浏览代码

Merge tag 'nand/for-4.13' into MTD

From Boris:
"""
This pull request contains the following core changes:

* addition of on-ecc support to Micron driver
* addition of helpers to help drivers choose most appropriate ECC
  settings
* deletion of dead-code (cached programming and ->errstat() hook)
* make sure drivers that do not support the SET/GET FEATURES command
  return ENOTSUPP use a dummy ->set/get_features implementation
  returning -ENOTSUPP (required for Micron on-die ECC)
* change the semantic of ecc->write_page() for drivers setting the
  NAND_ECC_CUSTOM_PAGE_ACCESS flag
* support exiting 'GET STATUS' command in default ->cmdfunc()
  implementations
* change the prototype of ->setup_data_interface()

A bunch of driver related changes:

* various cleanup, fixes and improvements of the MTK driver
* OMAP DT bindings fixes
* support for ->setup_data_interface() in the fsmc driver
* support for imx7 in the gpmi driver
* finalization of the denali driver rework (thanks to Masahiro for the
  work he's done on this driver)
* fix "bitflips in erased pages" handling in the ifc driver
* addition of PM ops and dynamic timing configuration to the atmel
  driver

And as usual we also have a few minor cleanup/fixes/improvements
patches across the subsystem.
"""
Brian Norris 8 年之前
父节点
当前提交
ef32476f26
共有 45 个文件被更改,包括 2546 次插入1628 次删除
  1. 13 0
      Documentation/devicetree/bindings/mtd/denali-nand.txt
  2. 1 1
      Documentation/devicetree/bindings/mtd/elm.txt
  3. 1 1
      Documentation/devicetree/bindings/mtd/gpmc-nand.txt
  4. 2 2
      Documentation/devicetree/bindings/mtd/gpmc-nor.txt
  5. 1 1
      Documentation/devicetree/bindings/mtd/gpmc-onenand.txt
  6. 13 1
      Documentation/devicetree/bindings/mtd/gpmi-nand.txt
  7. 3 2
      Documentation/devicetree/bindings/mtd/mtk-nand.txt
  8. 1 1
      Documentation/devicetree/bindings/mtd/nand.txt
  9. 2 2
      Documentation/devicetree/bindings/net/gpmc-eth.txt
  10. 6 0
      MAINTAINERS
  11. 3 0
      drivers/mtd/nand/Kconfig
  12. 350 4
      drivers/mtd/nand/atmel/nand-controller.c
  13. 2 0
      drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c
  14. 2 0
      drivers/mtd/nand/cafe_nand.c
  15. 3 0
      drivers/mtd/nand/davinci_nand.c
  16. 812 1019
      drivers/mtd/nand/denali.c
  17. 150 165
      drivers/mtd/nand/denali.h
  18. 41 12
      drivers/mtd/nand/denali_dt.c
  19. 16 10
      drivers/mtd/nand/denali_pci.c
  20. 2 0
      drivers/mtd/nand/docg4.c
  21. 2 0
      drivers/mtd/nand/fsl_elbc_nand.c
  22. 45 36
      drivers/mtd/nand/fsl_ifc_nand.c
  23. 96 26
      drivers/mtd/nand/fsmc_nand.c
  24. 3 3
      drivers/mtd/nand/gpmi-nand/gpmi-lib.c
  25. 41 34
      drivers/mtd/nand/gpmi-nand/gpmi-nand.c
  26. 9 4
      drivers/mtd/nand/gpmi-nand/gpmi-nand.h
  27. 2 0
      drivers/mtd/nand/hisi504_nand.c
  28. 1 1
      drivers/mtd/nand/jz4780_nand.c
  29. 2 0
      drivers/mtd/nand/mpc5121_nfc.c
  30. 115 113
      drivers/mtd/nand/mtk_ecc.c
  31. 1 1
      drivers/mtd/nand/mtk_ecc.h
  32. 168 111
      drivers/mtd/nand/mtk_nand.c
  33. 5 7
      drivers/mtd/nand/mxc_nand.c
  34. 303 46
      drivers/mtd/nand/nand_base.c
  35. 222 0
      drivers/mtd/nand/nand_micron.c
  36. 5 1
      drivers/mtd/nand/orion_nand.c
  37. 2 0
      drivers/mtd/nand/pxa3xx_nand.c
  38. 2 0
      drivers/mtd/nand/qcom_nandc.c
  39. 2 3
      drivers/mtd/nand/s3c2410.c
  40. 2 0
      drivers/mtd/nand/sh_flctl.c
  41. 3 6
      drivers/mtd/nand/sunxi_nand.c
  42. 16 6
      drivers/mtd/nand/tango_nand.c
  43. 2 0
      drivers/mtd/nand/vf610_nfc.c
  44. 2 0
      drivers/staging/mt29f_spinand/mt29f_spinand.c
  45. 71 9
      include/linux/mtd/nand.h

+ 13 - 0
Documentation/devicetree/bindings/mtd/denali-nand.txt

@@ -3,10 +3,23 @@
 Required properties:
   - compatible : should be one of the following:
       "altr,socfpga-denali-nand"            - for Altera SOCFPGA
+      "socionext,uniphier-denali-nand-v5a"  - for Socionext UniPhier (v5a)
+      "socionext,uniphier-denali-nand-v5b"  - for Socionext UniPhier (v5b)
   - reg : should contain registers location and length for data and reg.
   - reg-names: Should contain the reg names "nand_data" and "denali_reg"
   - interrupts : The interrupt number.
 
+Optional properties:
+  - nand-ecc-step-size: see nand.txt for details.  If present, the value must be
+      512        for "altr,socfpga-denali-nand"
+      1024       for "socionext,uniphier-denali-nand-v5a"
+      1024       for "socionext,uniphier-denali-nand-v5b"
+  - nand-ecc-strength: see nand.txt for details.  Valid values are:
+      8, 15      for "altr,socfpga-denali-nand"
+      8, 16, 24  for "socionext,uniphier-denali-nand-v5a"
+      8, 16      for "socionext,uniphier-denali-nand-v5b"
+  - nand-ecc-maximize: see nand.txt for details
+
 The device tree may optionally contain sub-nodes describing partitions of the
 address space. See partition.txt for more detail.
 

+ 1 - 1
Documentation/devicetree/bindings/mtd/elm.txt

@@ -1,7 +1,7 @@
 Error location module
 
 Required properties:
-- compatible: Must be "ti,am33xx-elm"
+- compatible: Must be "ti,am3352-elm"
 - reg: physical base address and size of the registers map.
 - interrupts: Interrupt number for the elm.
 

+ 1 - 1
Documentation/devicetree/bindings/mtd/gpmc-nand.txt

@@ -5,7 +5,7 @@ the GPMC controller with a name of "nand".
 
 All timing relevant properties as well as generic gpmc child properties are
 explained in a separate documents - please refer to
-Documentation/devicetree/bindings/bus/ti-gpmc.txt
+Documentation/devicetree/bindings/memory-controllers/omap-gpmc.txt
 
 For NAND specific properties such as ECC modes or bus width, please refer to
 Documentation/devicetree/bindings/mtd/nand.txt

+ 2 - 2
Documentation/devicetree/bindings/mtd/gpmc-nor.txt

@@ -5,7 +5,7 @@ child nodes of the GPMC controller with a name of "nor".
 
 All timing relevant properties as well as generic GPMC child properties are
 explained in a separate documents. Please refer to
-Documentation/devicetree/bindings/bus/ti-gpmc.txt
+Documentation/devicetree/bindings/memory-controllers/omap-gpmc.txt
 
 Required properties:
 - bank-width: 		Width of NOR flash in bytes. GPMC supports 8-bit and
@@ -28,7 +28,7 @@ Required properties:
 
 Optional properties:
 - gpmc,XXX		Additional GPMC timings and settings parameters. See
-			Documentation/devicetree/bindings/bus/ti-gpmc.txt
+			Documentation/devicetree/bindings/memory-controllers/omap-gpmc.txt
 
 Optional properties for partition table parsing:
 - #address-cells: should be set to 1

+ 1 - 1
Documentation/devicetree/bindings/mtd/gpmc-onenand.txt

@@ -5,7 +5,7 @@ the GPMC controller with a name of "onenand".
 
 All timing relevant properties as well as generic gpmc child properties are
 explained in a separate documents - please refer to
-Documentation/devicetree/bindings/bus/ti-gpmc.txt
+Documentation/devicetree/bindings/memory-controllers/omap-gpmc.txt
 
 Required properties:
 

+ 13 - 1
Documentation/devicetree/bindings/mtd/gpmi-nand.txt

@@ -4,7 +4,12 @@ The GPMI nand controller provides an interface to control the
 NAND flash chips.
 
 Required properties:
-  - compatible : should be "fsl,<chip>-gpmi-nand"
+  - compatible : should be "fsl,<chip>-gpmi-nand", chip can be:
+    * imx23
+    * imx28
+    * imx6q
+    * imx6sx
+    * imx7d
   - reg : should contain registers location and length for gpmi and bch.
   - reg-names: Should contain the reg names "gpmi-nand" and "bch"
   - interrupts : BCH interrupt number.
@@ -13,6 +18,13 @@ Required properties:
     and GPMI DMA channel ID.
     Refer to dma.txt and fsl-mxs-dma.txt for details.
   - dma-names: Must be "rx-tx".
+  - clocks : clocks phandle and clock specifier corresponding to each clock
+    specified in clock-names.
+  - clock-names : The "gpmi_io" clock is always required. Which clocks are
+    exactly required depends on chip:
+    * imx23/imx28 : "gpmi_io"
+    * imx6q/sx : "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch"
+    * imx7d : "gpmi_io", "gpmi_bch_apb"
 
 Optional properties:
   - nand-on-flash-bbt: boolean to enable on flash bbt option if not

+ 3 - 2
Documentation/devicetree/bindings/mtd/mtk-nand.txt

@@ -12,7 +12,8 @@ tree nodes.
 
 The first part of NFC is NAND Controller Interface (NFI) HW.
 Required NFI properties:
-- compatible:			Should be "mediatek,mtxxxx-nfc".
+- compatible:			Should be one of "mediatek,mt2701-nfc",
+				"mediatek,mt2712-nfc".
 - reg:				Base physical address and size of NFI.
 - interrupts:			Interrupts of NFI.
 - clocks:			NFI required clocks.
@@ -141,7 +142,7 @@ Example:
 ==============
 
 Required BCH properties:
-- compatible:	Should be "mediatek,mtxxxx-ecc".
+- compatible:	Should be one of "mediatek,mt2701-ecc", "mediatek,mt2712-ecc".
 - reg:		Base physical address and size of ECC.
 - interrupts:	Interrupts of ECC.
 - clocks:	ECC required clocks.

+ 1 - 1
Documentation/devicetree/bindings/mtd/nand.txt

@@ -21,7 +21,7 @@ Optional NAND chip properties:
 
 - nand-ecc-mode : String, operation mode of the NAND ecc mode.
 		  Supported values are: "none", "soft", "hw", "hw_syndrome",
-		  "hw_oob_first".
+		  "hw_oob_first", "on-die".
 		  Deprecated values:
 		  "soft_bch": use "soft" and nand-ecc-algo instead
 - nand-ecc-algo: string, algorithm of NAND ECC.

+ 2 - 2
Documentation/devicetree/bindings/net/gpmc-eth.txt

@@ -9,7 +9,7 @@ the GPMC controller with an "ethernet" name.
 
 All timing relevant properties as well as generic GPMC child properties are
 explained in a separate documents. Please refer to
-Documentation/devicetree/bindings/bus/ti-gpmc.txt
+Documentation/devicetree/bindings/memory-controllers/omap-gpmc.txt
 
 For the properties relevant to the ethernet controller connected to the GPMC
 refer to the binding documentation of the device. For example, the documentation
@@ -43,7 +43,7 @@ Required properties:
 
 Optional properties:
 - gpmc,XXX		Additional GPMC timings and settings parameters. See
-			Documentation/devicetree/bindings/bus/ti-gpmc.txt
+			Documentation/devicetree/bindings/memory-controllers/omap-gpmc.txt
 
 Example:
 

+ 6 - 0
MAINTAINERS

@@ -3895,6 +3895,12 @@ M:	Pali Rohár <pali.rohar@gmail.com>
 S:	Maintained
 F:	drivers/platform/x86/dell-wmi.c
 
+DENALI NAND DRIVER
+M:	Masahiro Yamada <yamada.masahiro@socionext.com>
+L:	linux-mtd@lists.infradead.org
+S:	Supported
+F:	drivers/mtd/nand/denali*
+
 DESIGNWARE USB2 DRD IP DRIVER
 M:	John Youn <johnyoun@synopsys.com>
 L:	linux-usb@vger.kernel.org

+ 3 - 0
drivers/mtd/nand/Kconfig

@@ -308,6 +308,7 @@ config MTD_NAND_CS553X
 config MTD_NAND_ATMEL
 	tristate "Support for NAND Flash / SmartMedia on AT91"
 	depends on ARCH_AT91
+	select MFD_ATMEL_SMC
 	help
 	  Enables support for NAND Flash / Smart Media Card interface
 	  on Atmel AT91 processors.
@@ -542,6 +543,7 @@ config MTD_NAND_SUNXI
 
 config MTD_NAND_HISI504
 	tristate "Support for NAND controller on Hisilicon SoC Hip04"
+	depends on ARCH_HISI || COMPILE_TEST
 	depends on HAS_DMA
 	help
 	  Enables support for NAND controller on Hisilicon SoC Hip04.
@@ -555,6 +557,7 @@ config MTD_NAND_QCOM
 
 config MTD_NAND_MTK
 	tristate "Support for NAND controller on MTK SoCs"
+	depends on ARCH_MEDIATEK || COMPILE_TEST
 	depends on HAS_DMA
 	help
 	  Enables support for NAND controller on MTK SoCs.

