = bfq_has_work,
|
|
|
+ .init_hctx = bfq_init_hctx,
|
|
|
.init_sched = bfq_init_queue,
|
|
|
.exit_sched = bfq_exit_queue,
|
|
|
},
|