+ 350 - 4
drivers/mtd/nand/atmel/nand-controller.c

@@ -57,6 +57,7 @@
 #include <linux/interrupt.h>
 #include <linux/mfd/syscon.h>
 #include <linux/mfd/syscon/atmel-matrix.h>
+#include <linux/mfd/syscon/atmel-smc.h>
 #include <linux/module.h>
 #include <linux/mtd/nand.h>
 #include <linux/of_address.h>
@@ -64,7 +65,6 @@
 #include <linux/of_platform.h>
 #include <linux/iopoll.h>
 #include <linux/platform_device.h>
-#include <linux/platform_data/atmel.h>
 #include <linux/regmap.h>
 
 #include "pmecc.h"
@@ -151,6 +151,8 @@ struct atmel_nand_cs {
 		void __iomem *virt;
 		dma_addr_t dma;
 	} io;
+
+	struct atmel_smc_cs_conf smcconf;
 };
 
 struct atmel_nand {
@@ -196,6 +198,8 @@ struct atmel_nand_controller_ops {
 	void (*nand_init)(struct atmel_nand_controller *nc,
 			  struct atmel_nand *nand);
 	int (*ecc_init)(struct atmel_nand *nand);
+	int (*setup_data_interface)(struct atmel_nand *nand, int csline,
+				    const struct nand_data_interface *conf);
 };
 
 struct atmel_nand_controller_caps {
@@ -912,7 +916,7 @@ static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
 	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 	struct atmel_hsmc_nand_controller *nc;
-	int ret;
+	int ret, status;
 
 	nc = to_hsmc_nand_controller(chip->controller);
 
@@ -954,6 +958,10 @@ static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
 		dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
 			ret);
 
+	status = chip->waitfunc(mtd, chip);
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+
 	return ret;
 }
 
@@ -1175,6 +1183,295 @@ static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
 	return 0;
 }
 
+static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
+					const struct nand_data_interface *conf,
+					struct atmel_smc_cs_conf *smcconf)
+{
+	u32 ncycles, totalcycles, timeps, mckperiodps;
+	struct atmel_nand_controller *nc;
+	int ret;
+
+	nc = to_nand_controller(nand->base.controller);
+
+	/* DDR interface not supported. */
+	if (conf->type != NAND_SDR_IFACE)
+		return -ENOTSUPP;
+
+	/*
+	 * tRC < 30ns implies EDO mode. This controller does not support this
+	 * mode.
+	 */
+	if (conf->timings.sdr.tRC_min < 30)
+		return -ENOTSUPP;
+
+	atmel_smc_cs_conf_init(smcconf);
+
+	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
+	mckperiodps *= 1000;
+
+	/*
+	 * Set write pulse timing. This one is easy to extract:
+	 *
+	 * NWE_PULSE = tWP
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
+	totalcycles = ncycles;
+	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * The write setup timing depends on the operation done on the NAND.
+	 * All operations goes through the same data bus, but the operation
+	 * type depends on the address we are writing to (ALE/CLE address
+	 * lines).
+	 * Since we have no way to differentiate the different operations at
+	 * the SMC level, we must consider the worst case (the biggest setup
+	 * time among all operation types):
+	 *
+	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
+	 */
+	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
+		      conf->timings.sdr.tALS_min);
+	timeps = max(timeps, conf->timings.sdr.tDS_min);
+	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
+	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
+	totalcycles += ncycles;
+	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * As for the write setup timing, the write hold timing depends on the
+	 * operation done on the NAND:
+	 *
+	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
+	 */
+	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
+		      conf->timings.sdr.tALH_min);
+	timeps = max3(timeps, conf->timings.sdr.tDH_min,
+		      conf->timings.sdr.tWH_min);
+	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
+	totalcycles += ncycles;
+
+	/*
+	 * The write cycle timing is directly matching tWC, but is also
+	 * dependent on the other timings on the setup and hold timings we
+	 * calculated earlier, which gives:
+	 *
+	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
+	ncycles = max(totalcycles, ncycles);
+	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * We don't want the CS line to be toggled between each byte/word
+	 * transfer to the NAND. The only way to guarantee that is to have the
+	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
+	 *
+	 * NCS_WR_PULSE = NWE_CYCLE
+	 */
+	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * As for the write setup timing, the read hold timing depends on the
+	 * operation done on the NAND:
+	 *
+	 * NRD_HOLD = max(tREH, tRHOH)
+	 */
+	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
+	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
+	totalcycles = ncycles;
+
+	/*
+	 * TDF = tRHZ - NRD_HOLD
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
+	ncycles -= totalcycles;
+
+	/*
+	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
+	 * we might end up with a config that does not fit in the TDF field.
+	 * Just take the max value in this case and hope that the NAND is more
+	 * tolerant than advertised.
+	 */
+	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
+		ncycles = ATMEL_SMC_MODE_TDF_MAX;
+	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
+		ncycles = ATMEL_SMC_MODE_TDF_MIN;
+
+	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
+			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
+
+	/*
+	 * Read pulse timing directly matches tRP:
+	 *
+	 * NRD_PULSE = tRP
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
+	totalcycles += ncycles;
+	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * The write cycle timing is directly matching tWC, but is also
+	 * dependent on the setup and hold timings we calculated earlier,
+	 * which gives:
+	 *
+	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
+	 *
+	 * NRD_SETUP is always 0.
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
+	ncycles = max(totalcycles, ncycles);
+	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * We don't want the CS line to be toggled between each byte/word
+	 * transfer from the NAND. The only way to guarantee that is to have
+	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
+	 *
+	 * NCS_RD_PULSE = NRD_CYCLE
+	 */
+	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/* Txxx timings are directly matching tXXX ones. */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
+					   ncycles);
+	if (ret)
+		return ret;
+
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
+					   ncycles);
+	if (ret)
+		return ret;
+
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
+					   ncycles);
+	if (ret)
+		return ret;
+
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
+					   ncycles);
+	if (ret)
+		return ret;
+
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
+					   ncycles);
+	if (ret)
+		return ret;
+
+	/* Attach the CS line to the NFC logic. */
+	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
+
+	/* Set the appropriate data bus width. */
+	if (nand->base.options & NAND_BUSWIDTH_16)
+		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
+
+	/* Operate in NRD/NWE READ/WRITEMODE. */
+	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
+			 ATMEL_SMC_MODE_WRITEMODE_NWE;
+
+	return 0;
+}
+
+static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
+					int csline,
+					const struct nand_data_interface *conf)
+{
+	struct atmel_nand_controller *nc;
+	struct atmel_smc_cs_conf smcconf;
+	struct atmel_nand_cs *cs;
+	int ret;
+
+	nc = to_nand_controller(nand->base.controller);
+
+	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
+	if (ret)
+		return ret;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	cs = &nand->cs[csline];
+	cs->smcconf = smcconf;
+	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
+
+	return 0;
+}
+
+static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
+					int csline,
+					const struct nand_data_interface *conf)
+{
+	struct atmel_nand_controller *nc;
+	struct atmel_smc_cs_conf smcconf;
+	struct atmel_nand_cs *cs;
+	int ret;
+
+	nc = to_nand_controller(nand->base.controller);
+
+	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
+	if (ret)
+		return ret;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	cs = &nand->cs[csline];
+	cs->smcconf = smcconf;
+
+	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
+		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
+
+	atmel_hsmc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
+
+	return 0;
+}
+
+static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_nand_controller *nc;
+
+	nc = to_nand_controller(nand->base.controller);
+
+	if (csline >= nand->numcs ||
+	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
+		return -EINVAL;
+
+	return nc->caps->ops->setup_data_interface(nand, csline, conf);
+}
+
 static void atmel_nand_init(struct atmel_nand_controller *nc,
 			    struct atmel_nand *nand)
 {
@@ -1192,6 +1489,9 @@ static void atmel_nand_init(struct atmel_nand_controller *nc,
 	chip->write_buf = atmel_nand_write_buf;
 	chip->select_chip = atmel_nand_select_chip;
 
+	if (nc->mck && nc->caps->ops->setup_data_interface)
+		chip->setup_data_interface = atmel_nand_setup_data_interface;
+
 	/* Some NANDs require a longer delay than the default one (20us). */
 	chip->chip_delay = 40;
 
@@ -1677,6 +1977,12 @@ static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
 	if (nc->caps->legacy_of_bindings)
 		return 0;
 
+	nc->mck = of_clk_get(dev->parent->of_node, 0);
+	if (IS_ERR(nc->mck)) {
+		dev_err(dev, "Failed to retrieve MCK clk\n");
+		return PTR_ERR(nc->mck);
+	}
+
 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
 	if (!np) {
 		dev_err(dev, "Missing or invalid atmel,smc property\n");
@@ -1983,6 +2289,7 @@ static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
 	.remove = atmel_hsmc_nand_controller_remove,
 	.ecc_init = atmel_hsmc_nand_ecc_init,
 	.nand_init = atmel_hsmc_nand_init,
+	.setup_data_interface = atmel_hsmc_nand_setup_data_interface,
 };
 
 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
@@ -2037,7 +2344,14 @@ atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
 	return 0;
 }
 
-static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
+/*
+ * The SMC reg layout of at91rm9200 is completely different which prevents us
+ * from re-using atmel_smc_nand_setup_data_interface() for the
+ * ->setup_data_interface() hook.
+ * At this point, there's no support for the at91rm9200 SMC IP, so we leave
+ * ->setup_data_interface() unassigned.
+ */
+static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
 	.probe = atmel_smc_nand_controller_probe,
 	.remove = atmel_smc_nand_controller_remove,
 	.ecc_init = atmel_nand_ecc_init,
@@ -2045,6 +2359,20 @@ static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
 };
 
 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
+	.ale_offs = BIT(21),
+	.cle_offs = BIT(22),
+	.ops = &at91rm9200_nc_ops,
+};
+
+static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
+	.probe = atmel_smc_nand_controller_probe,
+	.remove = atmel_smc_nand_controller_remove,
+	.ecc_init = atmel_nand_ecc_init,
+	.nand_init = atmel_smc_nand_init,
+	.setup_data_interface = atmel_smc_nand_setup_data_interface,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
 	.ale_offs = BIT(21),
 	.cle_offs = BIT(22),
 	.ops = &atmel_smc_nc_ops,
@@ -2093,7 +2421,7 @@ static const struct of_device_id atmel_nand_controller_of_ids[] = {
 	},
 	{
 		.compatible = "atmel,at91sam9260-nand-controller",
-		.data = &atmel_rm9200_nc_caps,
+		.data = &atmel_sam9260_nc_caps,
 	},
 	{
 		.compatible = "atmel,at91sam9261-nand-controller",
@@ -2181,6 +2509,24 @@ static int atmel_nand_controller_remove(struct platform_device *pdev)
 	return nc->caps->ops->remove(nc);
 }
 
+static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
+{
+	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
+	struct atmel_nand *nand;
+
+	list_for_each_entry(nand, &nc->chips, node) {
+		int i;
+
+		for (i = 0; i < nand->numcs; i++)
+			nand_reset(&nand->base, i);
+	}
+
+	return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
+			 atmel_nand_controller_resume);
+
 static struct platform_driver atmel_nand_controller_driver = {
 	.driver = {
 		.name = "atmel-nand-controller",

+ 2 - 0
drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c

@@ -392,6 +392,8 @@ int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n)
 	b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte;
 	b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf;
 	b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf;
+	b47n->nand_chip.onfi_set_features = nand_onfi_get_set_features_notsupp;
+	b47n->nand_chip.onfi_get_features = nand_onfi_get_set_features_notsupp;
 
 	nand_chip->chip_delay = 50;
 	b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH;

+ 2 - 0
drivers/mtd/nand/cafe_nand.c

@@ -654,6 +654,8 @@ static int cafe_nand_probe(struct pci_dev *pdev,
 	cafe->nand.read_buf = cafe_read_buf;
 	cafe->nand.write_buf = cafe_write_buf;
 	cafe->nand.select_chip = cafe_select_chip;
+	cafe->nand.onfi_set_features = nand_onfi_get_set_features_notsupp;
+	cafe->nand.onfi_get_features = nand_onfi_get_set_features_notsupp;
 
 	cafe->nand.chip_delay = 0;
 

+ 3 - 0
drivers/mtd/nand/davinci_nand.c

@@ -771,11 +771,14 @@ static int nand_davinci_probe(struct platform_device *pdev)
 			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
 			info->chip.ecc.bytes = 10;
 			info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
+			info->chip.ecc.algo = NAND_ECC_BCH;
 		} else {
+			/* 1bit ecc hamming */
 			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
 			info->chip.ecc.correct = nand_davinci_correct_1bit;
 			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
 			info->chip.ecc.bytes = 3;
+			info->chip.ecc.algo = NAND_ECC_HAMMING;
 		}
 		info->chip.ecc.size = 512;
 		info->chip.ecc.strength = pdata->ecc_bits;

+ 812 - 1019
drivers/mtd/nand/denali.c

@@ -23,50 +23,43 @@
 #include <linux/mutex.h>
 #include <linux/mtd/mtd.h>
 #include <linux/module.h>
+#include <linux/slab.h>
 
 #include "denali.h"
 
 MODULE_LICENSE("GPL");
 
-/*
- * We define a module parameter that allows the user to override
- * the hardware and decide what timing mode should be used.
- */
-#define NAND_DEFAULT_TIMINGS	-1
+#define DENALI_NAND_NAME    "denali-nand"
 
-static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
-module_param(onfi_timing_mode, int, S_IRUGO);
-MODULE_PARM_DESC(onfi_timing_mode,
-	   "Overrides default ONFI setting. -1 indicates use default timings");
+/* Host Data/Command Interface */
+#define DENALI_HOST_ADDR	0x00
+#define DENALI_HOST_DATA	0x10
 
-#define DENALI_NAND_NAME    "denali-nand"
+#define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
+#define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
+#define DENALI_MAP10		(2 << 26)	/* high-level control plane */
+#define DENALI_MAP11		(3 << 26)	/* direct controller access */
 
-/*
- * We define a macro here that combines all interrupts this driver uses into
- * a single constant value, for convenience.
- */
-#define DENALI_IRQ_ALL	(INTR__DMA_CMD_COMP | \
-			INTR__ECC_TRANSACTION_DONE | \
-			INTR__ECC_ERR | \
-			INTR__PROGRAM_FAIL | \
-			INTR__LOAD_COMP | \
-			INTR__PROGRAM_COMP | \
-			INTR__TIME_OUT | \
-			INTR__ERASE_FAIL | \
-			INTR__RST_COMP | \
-			INTR__ERASE_COMP)
+/* MAP11 access cycle type */
+#define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
+#define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
+#define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
 
-/*
- * indicates whether or not the internal value for the flash bank is
- * valid or not
- */
-#define CHIP_SELECT_INVALID	-1
+/* MAP10 commands */
+#define DENALI_ERASE		0x01
+
+#define DENALI_BANK(denali)	((denali)->active_bank << 24)
+
+#define DENALI_INVALID_BANK	-1
+#define DENALI_NR_BANKS		4
 
 /*
- * This macro divides two integers and rounds fractional values up
- * to the nearest integer value.
+ * The bus interface clock, clk_x, is phase aligned with the core clock.  The
+ * clk_x is an integral multiple N of the core clk.  The value N is configured
+ * at IP delivery time, and its available value is 4, 5, or 6.  We need to align
+ * to the largest value to make it work with any possible configuration.
  */
-#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+#define DENALI_CLK_X_MULT	6
 
 /*
  * this macro allows us to convert from an MTD structure to our own
@@ -77,339 +70,11 @@ static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
 	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
 }
 
-/*
- * These constants are defined by the driver to enable common driver
- * configuration options.
- */
-#define SPARE_ACCESS		0x41
-#define MAIN_ACCESS		0x42
-#define MAIN_SPARE_ACCESS	0x43
-
-#define DENALI_READ	0
-#define DENALI_WRITE	0x100
-
-/*
- * this is a helper macro that allows us to
- * format the bank into the proper bits for the controller
- */
-#define BANK(x) ((x) << 24)
-
-/* forward declarations */
-static void clear_interrupts(struct denali_nand_info *denali);
-static uint32_t wait_for_irq(struct denali_nand_info *denali,
-							uint32_t irq_mask);
-static void denali_irq_enable(struct denali_nand_info *denali,
-							uint32_t int_mask);
-static uint32_t read_interrupt_status(struct denali_nand_info *denali);
-
-/*
- * Certain operations for the denali NAND controller use an indexed mode to
- * read/write data. The operation is performed by writing the address value
- * of the command to the device memory followed by the data. This function
- * abstracts this common operation.
- */
-static void index_addr(struct denali_nand_info *denali,
-				uint32_t address, uint32_t data)
-{
-	iowrite32(address, denali->flash_mem);
-	iowrite32(data, denali->flash_mem + 0x10);
-}
-
-/* Perform an indexed read of the device */
-static void index_addr_read_data(struct denali_nand_info *denali,
-				 uint32_t address, uint32_t *pdata)
-{
-	iowrite32(address, denali->flash_mem);
-	*pdata = ioread32(denali->flash_mem + 0x10);
-}
-
-/*
- * We need to buffer some data for some of the NAND core routines.
- * The operations manage buffering that data.
- */
-static void reset_buf(struct denali_nand_info *denali)
-{
-	denali->buf.head = denali->buf.tail = 0;
-}
-
-static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
-{
-	denali->buf.buf[denali->buf.tail++] = byte;
-}
-
-/* reads the status of the device */
-static void read_status(struct denali_nand_info *denali)
-{
-	uint32_t cmd;
-
-	/* initialize the data buffer to store status */
-	reset_buf(denali);
-
-	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
-	if (cmd)
-		write_byte_to_buf(denali, NAND_STATUS_WP);
-	else
-		write_byte_to_buf(denali, 0);
-}
-
-/* resets a specific device connected to the core */
-static void reset_bank(struct denali_nand_info *denali)
-{
-	uint32_t irq_status;
-	uint32_t irq_mask = INTR__RST_COMP | INTR__TIME_OUT;
-
-	clear_interrupts(denali);
-
-	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
-
-	irq_status = wait_for_irq(denali, irq_mask);
-
-	if (irq_status & INTR__TIME_OUT)
-		dev_err(denali->dev, "reset bank failed.\n");
-}
-
-/* Reset the flash controller */
-static uint16_t denali_nand_reset(struct denali_nand_info *denali)
-{
-	int i;
-
-	for (i = 0; i < denali->max_banks; i++)
-		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
-		denali->flash_reg + INTR_STATUS(i));
-
-	for (i = 0; i < denali->max_banks; i++) {
-		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
-		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
-			(INTR__RST_COMP | INTR__TIME_OUT)))
-			cpu_relax();
-		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
-			INTR__TIME_OUT)
-			dev_dbg(denali->dev,
-			"NAND Reset operation timed out on bank %d\n", i);
-	}
-
-	for (i = 0; i < denali->max_banks; i++)
-		iowrite32(INTR__RST_COMP | INTR__TIME_OUT,
-			  denali->flash_reg + INTR_STATUS(i));
-
-	return PASS;
-}
-
-/*
- * this routine calculates the ONFI timing values for a given mode and
- * programs the clocking register accordingly. The mode is determined by
- * the get_onfi_nand_para routine.
- */
-static void nand_onfi_timing_set(struct denali_nand_info *denali,
-								uint16_t mode)
-{
-	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
-	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
-	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
-	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
-	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
-	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
-	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
-	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
-	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
-	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
-	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
-	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
-
-	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
-	uint16_t dv_window = 0;
-	uint16_t en_lo, en_hi;
-	uint16_t acc_clks;
-	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
-
-	en_lo = CEIL_DIV(Trp[mode], CLK_X);
-	en_hi = CEIL_DIV(Treh[mode], CLK_X);
-#if ONFI_BLOOM_TIME
-	if ((en_hi * CLK_X) < (Treh[mode] + 2))
-		en_hi++;
-#endif
-
-	if ((en_lo + en_hi) * CLK_X < Trc[mode])
-		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
-
-	if ((en_lo + en_hi) < CLK_MULTI)
-		en_lo += CLK_MULTI - en_lo - en_hi;
-
-	while (dv_window < 8) {
-		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
-
-		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
-
-		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
-					data_invalid_rhoh : data_invalid_rloh;
-
-		dv_window = data_invalid - Trea[mode];
-
-		if (dv_window < 8)
-			en_lo++;
-	}
-
-	acc_clks = CEIL_DIV(Trea[mode], CLK_X);
-
-	while (acc_clks * CLK_X - Trea[mode] < 3)
-		acc_clks++;
-
-	if (data_invalid - acc_clks * CLK_X < 2)
-		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
-			 __FILE__, __LINE__);
-
-	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
-	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
-	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
-	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
-	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
-	if (cs_cnt == 0)
-		cs_cnt = 1;
-
-	if (Tcea[mode]) {
-		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
-			cs_cnt++;
-	}
-
-#if MODE5_WORKAROUND
-	if (mode == 5)
-		acc_clks = 5;
-#endif
-
-	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
-	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
-		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
-		acc_clks = 6;
-
-	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
-	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
-	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
-	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
-	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
-	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
-	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
-	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
-}
-
-/* queries the NAND device to see what ONFI modes it supports. */
-static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
+static void denali_host_write(struct denali_nand_info *denali,
+			      uint32_t addr, uint32_t data)
 {
-	int i;
-
-	/*
-	 * we needn't to do a reset here because driver has already
-	 * reset all the banks before
-	 */
-	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
-		ONFI_TIMING_MODE__VALUE))
-		return FAIL;
-
-	for (i = 5; i > 0; i--) {
-		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
-			(0x01 << i))
-			break;
-	}
-
-	nand_onfi_timing_set(denali, i);
-
-	/*
-	 * By now, all the ONFI devices we know support the page cache
-	 * rw feature. So here we enable the pipeline_rw_ahead feature
-	 */
-	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
-	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
-
-	return PASS;
-}
-
-static void get_samsung_nand_para(struct denali_nand_info *denali,
-							uint8_t device_id)
-{
-	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
-		/* Set timing register values according to datasheet */
-		iowrite32(5, denali->flash_reg + ACC_CLKS);
-		iowrite32(20, denali->flash_reg + RE_2_WE);
-		iowrite32(12, denali->flash_reg + WE_2_RE);
-		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
-		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
-		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
-		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
-	}
-}
-
-static void get_toshiba_nand_para(struct denali_nand_info *denali)
-{
-	/*
-	 * Workaround to fix a controller bug which reports a wrong
-	 * spare area size for some kind of Toshiba NAND device
-	 */
-	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
-		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64))
-		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
-}
-
-static void get_hynix_nand_para(struct denali_nand_info *denali,
-							uint8_t device_id)
-{
-	switch (device_id) {
-	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
-	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
-		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
-		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
-		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
-		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
-		break;
-	default:
-		dev_warn(denali->dev,
-			 "Unknown Hynix NAND (Device ID: 0x%x).\n"
-			 "Will use default parameter values instead.\n",
-			 device_id);
-	}
-}
-
-/*
- * determines how many NAND chips are connected to the controller. Note for
- * Intel CE4100 devices we don't support more than one device.
- */
-static void find_valid_banks(struct denali_nand_info *denali)
-{
-	uint32_t id[denali->max_banks];
-	int i;
-
-	denali->total_used_banks = 1;
-	for (i = 0; i < denali->max_banks; i++) {
-		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
-		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
-		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
-
-		dev_dbg(denali->dev,
-			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
-
-		if (i == 0) {
-			if (!(id[i] & 0x0ff))
-				break; /* WTF? */
-		} else {
-			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
-				denali->total_used_banks++;
-			else
-				break;
-		}
-	}
-
-	if (denali->platform == INTEL_CE4100) {
-		/*
-		 * Platform limitations of the CE4100 device limit
-		 * users to a single chip solution for NAND.
-		 * Multichip support is not enabled.
-		 */
-		if (denali->total_used_banks != 1) {
-			dev_err(denali->dev,
-				"Sorry, Intel CE4100 only supports a single NAND device.\n");
-			BUG();
-		}
-	}
-	dev_dbg(denali->dev,
-		"denali->total_used_banks: %d\n", denali->total_used_banks);
+	iowrite32(addr, denali->host + DENALI_HOST_ADDR);
+	iowrite32(data, denali->host + DENALI_HOST_DATA);
 }
 
 /*
@@ -418,7 +83,7 @@ static void find_valid_banks(struct denali_nand_info *denali)
  */
 static void detect_max_banks(struct denali_nand_info *denali)
 {
-	uint32_t features = ioread32(denali->flash_reg + FEATURES);
+	uint32_t features = ioread32(denali->reg + FEATURES);
 
 	denali->max_banks = 1 << (features & FEATURES__N_BANKS);
 
@@ -427,227 +92,120 @@ static void detect_max_banks(struct denali_nand_info *denali)
 		denali->max_banks <<= 1;
 }
 
-static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
+static void denali_enable_irq(struct denali_nand_info *denali)
 {
-	uint16_t status = PASS;
-	uint32_t id_bytes[8], addr;
-	uint8_t maf_id, device_id;
 	int i;
 
-	/*
-	 * Use read id method to get device ID and other params.
-	 * For some NAND chips, controller can't report the correct
-	 * device ID by reading from DEVICE_ID register
-	 */
-	addr = MODE_11 | BANK(denali->flash_bank);
-	index_addr(denali, addr | 0, 0x90);
-	index_addr(denali, addr | 1, 0);
-	for (i = 0; i < 8; i++)
-		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
-	maf_id = id_bytes[0];
-	device_id = id_bytes[1];
-
-	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
-		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
-		if (FAIL == get_onfi_nand_para(denali))
-			return FAIL;
-	} else if (maf_id == 0xEC) { /* Samsung NAND */
-		get_samsung_nand_para(denali, device_id);
-	} else if (maf_id == 0x98) { /* Toshiba NAND */
-		get_toshiba_nand_para(denali);
-	} else if (maf_id == 0xAD) { /* Hynix NAND */
-		get_hynix_nand_para(denali, device_id);
-	}
-
-	dev_info(denali->dev,
-			"Dump timing register values:\n"
-			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
-			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
-			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
-			ioread32(denali->flash_reg + ACC_CLKS),
-			ioread32(denali->flash_reg + RE_2_WE),
-			ioread32(denali->flash_reg + RE_2_RE),
-			ioread32(denali->flash_reg + WE_2_RE),
-			ioread32(denali->flash_reg + ADDR_2_DATA),
-			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
-			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
-			ioread32(denali->flash_reg + CS_SETUP_CNT));
-
-	find_valid_banks(denali);
-
-	/*
-	 * If the user specified to override the default timings
-	 * with a specific ONFI mode, we apply those changes here.
-	 */
-	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
-		nand_onfi_timing_set(denali, onfi_timing_mode);
-
-	return status;
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
+	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
 }
 
-static void denali_set_intr_modes(struct denali_nand_info *denali,
-					uint16_t INT_ENABLE)
+static void denali_disable_irq(struct denali_nand_info *denali)
 {
-	if (INT_ENABLE)
-		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
-	else
-		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
-}
-
-/*
- * validation function to verify that the controlling software is making
- * a valid request
- */
-static inline bool is_flash_bank_valid(int flash_bank)
-{
-	return flash_bank >= 0 && flash_bank < 4;
-}
-
-static void denali_irq_init(struct denali_nand_info *denali)
-{
-	uint32_t int_mask;
 	int i;
 
-	/* Disable global interrupts */
-	denali_set_intr_modes(denali, false);
-
-	int_mask = DENALI_IRQ_ALL;
-
-	/* Clear all status bits */
-	for (i = 0; i < denali->max_banks; ++i)
-		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
-
-	denali_irq_enable(denali, int_mask);
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(0, denali->reg + INTR_EN(i));
+	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
 }
 
-static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
+static void denali_clear_irq(struct denali_nand_info *denali,
+			     int bank, uint32_t irq_status)
 {
-	denali_set_intr_modes(denali, false);
+	/* write one to clear bits */
+	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
 }
 
-static void denali_irq_enable(struct denali_nand_info *denali,
-							uint32_t int_mask)
+static void denali_clear_irq_all(struct denali_nand_info *denali)
 {
 	int i;
 
-	for (i = 0; i < denali->max_banks; ++i)
-		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		denali_clear_irq(denali, i, U32_MAX);
 }
 
-/*
- * This function only returns when an interrupt that this driver cares about
- * occurs. This is to reduce the overhead of servicing interrupts
- */
-static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
+static irqreturn_t denali_isr(int irq, void *dev_id)
 {
-	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
-}
+	struct denali_nand_info *denali = dev_id;
+	irqreturn_t ret = IRQ_NONE;
+	uint32_t irq_status;
+	int i;
 
-/* Interrupts are cleared by writing a 1 to the appropriate status bit */
-static inline void clear_interrupt(struct denali_nand_info *denali,
-							uint32_t irq_mask)
-{
-	uint32_t intr_status_reg;
+	spin_lock(&denali->irq_lock);
 
-	intr_status_reg = INTR_STATUS(denali->flash_bank);
+	for (i = 0; i < DENALI_NR_BANKS; i++) {
+		irq_status = ioread32(denali->reg + INTR_STATUS(i));
+		if (irq_status)
+			ret = IRQ_HANDLED;
 
-	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
-}
+		denali_clear_irq(denali, i, irq_status);
 
-static void clear_interrupts(struct denali_nand_info *denali)
-{
-	uint32_t status;
+		if (i != denali->active_bank)
+			continue;
 
-	spin_lock_irq(&denali->irq_lock);
+		denali->irq_status |= irq_status;
 
-	status = read_interrupt_status(denali);
-	clear_interrupt(denali, status);
+		if (denali->irq_status & denali->irq_mask)
+			complete(&denali->complete);
+	}
+
+	spin_unlock(&denali->irq_lock);
 
-	denali->irq_status = 0x0;
-	spin_unlock_irq(&denali->irq_lock);
+	return ret;
 }
 
-static uint32_t read_interrupt_status(struct denali_nand_info *denali)
+static void denali_reset_irq(struct denali_nand_info *denali)
 {
-	uint32_t intr_status_reg;
-
-	intr_status_reg = INTR_STATUS(denali->flash_bank);
+	unsigned long flags;
 
-	return ioread32(denali->flash_reg + intr_status_reg);
+	spin_lock_irqsave(&denali->irq_lock, flags);
+	denali->irq_status = 0;
+	denali->irq_mask = 0;
+	spin_unlock_irqrestore(&denali->irq_lock, flags);
 }
 
-/*
- * This is the interrupt service routine. It handles all interrupts
- * sent to this device. Note that on CE4100, this is a shared interrupt.
- */
-static irqreturn_t denali_isr(int irq, void *dev_id)
+static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
+				    uint32_t irq_mask)
 {
-	struct denali_nand_info *denali = dev_id;
+	unsigned long time_left, flags;
 	uint32_t irq_status;
-	irqreturn_t result = IRQ_NONE;
 
-	spin_lock(&denali->irq_lock);
+	spin_lock_irqsave(&denali->irq_lock, flags);
 
-	/* check to see if a valid NAND chip has been selected. */
-	if (is_flash_bank_valid(denali->flash_bank)) {
-		/*
-		 * check to see if controller generated the interrupt,
-		 * since this is a shared interrupt
-		 */
-		irq_status = denali_irq_detected(denali);
-		if (irq_status != 0) {
-			/* handle interrupt */
-			/* first acknowledge it */
-			clear_interrupt(denali, irq_status);
-			/*
-			 * store the status in the device context for someone
-			 * to read
-			 */
-			denali->irq_status |= irq_status;
-			/* notify anyone who cares that it happened */
-			complete(&denali->complete);
-			/* tell the OS that we've handled this */
-			result = IRQ_HANDLED;
-		}
+	irq_status = denali->irq_status;
+
+	if (irq_mask & irq_status) {
+		/* return immediately if the IRQ has already happened. */
+		spin_unlock_irqrestore(&denali->irq_lock, flags);
+		return irq_status;
 	}
-	spin_unlock(&denali->irq_lock);
-	return result;
-}
 
-static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
-{
-	unsigned long comp_res;
-	uint32_t intr_status;
-	unsigned long timeout = msecs_to_jiffies(1000);
+	denali->irq_mask = irq_mask;
+	reinit_completion(&denali->complete);
+	spin_unlock_irqrestore(&denali->irq_lock, flags);
 
-	do {
-		comp_res =
-			wait_for_completion_timeout(&denali->complete, timeout);
-		spin_lock_irq(&denali->irq_lock);
-		intr_status = denali->irq_status;
-
-		if (intr_status & irq_mask) {
-			denali->irq_status &= ~irq_mask;
-			spin_unlock_irq(&denali->irq_lock);
-			/* our interrupt was detected */
-			break;
-		}
+	time_left = wait_for_completion_timeout(&denali->complete,
+						msecs_to_jiffies(1000));
+	if (!time_left) {
+		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
+			denali->irq_mask);
+		return 0;
+	}
 
-		/*
-		 * these are not the interrupts you are looking for -
-		 * need to wait again
-		 */
-		spin_unlock_irq(&denali->irq_lock);
-	} while (comp_res != 0);
+	return denali->irq_status;
+}
+
+static uint32_t denali_check_irq(struct denali_nand_info *denali)
+{
+	unsigned long flags;
+	uint32_t irq_status;
 
-	if (comp_res == 0) {
-		/* timeout */
-		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
-				intr_status, irq_mask);
+	spin_lock_irqsave(&denali->irq_lock, flags);
+	irq_status = denali->irq_status;
+	spin_unlock_irqrestore(&denali->irq_lock, flags);
 
-		intr_status = 0;
-	}
-	return intr_status;
+	return irq_status;
 }
 
 /*
@@ -664,153 +222,111 @@ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
 	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
 
 	/* Enable spare area/ECC per user's request. */
-	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
-	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+	iowrite32(ecc_en_flag, denali->reg + ECC_ENABLE);
+	iowrite32(transfer_spare_flag, denali->reg + TRANSFER_SPARE_REG);
 }
 
-/*
- * sends a pipeline command operation to the controller. See the Denali NAND
- * controller's user guide for more information (section 4.2.3.6).
- */
-static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
-				    bool ecc_en, bool transfer_spare,
-				    int access_type, int op)
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 {
-	int status = PASS;
-	uint32_t addr, cmd;
-
-	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int i;
 
-	clear_interrupts(denali);
+	iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
+		  denali->host + DENALI_HOST_ADDR);
 
-	addr = BANK(denali->flash_bank) | denali->page;
+	for (i = 0; i < len; i++)
+		buf[i] = ioread32(denali->host + DENALI_HOST_DATA);
+}
 
-	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
-		cmd = MODE_01 | addr;
-		iowrite32(cmd, denali->flash_mem);
-	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
-		/* read spare area */
-		cmd = MODE_10 | addr;
-		index_addr(denali, cmd, access_type);
+static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int i;
 
-		cmd = MODE_01 | addr;
-		iowrite32(cmd, denali->flash_mem);
-	} else if (op == DENALI_READ) {
-		/* setup page read request for access type */
-		cmd = MODE_10 | addr;
-		index_addr(denali, cmd, access_type);
+	iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
+		  denali->host + DENALI_HOST_ADDR);
 
-		cmd = MODE_01 | addr;
-		iowrite32(cmd, denali->flash_mem);
-	}
-	return status;
+	for (i = 0; i < len; i++)
+		iowrite32(buf[i], denali->host + DENALI_HOST_DATA);
 }
 
-/* helper function that simply writes a buffer to the flash */
-static int write_data_to_flash_mem(struct denali_nand_info *denali,
-				   const uint8_t *buf, int len)
+static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 {
-	uint32_t *buf32;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint16_t *buf16 = (uint16_t *)buf;
 	int i;
 
-	/*
-	 * verify that the len is a multiple of 4.
-	 * see comment in read_data_from_flash_mem()
-	 */
-	BUG_ON((len % 4) != 0);
+	iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
+		  denali->host + DENALI_HOST_ADDR);
 
-	/* write the data to the flash memory */
-	buf32 = (uint32_t *)buf;
-	for (i = 0; i < len / 4; i++)
-		iowrite32(*buf32++, denali->flash_mem + 0x10);
-	return i * 4; /* intent is to return the number of bytes read */
+	for (i = 0; i < len / 2; i++)
+		buf16[i] = ioread32(denali->host + DENALI_HOST_DATA);
 }
 
-/* helper function that simply reads a buffer from the flash */
-static int read_data_from_flash_mem(struct denali_nand_info *denali,
-				    uint8_t *buf, int len)
+static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
+			       int len)
 {
-	uint32_t *buf32;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	const uint16_t *buf16 = (const uint16_t *)buf;
 	int i;
 
-	/*
-	 * we assume that len will be a multiple of 4, if not it would be nice
-	 * to know about it ASAP rather than have random failures...
-	 * This assumption is based on the fact that this function is designed
-	 * to be used to read flash pages, which are typically multiples of 4.
-	 */
-	BUG_ON((len % 4) != 0);
+	iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
+		  denali->host + DENALI_HOST_ADDR);
 
-	/* transfer the data from the flash */
-	buf32 = (uint32_t *)buf;
-	for (i = 0; i < len / 4; i++)
-		*buf32++ = ioread32(denali->flash_mem + 0x10);
-	return i * 4; /* intent is to return the number of bytes read */
+	for (i = 0; i < len / 2; i++)
+		iowrite32(buf16[i], denali->host + DENALI_HOST_DATA);
 }
 
-/* writes OOB data to the device */
-static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+static uint8_t denali_read_byte(struct mtd_info *mtd)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t irq_status;
-	uint32_t irq_mask = INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL;
-	int status = 0;
+	uint8_t byte;
 
-	denali->page = page;
+	denali_read_buf(mtd, &byte, 1);
 
-	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
-							DENALI_WRITE) == PASS) {
-		write_data_to_flash_mem(denali, buf, mtd->oobsize);
+	return byte;
+}
 
-		/* wait for operation to complete */
-		irq_status = wait_for_irq(denali, irq_mask);
+static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
+{
+	denali_write_buf(mtd, &byte, 1);
+}
 
-		if (irq_status == 0) {
-			dev_err(denali->dev, "OOB write failed\n");
-			status = -EIO;
-		}
-	} else {
-		dev_err(denali->dev, "unable to send pipeline command\n");
-		status = -EIO;
-	}
-	return status;
+static uint16_t denali_read_word(struct mtd_info *mtd)
+{
+	uint16_t word;
+
+	denali_read_buf16(mtd, (uint8_t *)&word, 2);
+
+	return word;
 }
 
-/* reads OOB data from the device */
-static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t irq_mask = INTR__LOAD_COMP;
-	uint32_t irq_status, addr, cmd;
+	uint32_t type;
 
-	denali->page = page;
+	if (ctrl & NAND_CLE)
+		type = DENALI_MAP11_CMD;
+	else if (ctrl & NAND_ALE)
+		type = DENALI_MAP11_ADDR;
+	else
+		return;
 
-	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
-							DENALI_READ) == PASS) {
-		read_data_from_flash_mem(denali, buf, mtd->oobsize);
+	/*
+	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
+	 * irq_status must be cleared here to catch the R/B# interrupt later.
+	 */
+	if (ctrl & NAND_CTRL_CHANGE)
+		denali_reset_irq(denali);
 
-		/*
-		 * wait for command to be accepted
-		 * can always use status0 bit as the
-		 * mask is identical for each bank.
-		 */
-		irq_status = wait_for_irq(denali, irq_mask);
+	denali_host_write(denali, DENALI_BANK(denali) | type, dat);
+}
 
-		if (irq_status == 0)
-			dev_err(denali->dev, "page on OOB timeout %d\n",
-					denali->page);
+static int denali_dev_ready(struct mtd_info *mtd)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
 
-		/*
-		 * We set the device back to MAIN_ACCESS here as I observed
-		 * instability with the controller if you do a block erase
-		 * and the last transaction was a SPARE_ACCESS. Block erase
-		 * is reliable (according to the MTD test infrastructure)
-		 * if you are in MAIN_ACCESS.
-		 */
-		addr = BANK(denali->flash_bank) | denali->page;
-		cmd = MODE_10 | addr;
-		index_addr(denali, cmd, MAIN_ACCESS);
-	}
+	return !!(denali_check_irq(denali) & INTR__INT_ACT);
 }
 
 static int denali_check_erased_page(struct mtd_info *mtd,
@@ -856,11 +372,11 @@ static int denali_hw_ecc_fixup(struct mtd_info *mtd,
 			       unsigned long *uncor_ecc_flags)
 {
 	struct nand_chip *chip = mtd_to_nand(mtd);
-	int bank = denali->flash_bank;
+	int bank = denali->active_bank;
 	uint32_t ecc_cor;
 	unsigned int max_bitflips;
 
-	ecc_cor = ioread32(denali->flash_reg + ECC_COR_INFO(bank));
+	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
 	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
 
 	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
@@ -886,8 +402,6 @@ static int denali_hw_ecc_fixup(struct mtd_info *mtd,
 	return max_bitflips;
 }
 
-#define ECC_SECTOR_SIZE 512
-
 #define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
 #define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
@@ -899,22 +413,23 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
 			       struct denali_nand_info *denali,
 			       unsigned long *uncor_ecc_flags, uint8_t *buf)
 {
+	unsigned int ecc_size = denali->nand.ecc.size;
 	unsigned int bitflips = 0;
 	unsigned int max_bitflips = 0;
 	uint32_t err_addr, err_cor_info;
 	unsigned int err_byte, err_sector, err_device;
 	uint8_t err_cor_value;
 	unsigned int prev_sector = 0;
+	uint32_t irq_status;
 
-	/* read the ECC errors. we'll ignore them for now */
-	denali_set_intr_modes(denali, false);
+	denali_reset_irq(denali);
 
 	do {
-		err_addr = ioread32(denali->flash_reg + ECC_ERROR_ADDRESS);
+		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
 		err_sector = ECC_SECTOR(err_addr);
 		err_byte = ECC_BYTE(err_addr);
 
-		err_cor_info = ioread32(denali->flash_reg + ERR_CORRECTION_INFO);
+		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
 		err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
 		err_device = ECC_ERR_DEVICE(err_cor_info);
 
@@ -928,9 +443,9 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
 			 * an erased sector.
 			 */
 			*uncor_ecc_flags |= BIT(err_sector);
-		} else if (err_byte < ECC_SECTOR_SIZE) {
+		} else if (err_byte < ecc_size) {
 			/*
-			 * If err_byte is larger than ECC_SECTOR_SIZE, means error
+			 * If err_byte is larger than ecc_size, means error
 			 * happened in OOB, so we ignore it. It's no need for
 			 * us to correct it err_device is represented the NAND
 			 * error bits are happened in if there are more than
@@ -939,8 +454,8 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
 			int offset;
 			unsigned int flips_in_byte;
 
-			offset = (err_sector * ECC_SECTOR_SIZE + err_byte) *
-						denali->devnum + err_device;
+			offset = (err_sector * ecc_size + err_byte) *
+					denali->devs_per_cs + err_device;
 
 			/* correct the ECC error */
 			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
@@ -959,10 +474,9 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
 	 * ECC_TRANSACTION_DONE interrupt, so here just wait for
 	 * a while for this interrupt
 	 */
-	while (!(read_interrupt_status(denali) & INTR__ECC_TRANSACTION_DONE))
-		cpu_relax();
-	clear_interrupts(denali);
-	denali_set_intr_modes(denali, true);
+	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
+	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
+		return -EIO;
 
 	return max_bitflips;
 }
@@ -970,17 +484,17 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
 /* programs the controller to either enable/disable DMA transfers */
 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
 {
-	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
-	ioread32(denali->flash_reg + DMA_ENABLE);
+	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->reg + DMA_ENABLE);
+	ioread32(denali->reg + DMA_ENABLE);
 }
 
-static void denali_setup_dma64(struct denali_nand_info *denali, int op)
+static void denali_setup_dma64(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
 {
 	uint32_t mode;
 	const int page_count = 1;
-	uint64_t addr = denali->buf.dma_buf;
 
-	mode = MODE_10 | BANK(denali->flash_bank) | denali->page;
+	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
 
 	/* DMA is a three step process */
 
@@ -988,191 +502,354 @@ static void denali_setup_dma64(struct denali_nand_info *denali, int op)
 	 * 1. setup transfer type, interrupt when complete,
 	 *    burst len = 64 bytes, the number of pages
 	 */
-	index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);
+	denali_host_write(denali, mode,
+			  0x01002000 | (64 << 16) | (write << 8) | page_count);
 
 	/* 2. set memory low address */
-	index_addr(denali, mode, addr);
+	denali_host_write(denali, mode, dma_addr);
 
 	/* 3. set memory high address */
-	index_addr(denali, mode, addr >> 32);
+	denali_host_write(denali, mode, (uint64_t)dma_addr >> 32);
 }
 
-static void denali_setup_dma32(struct denali_nand_info *denali, int op)
+static void denali_setup_dma32(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
 {
 	uint32_t mode;
 	const int page_count = 1;
-	uint32_t addr = denali->buf.dma_buf;
 
-	mode = MODE_10 | BANK(denali->flash_bank);
+	mode = DENALI_MAP10 | DENALI_BANK(denali);
 
 	/* DMA is a four step process */
 
 	/* 1. setup transfer type and # of pages */
-	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+	denali_host_write(denali, mode | page,
+			  0x2000 | (write << 8) | page_count);
 
 	/* 2. set memory high address bits 23:8 */
-	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
+	denali_host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
 
 	/* 3. set memory low address bits 23:8 */
-	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
+	denali_host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
 
 	/* 4. interrupt when complete, burst len = 64 bytes */
-	index_addr(denali, mode | 0x14000, 0x2400);
+	denali_host_write(denali, mode | 0x14000, 0x2400);
 }
 
-static void denali_setup_dma(struct denali_nand_info *denali, int op)
+static void denali_setup_dma(struct denali_nand_info *denali,
+			     dma_addr_t dma_addr, int page, int write)
 {
 	if (denali->caps & DENALI_CAP_DMA_64BIT)
-		denali_setup_dma64(denali, op);
+		denali_setup_dma64(denali, dma_addr, page, write);
 	else
-		denali_setup_dma32(denali, op);
+		denali_setup_dma32(denali, dma_addr, page, write);
 }
 
-/*
- * writes a page. user specifies type, and this function handles the
- * configuration details.
- */
-static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
-			const uint8_t *buf, bool raw_xfer)
+static int denali_pio_read(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	dma_addr_t addr = denali->buf.dma_buf;
-	size_t size = mtd->writesize + mtd->oobsize;
+	uint32_t addr = DENALI_BANK(denali) | page;
+	uint32_t *buf32 = (uint32_t *)buf;
+	uint32_t irq_status, ecc_err_mask;
+	int i;
+
+	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	else
+		ecc_err_mask = INTR__ECC_ERR;
+
+	denali_reset_irq(denali);
+
+	iowrite32(DENALI_MAP01 | addr, denali->host + DENALI_HOST_ADDR);
+	for (i = 0; i < size / 4; i++)
+		*buf32++ = ioread32(denali->host + DENALI_HOST_DATA);
+
+	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
+	if (!(irq_status & INTR__PAGE_XFER_INC))
+		return -EIO;
+
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
+
+	return irq_status & ecc_err_mask ? -EBADMSG : 0;
+}
+
+static int denali_pio_write(struct denali_nand_info *denali,
+			    const void *buf, size_t size, int page, int raw)
+{
+	uint32_t addr = DENALI_BANK(denali) | page;
+	const uint32_t *buf32 = (uint32_t *)buf;
 	uint32_t irq_status;
-	uint32_t irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
+	int i;
 
-	/*
-	 * if it is a raw xfer, we want to disable ecc and send the spare area.
-	 * !raw_xfer - enable ecc
-	 * raw_xfer - transfer spare
-	 */
-	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
+	denali_reset_irq(denali);
 
-	/* copy buffer into DMA buffer */
-	memcpy(denali->buf.buf, buf, mtd->writesize);
+	iowrite32(DENALI_MAP01 | addr, denali->host + DENALI_HOST_ADDR);
+	for (i = 0; i < size / 4; i++)
+		iowrite32(*buf32++, denali->host + DENALI_HOST_DATA);
 
-	if (raw_xfer) {
-		/* transfer the data to the spare area */
-		memcpy(denali->buf.buf + mtd->writesize,
-			chip->oob_poi,
-			mtd->oobsize);
+	irq_status = denali_wait_for_irq(denali,
+				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
+	if (!(irq_status & INTR__PROGRAM_COMP))
+		return -EIO;
+
+	return 0;
+}
+
+static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
+{
+	if (write)
+		return denali_pio_write(denali, buf, size, page, raw);
+	else
+		return denali_pio_read(denali, buf, size, page, raw);
+}
+
+static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
+{
+	dma_addr_t dma_addr;
+	uint32_t irq_mask, irq_status, ecc_err_mask;
+	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+	int ret = 0;
+
+	dma_addr = dma_map_single(denali->dev, buf, size, dir);
+	if (dma_mapping_error(denali->dev, dma_addr)) {
+		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
 	}
 
-	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
+	if (write) {
+		/*
+		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
+		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
+		 * when the page program is completed.
+		 */
+		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
+		ecc_err_mask = 0;
+	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	} else {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_ERR;
+	}
 
-	clear_interrupts(denali);
 	denali_enable_dma(denali, true);
 
-	denali_setup_dma(denali, DENALI_WRITE);
+	denali_reset_irq(denali);
+	denali_setup_dma(denali, dma_addr, page, write);
 
 	/* wait for operation to complete */
-	irq_status = wait_for_irq(denali, irq_mask);
-
-	if (irq_status == 0) {
-		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
-			raw_xfer);
-		denali->status = NAND_STATUS_FAIL;
-	}
+	irq_status = denali_wait_for_irq(denali, irq_mask);
+	if (!(irq_status & INTR__DMA_CMD_COMP))
+		ret = -EIO;
+	else if (irq_status & ecc_err_mask)
+		ret = -EBADMSG;
 
 	denali_enable_dma(denali, false);
-	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
+	dma_unmap_single(denali->dev, dma_addr, size, dir);
 
-	return 0;
-}
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
 
-/* NAND core entry points */
+	return ret;
+}
 
-/*
- * this is the callback that the NAND core calls to write a page. Since
- * writing a page with ECC or without is similar, all the work is done
- * by write_page above.
- */
-static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-				const uint8_t *buf, int oob_required, int page)
+static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
+			    size_t size, int page, int raw, int write)
 {
-	/*
-	 * for regular page writes, we let HW handle all the ECC
-	 * data written to the device.
-	 */
-	return write_page(mtd, chip, buf, false);
+	setup_ecc_for_xfer(denali, !raw, raw);
+
+	if (denali->dma_avail)
+		return denali_dma_xfer(denali, buf, size, page, raw, write);
+	else
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
 }
 
-/*
- * This is the callback that the NAND core calls to write a page without ECC.
- * raw access is similar to ECC page writes, so all the work is done in the
- * write_page() function above.
- */
-static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				 const uint8_t *buf, int oob_required,
-				 int page)
+static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page, int write)
 {
-	/*
-	 * for raw page writes, we want to disable ECC and simply write
-	 * whatever data is in the buffer.
-	 */
-	return write_page(mtd, chip, buf, true);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
+	unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	uint8_t *bufpoi = chip->oob_poi;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
+
+	/* BBM at the beginning of the OOB area */
+	chip->cmdfunc(mtd, start_cmd, writesize, page);
+	if (write)
+		chip->write_buf(mtd, bufpoi, oob_skip);
+	else
+		chip->read_buf(mtd, bufpoi, oob_skip);
+	bufpoi += oob_skip;
+
+	/* OOB ECC */
+	for (i = 0; i < ecc_steps; i++) {
+		pos = ecc_size + i * (ecc_size + ecc_bytes);
+		len = ecc_bytes;
+
+		if (pos >= writesize)
+			pos += oob_skip;
+		else if (pos + len > writesize)
+			len = writesize - pos;
+
+		chip->cmdfunc(mtd, rnd_cmd, pos, -1);
+		if (write)
+			chip->write_buf(mtd, bufpoi, len);
+		else
+			chip->read_buf(mtd, bufpoi, len);
+		bufpoi += len;
+		if (len < ecc_bytes) {
+			len = ecc_bytes - len;
+			chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
+			if (write)
+				chip->write_buf(mtd, bufpoi, len);
+			else
+				chip->read_buf(mtd, bufpoi, len);
+			bufpoi += len;
+		}
+	}
+
+	/* OOB free */
+	len = oobsize - (bufpoi - chip->oob_poi);
+	chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
+	if (write)
+		chip->write_buf(mtd, bufpoi, len);
+	else
+		chip->read_buf(mtd, bufpoi, len);
 }
 
-static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			    int page)
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
 {
-	return write_oob_data(mtd, chip->oob_poi, page);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *dma_buf = denali->buf;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int ret, i, pos, len;
+
+	ret = denali_data_xfer(denali, dma_buf, size, page, 1, 0);
+	if (ret)
+		return ret;
+
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(buf, dma_buf + pos, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(buf, dma_buf + writesize + oob_skip,
+				       len);
+				buf += len;
+			}
+		}
+	}
+
+	if (oob_required) {
+		uint8_t *oob = chip->oob_poi;
+
+		/* BBM at the beginning of the OOB area */
+		memcpy(oob, dma_buf + writesize, oob_skip);
+		oob += oob_skip;
+
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(oob, dma_buf + pos, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(oob, dma_buf + writesize + oob_skip,
+				       len);
+				oob += len;
+			}
+		}
+
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(oob, dma_buf + size - len, len);
+	}
+
+	return 0;
 }
 
 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
 			   int page)
 {
-	read_oob_data(mtd, chip->oob_poi, page);
+	denali_oob_xfer(mtd, chip, page, 0);
 
 	return 0;
 }
 
-static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			    uint8_t *buf, int oob_required, int page)
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	dma_addr_t addr = denali->buf.dma_buf;
-	size_t size = mtd->writesize + mtd->oobsize;
-	uint32_t irq_status;
-	uint32_t irq_mask = denali->caps & DENALI_CAP_HW_ECC_FIXUP ?
-				INTR__DMA_CMD_COMP | INTR__ECC_UNCOR_ERR :
-				INTR__ECC_TRANSACTION_DONE | INTR__ECC_ERR;
-	unsigned long uncor_ecc_flags = 0;
-	int stat = 0;
+	int status;
 
-	if (page != denali->page) {
-		dev_err(denali->dev,
-			"IN %s: page %d is not equal to denali->page %d",
-			__func__, page, denali->page);
-		BUG();
-	}
+	denali_reset_irq(denali);
 
-	setup_ecc_for_xfer(denali, true, false);
+	denali_oob_xfer(mtd, chip, page, 1);
 
-	denali_enable_dma(denali, true);
-	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
 
-	clear_interrupts(denali);
-	denali_setup_dma(denali, DENALI_READ);
-
-	/* wait for operation to complete */
-	irq_status = wait_for_irq(denali, irq_mask);
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
 
-	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	unsigned long uncor_ecc_flags = 0;
+	int stat = 0;
+	int ret;
 
-	memcpy(buf, denali->buf.buf, mtd->writesize);
+	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
+	if (ret && ret != -EBADMSG)
+		return ret;
 
 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
 		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
-	else if (irq_status & INTR__ECC_ERR)
+	else if (ret == -EBADMSG)
 		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
-	denali_enable_dma(denali, false);
 
 	if (stat < 0)
 		return stat;
 
 	if (uncor_ecc_flags) {
-		read_oob_data(mtd, chip->oob_poi, denali->page);
+		ret = denali_read_oob(mtd, chip, page);
+		if (ret)
+			return ret;
 
 		stat = denali_check_erased_page(mtd, chip, buf,
 						uncor_ecc_flags, stat);
@@ -1181,137 +858,266 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 	return stat;
 }
 
-static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				 const uint8_t *buf, int oob_required, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	dma_addr_t addr = denali->buf.dma_buf;
-	size_t size = mtd->writesize + mtd->oobsize;
-	uint32_t irq_mask = INTR__DMA_CMD_COMP;
-
-	if (page != denali->page) {
-		dev_err(denali->dev,
-			"IN %s: page %d is not equal to denali->page %d",
-			__func__, page, denali->page);
-		BUG();
-	}
-
-	setup_ecc_for_xfer(denali, false, true);
-	denali_enable_dma(denali, true);
-
-	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
-
-	clear_interrupts(denali);
-	denali_setup_dma(denali, DENALI_READ);
-
-	/* wait for operation to complete */
-	wait_for_irq(denali, irq_mask);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *dma_buf = denali->buf;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
 
-	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
+	/*
+	 * Fill the buffer with 0xff first except the full page transfer.
+	 * This simplifies the logic.
+	 */
+	if (!buf || !oob_required)
+		memset(dma_buf, 0xff, size);
+
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(dma_buf + pos, buf, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(dma_buf + writesize + oob_skip, buf,
+				       len);
+				buf += len;
+			}
+		}
+	}
 
-	denali_enable_dma(denali, false);
+	if (oob_required) {
+		const uint8_t *oob = chip->oob_poi;
+
+		/* BBM at the beginning of the OOB area */
+		memcpy(dma_buf + writesize, oob, oob_skip);
+		oob += oob_skip;
+
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(dma_buf + pos, oob, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(dma_buf + writesize + oob_skip, oob,
+				       len);
+				oob += len;
+			}
+		}
 
-	memcpy(buf, denali->buf.buf, mtd->writesize);
-	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(dma_buf + size - len, oob, len);
+	}
 
-	return 0;
+	return denali_data_xfer(denali, dma_buf, size, page, 1, 1);
 }
 
-static uint8_t denali_read_byte(struct mtd_info *mtd)
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			     const uint8_t *buf, int oob_required, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint8_t result = 0xff;
-
-	if (denali->buf.head < denali->buf.tail)
-		result = denali->buf.buf[denali->buf.head++];
 
-	return result;
+	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
+				page, 0, 1);
 }
 
 static void denali_select_chip(struct mtd_info *mtd, int chip)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
 
-	spin_lock_irq(&denali->irq_lock);
-	denali->flash_bank = chip;
-	spin_unlock_irq(&denali->irq_lock);
+	denali->active_bank = chip;
 }
 
 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	int status = denali->status;
+	uint32_t irq_status;
 
-	denali->status = 0;
+	/* R/B# pin transitioned from low to high? */
+	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
 
-	return status;
+	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
 }
 
 static int denali_erase(struct mtd_info *mtd, int page)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_status;
 
-	uint32_t cmd, irq_status;
-
-	clear_interrupts(denali);
+	denali_reset_irq(denali);
 
-	/* setup page read request for access type */
-	cmd = MODE_10 | BANK(denali->flash_bank) | page;
-	index_addr(denali, cmd, 0x1);
+	denali_host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
+			  DENALI_ERASE);
 
 	/* wait for erase to complete or failure to occur */
-	irq_status = wait_for_irq(denali, INTR__ERASE_COMP | INTR__ERASE_FAIL);
+	irq_status = denali_wait_for_irq(denali,
+					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
 
-	return irq_status & INTR__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
+	return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
 }
 
-static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
-			   int page)
+#define DIV_ROUND_DOWN_ULL(ll, d) \
+	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
+
+static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
+				       const struct nand_data_interface *conf)
 {
 	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t addr, id;
+	const struct nand_sdr_timings *timings;
+	unsigned long t_clk;
+	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
+	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
+	int addr_2_data_mask;
+	uint32_t tmp;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return PTR_ERR(timings);
+
+	/* clk_x period in picoseconds */
+	t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
+	if (!t_clk)
+		return -EINVAL;
+
+	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	/* tREA -> ACC_CLKS */
+	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
+	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
+
+	tmp = ioread32(denali->reg + ACC_CLKS);
+	tmp &= ~ACC_CLKS__VALUE;
+	tmp |= acc_clks;
+	iowrite32(tmp, denali->reg + ACC_CLKS);
+
+	/* tRWH -> RE_2_WE */
+	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
+	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
+
+	tmp = ioread32(denali->reg + RE_2_WE);
+	tmp &= ~RE_2_WE__VALUE;
+	tmp |= re_2_we;
+	iowrite32(tmp, denali->reg + RE_2_WE);
+
+	/* tRHZ -> RE_2_RE */
+	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
+	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
+
+	tmp = ioread32(denali->reg + RE_2_RE);
+	tmp &= ~RE_2_RE__VALUE;
+	tmp |= re_2_re;
+	iowrite32(tmp, denali->reg + RE_2_RE);
+
+	/* tWHR -> WE_2_RE */
+	we_2_re = DIV_ROUND_UP(timings->tWHR_min, t_clk);
+	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
+
+	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
+	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
+	tmp |= we_2_re;
+	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
+
+	/* tADL -> ADDR_2_DATA */
+
+	/* for older versions, ADDR_2_DATA is only 6 bit wide */
+	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+	if (denali->revision < 0x0501)
+		addr_2_data_mask >>= 1;
+
+	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
+	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
+
+	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
+	tmp &= ~addr_2_data_mask;
+	tmp |= addr_2_data;
+	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
+
+	/* tREH, tWH -> RDWR_EN_HI_CNT */
+	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
+				  t_clk);
+	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
+	tmp &= ~RDWR_EN_HI_CNT__VALUE;
+	tmp |= rdwr_en_hi;
+	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
+
+	/* tRP, tWP -> RDWR_EN_LO_CNT */
+	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
+				  t_clk);
+	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
+				     t_clk);
+	rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
+	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
+	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
+	tmp &= ~RDWR_EN_LO_CNT__VALUE;
+	tmp |= rdwr_en_lo;
+	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
+
+	/* tCS, tCEA -> CS_SETUP_CNT */
+	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
+			(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
+			0);
+	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + CS_SETUP_CNT);
+	tmp &= ~CS_SETUP_CNT__VALUE;
+	tmp |= cs_setup;
+	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
+
+	return 0;
+}
+
+static void denali_reset_banks(struct denali_nand_info *denali)
+{
+	u32 irq_status;
 	int i;
 
-	switch (cmd) {
-	case NAND_CMD_PAGEPROG:
-		break;
-	case NAND_CMD_STATUS:
-		read_status(denali);
-		break;
-	case NAND_CMD_READID:
-	case NAND_CMD_PARAM:
-		reset_buf(denali);
-		/*
-		 * sometimes ManufactureId read from register is not right
-		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
-		 * So here we send READID cmd to NAND insteand
-		 */
-		addr = MODE_11 | BANK(denali->flash_bank);
-		index_addr(denali, addr | 0, 0x90);
-		index_addr(denali, addr | 1, col);
-		for (i = 0; i < 8; i++) {
-			index_addr_read_data(denali, addr | 2, &id);
-			write_byte_to_buf(denali, id);
-		}
-		break;
-	case NAND_CMD_READ0:
-	case NAND_CMD_SEQIN:
-		denali->page = page;
-		break;
-	case NAND_CMD_RESET:
-		reset_bank(denali);
-		break;
-	case NAND_CMD_READOOB:
-		/* TODO: Read OOB data */
-		break;
-	default:
-		pr_err(": unsupported command received 0x%x\n", cmd);
-		break;
+	for (i = 0; i < denali->max_banks; i++) {
+		denali->active_bank = i;
+
+		denali_reset_irq(denali);
+
+		iowrite32(DEVICE_RESET__BANK(i),
+			  denali->reg + DEVICE_RESET);
+
+		irq_status = denali_wait_for_irq(denali,
+			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
+		if (!(irq_status & INTR__INT_ACT))
+			break;
 	}
+
+	dev_dbg(denali->dev, "%d chips connected\n", i);
+	denali->max_banks = i;
 }
-/* end NAND core entry points */
 
-/* Initialization code to bring the device up to a known good state */
 static void denali_hw_init(struct denali_nand_info *denali)
 {
 	/*
@@ -1319,8 +1125,7 @@ static void denali_hw_init(struct denali_nand_info *denali)
 	 * override it.
 	 */
 	if (!denali->revision)
-		denali->revision =
-				swab16(ioread32(denali->flash_reg + REVISION));
+		denali->revision = swab16(ioread32(denali->reg + REVISION));
 
 	/*
 	 * tell driver how many bit controller will skip before
@@ -1328,30 +1133,51 @@ static void denali_hw_init(struct denali_nand_info *denali)
 	 * set by firmware. So we read this value out.
 	 * if this value is 0, just let it be.
 	 */
-	denali->bbtskipbytes = ioread32(denali->flash_reg +
-						SPARE_AREA_SKIP_BYTES);
+	denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
 	detect_max_banks(denali);
-	denali_nand_reset(denali);
-	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
-	iowrite32(CHIP_EN_DONT_CARE__FLAG,
-			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
+	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
 
-	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
 
 	/* Should set value for these registers when init */
-	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
-	iowrite32(1, denali->flash_reg + ECC_ENABLE);
-	denali_nand_timing_set(denali);
-	denali_irq_init(denali);
+	iowrite32(0, denali->reg + TWO_ROW_ADDR_CYCLES);
+	iowrite32(1, denali->reg + ECC_ENABLE);
 }
 
-/*
- * Althogh controller spec said SLC ECC is forceb to be 4bit,
- * but denali controller in MRST only support 15bit and 8bit ECC
- * correction
- */
-#define ECC_8BITS	14
-#define ECC_15BITS	26
+int denali_calc_ecc_bytes(int step_size, int strength)
+{
+	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
+	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
+}
+EXPORT_SYMBOL(denali_calc_ecc_bytes);
+
+static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
+			    struct denali_nand_info *denali)
+{
+	int oobavail = mtd->oobsize - denali->oob_skip_bytes;
+	int ret;
+
+	/*
+	 * If .size and .strength are already set (usually by DT),
+	 * check if they are supported by this controller.
+	 */
+	if (chip->ecc.size && chip->ecc.strength)
+		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
+
+	/*
+	 * We want .size and .strength closest to the chip's requirement
+	 * unless NAND_ECC_MAXIMIZE is requested.
+	 */
+	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
+		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
+		if (!ret)
+			return 0;
+	}
+
+	/* Max ECC strength is the last thing we can do */
+	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
+}
 
 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
 				struct mtd_oob_region *oobregion)
@@ -1362,7 +1188,7 @@ static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
 	if (section)
 		return -ERANGE;
 
-	oobregion->offset = denali->bbtskipbytes;
+	oobregion->offset = denali->oob_skip_bytes;
 	oobregion->length = chip->ecc.total;
 
 	return 0;
@@ -1377,7 +1203,7 @@ static int denali_ooblayout_free(struct mtd_info *mtd, int section,
 	if (section)
 		return -ERANGE;
 
-	oobregion->offset = chip->ecc.total + denali->bbtskipbytes;
+	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
 	oobregion->length = mtd->oobsize - oobregion->offset;
 
 	return 0;
@@ -1388,29 +1214,6 @@ static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
 	.free = denali_ooblayout_free,
 };
 
-static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
-static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
-
-static struct nand_bbt_descr bbt_main_descr = {
-	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
-		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
-	.offs =	8,
-	.len = 4,
-	.veroffs = 12,
-	.maxblocks = 4,
-	.pattern = bbt_pattern,
-};
-
-static struct nand_bbt_descr bbt_mirror_descr = {
-	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
-		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
-	.offs =	8,
-	.len = 4,
-	.veroffs = 12,
-	.maxblocks = 4,
-	.pattern = mirror_pattern,
-};
-
 /* initialize driver data structures */
 static void denali_drv_init(struct denali_nand_info *denali)
 {
@@ -1425,12 +1228,6 @@ static void denali_drv_init(struct denali_nand_info *denali)
 	 * element that might be access shared data (interrupt status)
 	 */
 	spin_lock_init(&denali->irq_lock);
-
-	/* indicate that MTD has not selected a valid bank yet */
-	denali->flash_bank = CHIP_SELECT_INVALID;
-
-	/* initialize our irq_status variable to indicate no interrupts */
-	denali->irq_status = 0;
 }
 
 static int denali_multidev_fixup(struct denali_nand_info *denali)
@@ -1445,23 +1242,23 @@ static int denali_multidev_fixup(struct denali_nand_info *denali)
 	 * In this case, the core framework knows nothing about this fact,
 	 * so we should tell it the _logical_ pagesize and anything necessary.
 	 */
-	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
 
 	/*
 	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
 	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
 	 */
-	if (denali->devnum == 0) {
-		denali->devnum = 1;
-		iowrite32(1, denali->flash_reg + DEVICES_CONNECTED);
+	if (denali->devs_per_cs == 0) {
+		denali->devs_per_cs = 1;
+		iowrite32(1, denali->reg + DEVICES_CONNECTED);
 	}
 
-	if (denali->devnum == 1)
+	if (denali->devs_per_cs == 1)
 		return 0;
 
-	if (denali->devnum != 2) {
+	if (denali->devs_per_cs != 2) {
 		dev_err(denali->dev, "unsupported number of devices %d\n",
-			denali->devnum);
+			denali->devs_per_cs);
 		return -EINVAL;
 	}
 
@@ -1479,7 +1276,7 @@ static int denali_multidev_fixup(struct denali_nand_info *denali)
 	chip->ecc.size <<= 1;
 	chip->ecc.bytes <<= 1;
 	chip->ecc.strength <<= 1;
-	denali->bbtskipbytes <<= 1;
+	denali->oob_skip_bytes <<= 1;
 
 	return 0;
 }
@@ -1490,27 +1287,12 @@ int denali_init(struct denali_nand_info *denali)
 	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 
-	if (denali->platform == INTEL_CE4100) {
-		/*
-		 * Due to a silicon limitation, we can only support
-		 * ONFI timing mode 1 and below.
-		 */
-		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
-			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
-			return -EINVAL;
-		}
-	}
-
-	/* allocate a temporary buffer for nand_scan_ident() */
-	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
-					GFP_DMA | GFP_KERNEL);
-	if (!denali->buf.buf)
-		return -ENOMEM;
-
 	mtd->dev.parent = denali->dev;
 	denali_hw_init(denali);
 	denali_drv_init(denali);
 
+	denali_clear_irq_all(denali);
+
 	/* Request IRQ after all the hardware initialization is finished */
 	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
 			       IRQF_SHARED, DENALI_NAND_NAME, denali);
@@ -1519,8 +1301,11 @@ int denali_init(struct denali_nand_info *denali)
 		return ret;
 	}
 
-	/* now that our ISR is registered, we can enable interrupts */
-	denali_set_intr_modes(denali, true);
+	denali_enable_irq(denali);
+	denali_reset_banks(denali);
+
+	denali->active_bank = DENALI_INVALID_BANK;
+
 	nand_set_flash_node(chip, denali->dev->of_node);
 	/* Fallback to the default name if DT did not give "label" property */
 	if (!mtd->name)
@@ -1528,10 +1313,17 @@ int denali_init(struct denali_nand_info *denali)
 
 	/* register the driver with the NAND core subsystem */
 	chip->select_chip = denali_select_chip;
-	chip->cmdfunc = denali_cmdfunc;
 	chip->read_byte = denali_read_byte;
+	chip->write_byte = denali_write_byte;
+	chip->read_word = denali_read_word;
+	chip->cmd_ctrl = denali_cmd_ctrl;
+	chip->dev_ready = denali_dev_ready;
 	chip->waitfunc = denali_waitfunc;
 
+	/* clk rate info is needed for setup_data_interface */
+	if (denali->clk_x_rate)
+		chip->setup_data_interface = denali_setup_data_interface;
+
 	/*
 	 * scan for NAND devices attached to the controller
 	 * this is the first stage in a two step process to register
@@ -1539,33 +1331,25 @@ int denali_init(struct denali_nand_info *denali)
 	 */
 	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
 	if (ret)
-		goto failed_req_irq;
-
-	/* allocate the right size buffer now */
-	devm_kfree(denali->dev, denali->buf.buf);
-	denali->buf.buf = devm_kzalloc(denali->dev,
-			     mtd->writesize + mtd->oobsize,
-			     GFP_KERNEL);
-	if (!denali->buf.buf) {
-		ret = -ENOMEM;
-		goto failed_req_irq;
-	}
+		goto disable_irq;
 
-	ret = dma_set_mask(denali->dev,
-			   DMA_BIT_MASK(denali->caps & DENALI_CAP_DMA_64BIT ?
-					64 : 32));
-	if (ret) {
-		dev_err(denali->dev, "No usable DMA configuration\n");
-		goto failed_req_irq;
+	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
+		denali->dma_avail = 1;
+
+	if (denali->dma_avail) {
+		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
+
+		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
+		if (ret) {
+			dev_info(denali->dev,
+				 "Failed to set DMA mask. Disabling DMA.\n");
+			denali->dma_avail = 0;
+		}
 	}
 
-	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
-			     mtd->writesize + mtd->oobsize,
-			     DMA_BIDIRECTIONAL);
-	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
-		dev_err(denali->dev, "Failed to map DMA buffer\n");
-		ret = -EIO;
-		goto failed_req_irq;
+	if (denali->dma_avail) {
+		chip->options |= NAND_USE_BOUNCE_BUFFER;
+		chip->buf_align = 16;
 	}
 
 	/*
@@ -1574,46 +1358,49 @@ int denali_init(struct denali_nand_info *denali)
 	 * bad block management.
 	 */
 
-	/* Bad block management */
-	chip->bbt_td = &bbt_main_descr;
-	chip->bbt_md = &bbt_mirror_descr;
-
-	/* skip the scan for now until we have OOB read and write support */
 	chip->bbt_options |= NAND_BBT_USE_FLASH;
-	chip->options |= NAND_SKIP_BBTSCAN;
+	chip->bbt_options |= NAND_BBT_NO_OOB;
+
 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
 
 	/* no subpage writes on denali */
 	chip->options |= NAND_NO_SUBPAGE_WRITE;
 
-	/*
-	 * Denali Controller only support 15bit and 8bit ECC in MRST,
-	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
-	 * SLC if possible.
-	 * */
-	if (!nand_is_slc(chip) &&
-			(mtd->oobsize > (denali->bbtskipbytes +
-			ECC_15BITS * (mtd->writesize /
-			ECC_SECTOR_SIZE)))) {
-		/* if MLC OOB size is large enough, use 15bit ECC*/
-		chip->ecc.strength = 15;
-		chip->ecc.bytes = ECC_15BITS;
-		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
-	} else if (mtd->oobsize < (denali->bbtskipbytes +
-			ECC_8BITS * (mtd->writesize /
-			ECC_SECTOR_SIZE))) {
-		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
-		goto failed_req_irq;
-	} else {
-		chip->ecc.strength = 8;
-		chip->ecc.bytes = ECC_8BITS;
-		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+	ret = denali_ecc_setup(mtd, chip, denali);
+	if (ret) {
+		dev_err(denali->dev, "Failed to setup ECC settings.\n");
+		goto disable_irq;
 	}
 
+	dev_dbg(denali->dev,
+		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+	iowrite32(MAKE_ECC_CORRECTION(chip->ecc.strength, 1),
+		  denali->reg + ECC_CORRECTION);
+	iowrite32(mtd->erasesize / mtd->writesize,
+		  denali->reg + PAGES_PER_BLOCK);
+	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
+		  denali->reg + DEVICE_WIDTH);
+	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
+	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
+
+	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
+	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
+	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
+	iowrite32(mtd->writesize / chip->ecc.size,
+		  denali->reg + CFG_NUM_DATA_BLOCKS);
+
 	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
 
-	/* override the default read operations */
-	chip->ecc.size = ECC_SECTOR_SIZE;
+	if (chip->options & NAND_BUSWIDTH_16) {
+		chip->read_buf = denali_read_buf16;
+		chip->write_buf = denali_write_buf16;
+	} else {
+		chip->read_buf = denali_read_buf;
+		chip->write_buf = denali_write_buf;
+	}
+	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
 	chip->ecc.read_page = denali_read_page;
 	chip->ecc.read_page_raw = denali_read_page_raw;
 	chip->ecc.write_page = denali_write_page;
@@ -1624,21 +1411,34 @@ int denali_init(struct denali_nand_info *denali)
 
 	ret = denali_multidev_fixup(denali);
 	if (ret)
-		goto failed_req_irq;
+		goto disable_irq;
+
+	/*
+	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
+	 * use devm_kmalloc() because the memory allocated by devm_ does not
+	 * guarantee DMA-safe alignment.
+	 */
+	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+	if (!denali->buf) {
+		ret = -ENOMEM;
+		goto disable_irq;
+	}
 
 	ret = nand_scan_tail(mtd);
 	if (ret)
-		goto failed_req_irq;
+		goto free_buf;
 
 	ret = mtd_device_register(mtd, NULL, 0);
 	if (ret) {
 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
-		goto failed_req_irq;
+		goto free_buf;
 	}
 	return 0;
 
-failed_req_irq:
-	denali_irq_cleanup(denali->irq, denali);
+free_buf:
+	kfree(denali->buf);
+disable_irq:
+	denali_disable_irq(denali);
 
 	return ret;
 }
@@ -1648,16 +1448,9 @@ EXPORT_SYMBOL(denali_init);
 void denali_remove(struct denali_nand_info *denali)
 {
 	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
-	/*
-	 * Pre-compute DMA buffer size to avoid any problems in case
-	 * nand_release() ever changes in a way that mtd->writesize and
-	 * mtd->oobsize are not reliable after this call.
-	 */
-	int bufsize = mtd->writesize + mtd->oobsize;
 
 	nand_release(mtd);
-	denali_irq_cleanup(denali->irq, denali);
-	dma_unmap_single(denali->dev, denali->buf.dma_buf, bufsize,
-			 DMA_BIDIRECTIONAL);
+	kfree(denali->buf);
+	denali_disable_irq(denali);
 }
 EXPORT_SYMBOL(denali_remove);

+ 150 - 165
drivers/mtd/nand/denali.h

@@ -24,330 +24,315 @@
 #include <linux/mtd/nand.h>
 
 #define DEVICE_RESET				0x0
-#define     DEVICE_RESET__BANK0				0x0001
-#define     DEVICE_RESET__BANK1				0x0002
-#define     DEVICE_RESET__BANK2				0x0004
-#define     DEVICE_RESET__BANK3				0x0008
+#define     DEVICE_RESET__BANK(bank)			BIT(bank)
 
 #define TRANSFER_SPARE_REG			0x10
-#define     TRANSFER_SPARE_REG__FLAG			0x0001
+#define     TRANSFER_SPARE_REG__FLAG			BIT(0)
 
 #define LOAD_WAIT_CNT				0x20
-#define     LOAD_WAIT_CNT__VALUE			0xffff
+#define     LOAD_WAIT_CNT__VALUE			GENMASK(15, 0)
 
 #define PROGRAM_WAIT_CNT			0x30
-#define     PROGRAM_WAIT_CNT__VALUE			0xffff
+#define     PROGRAM_WAIT_CNT__VALUE			GENMASK(15, 0)
 
 #define ERASE_WAIT_CNT				0x40
-#define     ERASE_WAIT_CNT__VALUE			0xffff
+#define     ERASE_WAIT_CNT__VALUE			GENMASK(15, 0)
 
 #define INT_MON_CYCCNT				0x50
-#define     INT_MON_CYCCNT__VALUE			0xffff
+#define     INT_MON_CYCCNT__VALUE			GENMASK(15, 0)
 
 #define RB_PIN_ENABLED				0x60
-#define     RB_PIN_ENABLED__BANK0			0x0001
-#define     RB_PIN_ENABLED__BANK1			0x0002
-#define     RB_PIN_ENABLED__BANK2			0x0004
-#define     RB_PIN_ENABLED__BANK3			0x0008
+#define     RB_PIN_ENABLED__BANK(bank)			BIT(bank)
 
 #define MULTIPLANE_OPERATION			0x70
-#define     MULTIPLANE_OPERATION__FLAG			0x0001
+#define     MULTIPLANE_OPERATION__FLAG			BIT(0)
 
 #define MULTIPLANE_READ_ENABLE			0x80
-#define     MULTIPLANE_READ_ENABLE__FLAG		0x0001
+#define     MULTIPLANE_READ_ENABLE__FLAG		BIT(0)
 
 #define COPYBACK_DISABLE			0x90
-#define     COPYBACK_DISABLE__FLAG			0x0001
+#define     COPYBACK_DISABLE__FLAG			BIT(0)
 
 #define CACHE_WRITE_ENABLE			0xa0
-#define     CACHE_WRITE_ENABLE__FLAG			0x0001
+#define     CACHE_WRITE_ENABLE__FLAG			BIT(0)
 
 #define CACHE_READ_ENABLE			0xb0
-#define     CACHE_READ_ENABLE__FLAG			0x0001
+#define     CACHE_READ_ENABLE__FLAG			BIT(0)
 
 #define PREFETCH_MODE				0xc0
-#define     PREFETCH_MODE__PREFETCH_EN			0x0001
-#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	0xfff0
+#define     PREFETCH_MODE__PREFETCH_EN			BIT(0)
+#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	GENMASK(15, 4)
 
 #define CHIP_ENABLE_DONT_CARE			0xd0
-#define     CHIP_EN_DONT_CARE__FLAG			0x01
+#define     CHIP_EN_DONT_CARE__FLAG			BIT(0)
 
 #define ECC_ENABLE				0xe0
-#define     ECC_ENABLE__FLAG				0x0001
+#define     ECC_ENABLE__FLAG				BIT(0)
 
 #define GLOBAL_INT_ENABLE			0xf0
-#define     GLOBAL_INT_EN_FLAG				0x01
+#define     GLOBAL_INT_EN_FLAG				BIT(0)
 
-#define WE_2_RE					0x100
-#define     WE_2_RE__VALUE				0x003f
+#define TWHR2_AND_WE_2_RE			0x100
+#define     TWHR2_AND_WE_2_RE__WE_2_RE			GENMASK(5, 0)
+#define     TWHR2_AND_WE_2_RE__TWHR2			GENMASK(13, 8)
 
-#define ADDR_2_DATA				0x110
-#define     ADDR_2_DATA__VALUE				0x003f
+#define TCWAW_AND_ADDR_2_DATA			0x110
+/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */
+#define     TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA		GENMASK(6, 0)
+#define     TCWAW_AND_ADDR_2_DATA__TCWAW		GENMASK(13, 8)
 
 #define RE_2_WE					0x120
-#define     RE_2_WE__VALUE				0x003f
+#define     RE_2_WE__VALUE				GENMASK(5, 0)
 
 #define ACC_CLKS				0x130
-#define     ACC_CLKS__VALUE				0x000f
+#define     ACC_CLKS__VALUE				GENMASK(3, 0)
 
 #define NUMBER_OF_PLANES			0x140
-#define     NUMBER_OF_PLANES__VALUE			0x0007
+#define     NUMBER_OF_PLANES__VALUE			GENMASK(2, 0)
 
 #define PAGES_PER_BLOCK				0x150
-#define     PAGES_PER_BLOCK__VALUE			0xffff
+#define     PAGES_PER_BLOCK__VALUE			GENMASK(15, 0)
 
 #define DEVICE_WIDTH				0x160
-#define     DEVICE_WIDTH__VALUE				0x0003
+#define     DEVICE_WIDTH__VALUE				GENMASK(1, 0)
 
 #define DEVICE_MAIN_AREA_SIZE			0x170
-#define     DEVICE_MAIN_AREA_SIZE__VALUE		0xffff
+#define     DEVICE_MAIN_AREA_SIZE__VALUE		GENMASK(15, 0)
 
 #define DEVICE_SPARE_AREA_SIZE			0x180
-#define     DEVICE_SPARE_AREA_SIZE__VALUE		0xffff
+#define     DEVICE_SPARE_AREA_SIZE__VALUE		GENMASK(15, 0)
 
 #define TWO_ROW_ADDR_CYCLES			0x190
-#define     TWO_ROW_ADDR_CYCLES__FLAG			0x0001
+#define     TWO_ROW_ADDR_CYCLES__FLAG			BIT(0)
 
 #define MULTIPLANE_ADDR_RESTRICT		0x1a0
-#define     MULTIPLANE_ADDR_RESTRICT__FLAG		0x0001
+#define     MULTIPLANE_ADDR_RESTRICT__FLAG		BIT(0)
 
 #define ECC_CORRECTION				0x1b0
-#define     ECC_CORRECTION__VALUE			0x001f
+#define     ECC_CORRECTION__VALUE			GENMASK(4, 0)
+#define     ECC_CORRECTION__ERASE_THRESHOLD		GENMASK(31, 16)
+#define     MAKE_ECC_CORRECTION(val, thresh)		\
+			(((val) & (ECC_CORRECTION__VALUE)) | \
+			(((thresh) << 16) & (ECC_CORRECTION__ERASE_THRESHOLD)))
 
 #define READ_MODE				0x1c0
-#define     READ_MODE__VALUE				0x000f
+#define     READ_MODE__VALUE				GENMASK(3, 0)
 
 #define WRITE_MODE				0x1d0
-#define     WRITE_MODE__VALUE				0x000f
+#define     WRITE_MODE__VALUE				GENMASK(3, 0)
 
 #define COPYBACK_MODE				0x1e0
-#define     COPYBACK_MODE__VALUE			0x000f
+#define     COPYBACK_MODE__VALUE			GENMASK(3, 0)
 
 #define RDWR_EN_LO_CNT				0x1f0
-#define     RDWR_EN_LO_CNT__VALUE			0x001f
+#define     RDWR_EN_LO_CNT__VALUE			GENMASK(4, 0)
 
 #define RDWR_EN_HI_CNT				0x200
-#define     RDWR_EN_HI_CNT__VALUE			0x001f
+#define     RDWR_EN_HI_CNT__VALUE			GENMASK(4, 0)
 
 #define MAX_RD_DELAY				0x210
-#define     MAX_RD_DELAY__VALUE				0x000f
+#define     MAX_RD_DELAY__VALUE				GENMASK(3, 0)
 
 #define CS_SETUP_CNT				0x220
-#define     CS_SETUP_CNT__VALUE				0x001f
+#define     CS_SETUP_CNT__VALUE				GENMASK(4, 0)
+#define     CS_SETUP_CNT__TWB				GENMASK(17, 12)
 
 #define SPARE_AREA_SKIP_BYTES			0x230
-#define     SPARE_AREA_SKIP_BYTES__VALUE		0x003f
+#define     SPARE_AREA_SKIP_BYTES__VALUE		GENMASK(5, 0)
 
 #define SPARE_AREA_MARKER			0x240
-#define     SPARE_AREA_MARKER__VALUE			0xffff
+#define     SPARE_AREA_MARKER__VALUE			GENMASK(15, 0)
 
 #define DEVICES_CONNECTED			0x250
-#define     DEVICES_CONNECTED__VALUE			0x0007
+#define     DEVICES_CONNECTED__VALUE			GENMASK(2, 0)
 
 #define DIE_MASK				0x260
-#define     DIE_MASK__VALUE				0x00ff
+#define     DIE_MASK__VALUE				GENMASK(7, 0)
 
 #define FIRST_BLOCK_OF_NEXT_PLANE		0x270
-#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		0xffff
+#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		GENMASK(15, 0)
 
 #define WRITE_PROTECT				0x280
-#define     WRITE_PROTECT__FLAG				0x0001
+#define     WRITE_PROTECT__FLAG				BIT(0)
 
 #define RE_2_RE					0x290
-#define     RE_2_RE__VALUE				0x003f
+#define     RE_2_RE__VALUE				GENMASK(5, 0)
 
 #define MANUFACTURER_ID				0x300
-#define     MANUFACTURER_ID__VALUE			0x00ff
+#define     MANUFACTURER_ID__VALUE			GENMASK(7, 0)
 
 #define DEVICE_ID				0x310
-#define     DEVICE_ID__VALUE				0x00ff
+#define     DEVICE_ID__VALUE				GENMASK(7, 0)
 
 #define DEVICE_PARAM_0				0x320
-#define     DEVICE_PARAM_0__VALUE			0x00ff
+#define     DEVICE_PARAM_0__VALUE			GENMASK(7, 0)
 
 #define DEVICE_PARAM_1				0x330
-#define     DEVICE_PARAM_1__VALUE			0x00ff
+#define     DEVICE_PARAM_1__VALUE			GENMASK(7, 0)
 
 #define DEVICE_PARAM_2				0x340
-#define     DEVICE_PARAM_2__VALUE			0x00ff
+#define     DEVICE_PARAM_2__VALUE			GENMASK(7, 0)
 
 #define LOGICAL_PAGE_DATA_SIZE			0x350
-#define     LOGICAL_PAGE_DATA_SIZE__VALUE		0xffff
+#define     LOGICAL_PAGE_DATA_SIZE__VALUE		GENMASK(15, 0)
 
 #define LOGICAL_PAGE_SPARE_SIZE			0x360
-#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		0xffff
+#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		GENMASK(15, 0)
 
 #define REVISION				0x370
-#define     REVISION__VALUE				0xffff
+#define     REVISION__VALUE				GENMASK(15, 0)
 
 #define ONFI_DEVICE_FEATURES			0x380
-#define     ONFI_DEVICE_FEATURES__VALUE			0x003f
+#define     ONFI_DEVICE_FEATURES__VALUE			GENMASK(5, 0)
 
 #define ONFI_OPTIONAL_COMMANDS			0x390
-#define     ONFI_OPTIONAL_COMMANDS__VALUE		0x003f
+#define     ONFI_OPTIONAL_COMMANDS__VALUE		GENMASK(5, 0)
 
 #define ONFI_TIMING_MODE			0x3a0
-#define     ONFI_TIMING_MODE__VALUE			0x003f
+#define     ONFI_TIMING_MODE__VALUE			GENMASK(5, 0)
 
 #define ONFI_PGM_CACHE_TIMING_MODE		0x3b0
-#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		0x003f
+#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		GENMASK(5, 0)
 
 #define ONFI_DEVICE_NO_OF_LUNS			0x3c0
-#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		0x00ff
-#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		0x0100
+#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		GENMASK(7, 0)
+#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		BIT(8)
 
 #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L	0x3d0
-#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	0xffff
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	GENMASK(15, 0)
 
 #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U	0x3e0
-#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	0xffff
-
-#define FEATURES					0x3f0
-#define     FEATURES__N_BANKS				0x0003
-#define     FEATURES__ECC_MAX_ERR			0x003c
-#define     FEATURES__DMA				0x0040
-#define     FEATURES__CMD_DMA				0x0080
-#define     FEATURES__PARTITION				0x0100
-#define     FEATURES__XDMA_SIDEBAND			0x0200
-#define     FEATURES__GPREG				0x0400
-#define     FEATURES__INDEX_ADDR			0x0800
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	GENMASK(15, 0)
+
+#define FEATURES				0x3f0
+#define     FEATURES__N_BANKS				GENMASK(1, 0)
+#define     FEATURES__ECC_MAX_ERR			GENMASK(5, 2)
+#define     FEATURES__DMA				BIT(6)
+#define     FEATURES__CMD_DMA				BIT(7)
+#define     FEATURES__PARTITION				BIT(8)
+#define     FEATURES__XDMA_SIDEBAND			BIT(9)
+#define     FEATURES__GPREG				BIT(10)
+#define     FEATURES__INDEX_ADDR			BIT(11)
 
 #define TRANSFER_MODE				0x400
-#define     TRANSFER_MODE__VALUE			0x0003
+#define     TRANSFER_MODE__VALUE			GENMASK(1, 0)
 
-#define INTR_STATUS(__bank)	(0x410 + ((__bank) * 0x50))
-#define INTR_EN(__bank)		(0x420 + ((__bank) * 0x50))
+#define INTR_STATUS(bank)			(0x410 + (bank) * 0x50)
+#define INTR_EN(bank)				(0x420 + (bank) * 0x50)
 /* bit[1:0] is used differently depending on IP version */
-#define     INTR__ECC_UNCOR_ERR				0x0001	/* new IP */
-#define     INTR__ECC_TRANSACTION_DONE			0x0001	/* old IP */
-#define     INTR__ECC_ERR				0x0002	/* old IP */
-#define     INTR__DMA_CMD_COMP				0x0004
-#define     INTR__TIME_OUT				0x0008
-#define     INTR__PROGRAM_FAIL				0x0010
-#define     INTR__ERASE_FAIL				0x0020
-#define     INTR__LOAD_COMP				0x0040
-#define     INTR__PROGRAM_COMP				0x0080
-#define     INTR__ERASE_COMP				0x0100
-#define     INTR__PIPE_CPYBCK_CMD_COMP			0x0200
-#define     INTR__LOCKED_BLK				0x0400
-#define     INTR__UNSUP_CMD				0x0800
-#define     INTR__INT_ACT				0x1000
-#define     INTR__RST_COMP				0x2000
-#define     INTR__PIPE_CMD_ERR				0x4000
-#define     INTR__PAGE_XFER_INC				0x8000
-
-#define PAGE_CNT(__bank)	(0x430 + ((__bank) * 0x50))
-#define ERR_PAGE_ADDR(__bank)	(0x440 + ((__bank) * 0x50))
-#define ERR_BLOCK_ADDR(__bank)	(0x450 + ((__bank) * 0x50))
+#define     INTR__ECC_UNCOR_ERR				BIT(0)	/* new IP */
+#define     INTR__ECC_TRANSACTION_DONE			BIT(0)	/* old IP */
+#define     INTR__ECC_ERR				BIT(1)	/* old IP */
+#define     INTR__DMA_CMD_COMP				BIT(2)
+#define     INTR__TIME_OUT				BIT(3)
+#define     INTR__PROGRAM_FAIL				BIT(4)
+#define     INTR__ERASE_FAIL				BIT(5)
+#define     INTR__LOAD_COMP				BIT(6)
+#define     INTR__PROGRAM_COMP				BIT(7)
+#define     INTR__ERASE_COMP				BIT(8)
+#define     INTR__PIPE_CPYBCK_CMD_COMP			BIT(9)
+#define     INTR__LOCKED_BLK				BIT(10)
+#define     INTR__UNSUP_CMD				BIT(11)
+#define     INTR__INT_ACT				BIT(12)
+#define     INTR__RST_COMP				BIT(13)
+#define     INTR__PIPE_CMD_ERR				BIT(14)
+#define     INTR__PAGE_XFER_INC				BIT(15)
+#define     INTR__ERASED_PAGE				BIT(16)
+
+#define PAGE_CNT(bank)				(0x430 + (bank) * 0x50)
+#define ERR_PAGE_ADDR(bank)			(0x440 + (bank) * 0x50)
+#define ERR_BLOCK_ADDR(bank)			(0x450 + (bank) * 0x50)
 
 #define ECC_THRESHOLD				0x600
-#define     ECC_THRESHOLD__VALUE			0x03ff
+#define     ECC_THRESHOLD__VALUE			GENMASK(9, 0)
 
 #define ECC_ERROR_BLOCK_ADDRESS			0x610
-#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		0xffff
+#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		GENMASK(15, 0)
 
 #define ECC_ERROR_PAGE_ADDRESS			0x620
-#define     ECC_ERROR_PAGE_ADDRESS__VALUE		0x0fff
-#define     ECC_ERROR_PAGE_ADDRESS__BANK		0xf000
+#define     ECC_ERROR_PAGE_ADDRESS__VALUE		GENMASK(11, 0)
+#define     ECC_ERROR_PAGE_ADDRESS__BANK		GENMASK(15, 12)
 
 #define ECC_ERROR_ADDRESS			0x630
-#define     ECC_ERROR_ADDRESS__OFFSET			0x0fff
-#define     ECC_ERROR_ADDRESS__SECTOR_NR		0xf000
+#define     ECC_ERROR_ADDRESS__OFFSET			GENMASK(11, 0)
+#define     ECC_ERROR_ADDRESS__SECTOR_NR		GENMASK(15, 12)
 
 #define ERR_CORRECTION_INFO			0x640
-#define     ERR_CORRECTION_INFO__BYTEMASK		0x00ff
-#define     ERR_CORRECTION_INFO__DEVICE_NR		0x0f00
-#define     ERR_CORRECTION_INFO__ERROR_TYPE		0x4000
-#define     ERR_CORRECTION_INFO__LAST_ERR_INFO		0x8000
+#define     ERR_CORRECTION_INFO__BYTEMASK		GENMASK(7, 0)
+#define     ERR_CORRECTION_INFO__DEVICE_NR		GENMASK(11, 8)
+#define     ERR_CORRECTION_INFO__ERROR_TYPE		BIT(14)
+#define     ERR_CORRECTION_INFO__LAST_ERR_INFO		BIT(15)
 
 #define ECC_COR_INFO(bank)			(0x650 + (bank) / 2 * 0x10)
 #define     ECC_COR_INFO__SHIFT(bank)			((bank) % 2 * 8)
-#define     ECC_COR_INFO__MAX_ERRORS			0x007f
-#define     ECC_COR_INFO__UNCOR_ERR			0x0080
+#define     ECC_COR_INFO__MAX_ERRORS			GENMASK(6, 0)
+#define     ECC_COR_INFO__UNCOR_ERR			BIT(7)
+
+#define CFG_DATA_BLOCK_SIZE			0x6b0
+
+#define CFG_LAST_DATA_BLOCK_SIZE		0x6c0
+
+#define CFG_NUM_DATA_BLOCKS			0x6d0
+
+#define CFG_META_DATA_SIZE			0x6e0
 
 #define DMA_ENABLE				0x700
-#define     DMA_ENABLE__FLAG				0x0001
+#define     DMA_ENABLE__FLAG				BIT(0)
 
 #define IGNORE_ECC_DONE				0x710
-#define     IGNORE_ECC_DONE__FLAG			0x0001
+#define     IGNORE_ECC_DONE__FLAG			BIT(0)
 
 #define DMA_INTR				0x720
 #define DMA_INTR_EN				0x730
-#define     DMA_INTR__TARGET_ERROR			0x0001
-#define     DMA_INTR__DESC_COMP_CHANNEL0		0x0002
-#define     DMA_INTR__DESC_COMP_CHANNEL1		0x0004
-#define     DMA_INTR__DESC_COMP_CHANNEL2		0x0008
-#define     DMA_INTR__DESC_COMP_CHANNEL3		0x0010
-#define     DMA_INTR__MEMCOPY_DESC_COMP			0x0020
+#define     DMA_INTR__TARGET_ERROR			BIT(0)
+#define     DMA_INTR__DESC_COMP_CHANNEL0		BIT(1)
+#define     DMA_INTR__DESC_COMP_CHANNEL1		BIT(2)
+#define     DMA_INTR__DESC_COMP_CHANNEL2		BIT(3)
+#define     DMA_INTR__DESC_COMP_CHANNEL3		BIT(4)
+#define     DMA_INTR__MEMCOPY_DESC_COMP			BIT(5)
 
 #define TARGET_ERR_ADDR_LO			0x740
-#define     TARGET_ERR_ADDR_LO__VALUE			0xffff
+#define     TARGET_ERR_ADDR_LO__VALUE			GENMASK(15, 0)
 
 #define TARGET_ERR_ADDR_HI			0x750
-#define     TARGET_ERR_ADDR_HI__VALUE			0xffff
+#define     TARGET_ERR_ADDR_HI__VALUE			GENMASK(15, 0)
 
 #define CHNL_ACTIVE				0x760
-#define     CHNL_ACTIVE__CHANNEL0			0x0001
-#define     CHNL_ACTIVE__CHANNEL1			0x0002
-#define     CHNL_ACTIVE__CHANNEL2			0x0004
-#define     CHNL_ACTIVE__CHANNEL3			0x0008
-
-#define FAIL 1                  /*failed flag*/
-#define PASS 0                  /*success flag*/
-
-#define CLK_X  5
-#define CLK_MULTI 4
-
-#define ONFI_BLOOM_TIME         1
-#define MODE5_WORKAROUND        0
-
-
-#define MODE_00    0x00000000
-#define MODE_01    0x04000000
-#define MODE_10    0x08000000
-#define MODE_11    0x0C000000
-
-#define ECC_SECTOR_SIZE     512
-
-struct nand_buf {
-	int head;
-	int tail;
-	uint8_t *buf;
-	dma_addr_t dma_buf;
-};
-
-#define INTEL_CE4100	1
-#define INTEL_MRST	2
-#define DT		3
+#define     CHNL_ACTIVE__CHANNEL0			BIT(0)
+#define     CHNL_ACTIVE__CHANNEL1			BIT(1)
+#define     CHNL_ACTIVE__CHANNEL2			BIT(2)
+#define     CHNL_ACTIVE__CHANNEL3			BIT(3)
 
 struct denali_nand_info {
 	struct nand_chip nand;
-	int flash_bank; /* currently selected chip */
-	int status;
-	int platform;
-	struct nand_buf buf;
+	unsigned long clk_x_rate;	/* bus interface clock rate */
+	int active_bank;		/* currently selected bank */
 	struct device *dev;
-	int total_used_banks;
-	int page;
-	void __iomem *flash_reg;	/* Register Interface */
-	void __iomem *flash_mem;	/* Host Data/Command Interface */
+	void __iomem *reg;		/* Register Interface */
+	void __iomem *host;		/* Host Data/Command Interface */
 
 	/* elements used by ISR */
 	struct completion complete;
 	spinlock_t irq_lock;
+	uint32_t irq_mask;
 	uint32_t irq_status;
 	int irq;
 
-	int devnum;	/* represent how many nands connected */
-	int bbtskipbytes;
+	void *buf;
+	dma_addr_t dma_addr;
+	int dma_avail;
+	int devs_per_cs;		/* devices connected in parallel */
+	int oob_skip_bytes;
 	int max_banks;
 	unsigned int revision;
 	unsigned int caps;
+	const struct nand_ecc_caps *ecc_caps;
 };
 
 #define DENALI_CAP_HW_ECC_FIXUP			BIT(0)
 #define DENALI_CAP_DMA_64BIT			BIT(1)
 
+int denali_calc_ecc_bytes(int step_size, int strength);
 extern int denali_init(struct denali_nand_info *denali);
 extern void denali_remove(struct denali_nand_info *denali);
 

+ 41 - 12
drivers/mtd/nand/denali_dt.c

@@ -32,10 +32,31 @@ struct denali_dt {
 struct denali_dt_data {
 	unsigned int revision;
 	unsigned int caps;
+	const struct nand_ecc_caps *ecc_caps;
 };
 
+NAND_ECC_CAPS_SINGLE(denali_socfpga_ecc_caps, denali_calc_ecc_bytes,
+		     512, 8, 15);
 static const struct denali_dt_data denali_socfpga_data = {
 	.caps = DENALI_CAP_HW_ECC_FIXUP,
+	.ecc_caps = &denali_socfpga_ecc_caps,
+};
+
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5a_ecc_caps, denali_calc_ecc_bytes,
+		     1024, 8, 16, 24);
+static const struct denali_dt_data denali_uniphier_v5a_data = {
+	.caps = DENALI_CAP_HW_ECC_FIXUP |
+		DENALI_CAP_DMA_64BIT,
+	.ecc_caps = &denali_uniphier_v5a_ecc_caps,
+};
+
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5b_ecc_caps, denali_calc_ecc_bytes,
+		     1024, 8, 16);
+static const struct denali_dt_data denali_uniphier_v5b_data = {
+	.revision = 0x0501,
+	.caps = DENALI_CAP_HW_ECC_FIXUP |
+		DENALI_CAP_DMA_64BIT,
+	.ecc_caps = &denali_uniphier_v5b_ecc_caps,
 };
 
 static const struct of_device_id denali_nand_dt_ids[] = {
@@ -43,13 +64,21 @@ static const struct of_device_id denali_nand_dt_ids[] = {
 		.compatible = "altr,socfpga-denali-nand",
 		.data = &denali_socfpga_data,
 	},
+	{
+		.compatible = "socionext,uniphier-denali-nand-v5a",
+		.data = &denali_uniphier_v5a_data,
+	},
+	{
+		.compatible = "socionext,uniphier-denali-nand-v5b",
+		.data = &denali_uniphier_v5b_data,
+	},
 	{ /* sentinel */ }
 };
 MODULE_DEVICE_TABLE(of, denali_nand_dt_ids);
 
 static int denali_dt_probe(struct platform_device *pdev)
 {
-	struct resource *denali_reg, *nand_data;
+	struct resource *res;
 	struct denali_dt *dt;
 	const struct denali_dt_data *data;
 	struct denali_nand_info *denali;
@@ -64,9 +93,9 @@ static int denali_dt_probe(struct platform_device *pdev)
 	if (data) {
 		denali->revision = data->revision;
 		denali->caps = data->caps;
+		denali->ecc_caps = data->ecc_caps;
 	}
 
-	denali->platform = DT;
 	denali->dev = &pdev->dev;
 	denali->irq = platform_get_irq(pdev, 0);
 	if (denali->irq < 0) {
@@ -74,17 +103,15 @@ static int denali_dt_probe(struct platform_device *pdev)
 		return denali->irq;
 	}
 
-	denali_reg = platform_get_resource_byname(pdev, IORESOURCE_MEM,
-						  "denali_reg");
-	denali->flash_reg = devm_ioremap_resource(&pdev->dev, denali_reg);
-	if (IS_ERR(denali->flash_reg))
-		return PTR_ERR(denali->flash_reg);
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "denali_reg");
+	denali->reg = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(denali->reg))
+		return PTR_ERR(denali->reg);
 
-	nand_data = platform_get_resource_byname(pdev, IORESOURCE_MEM,
-						 "nand_data");
-	denali->flash_mem = devm_ioremap_resource(&pdev->dev, nand_data);
-	if (IS_ERR(denali->flash_mem))
-		return PTR_ERR(denali->flash_mem);
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
+	denali->host = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(denali->host))
+		return PTR_ERR(denali->host);
 
 	dt->clk = devm_clk_get(&pdev->dev, NULL);
 	if (IS_ERR(dt->clk)) {
@@ -93,6 +120,8 @@ static int denali_dt_probe(struct platform_device *pdev)
 	}
 	clk_prepare_enable(dt->clk);
 
+	denali->clk_x_rate = clk_get_rate(dt->clk);
+
 	ret = denali_init(denali);
 	if (ret)
 		goto out_disable_clk;

+ 16 - 10
drivers/mtd/nand/denali_pci.c

@@ -19,6 +19,9 @@
 
 #define DENALI_NAND_NAME    "denali-nand-pci"
 
+#define INTEL_CE4100	1
+#define INTEL_MRST	2
+
 /* List of platforms this NAND controller has be integrated into */
 static const struct pci_device_id denali_pci_ids[] = {
 	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
@@ -27,6 +30,8 @@ static const struct pci_device_id denali_pci_ids[] = {
 };
 MODULE_DEVICE_TABLE(pci, denali_pci_ids);
 
+NAND_ECC_CAPS_SINGLE(denali_pci_ecc_caps, denali_calc_ecc_bytes, 512, 8, 15);
+
 static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 {
 	int ret;
@@ -45,13 +50,11 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 	}
 
 	if (id->driver_data == INTEL_CE4100) {
-		denali->platform = INTEL_CE4100;
 		mem_base = pci_resource_start(dev, 0);
 		mem_len = pci_resource_len(dev, 1);
 		csr_base = pci_resource_start(dev, 1);
 		csr_len = pci_resource_len(dev, 1);
 	} else {
-		denali->platform = INTEL_MRST;
 		csr_base = pci_resource_start(dev, 0);
 		csr_len = pci_resource_len(dev, 0);
 		mem_base = pci_resource_start(dev, 1);
@@ -65,6 +68,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 	pci_set_master(dev);
 	denali->dev = &dev->dev;
 	denali->irq = dev->irq;
+	denali->ecc_caps = &denali_pci_ecc_caps;
+	denali->nand.ecc.options |= NAND_ECC_MAXIMIZE;
+	denali->clk_x_rate = 200000000;		/* 200 MHz */
 
 	ret = pci_request_regions(dev, DENALI_NAND_NAME);
 	if (ret) {
@@ -72,14 +78,14 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 		return ret;
 	}
 
-	denali->flash_reg = ioremap_nocache(csr_base, csr_len);
-	if (!denali->flash_reg) {
+	denali->reg = ioremap_nocache(csr_base, csr_len);
+	if (!denali->reg) {
 		dev_err(&dev->dev, "Spectra: Unable to remap memory region\n");
 		return -ENOMEM;
 	}
 
-	denali->flash_mem = ioremap_nocache(mem_base, mem_len);
-	if (!denali->flash_mem) {
+	denali->host = ioremap_nocache(mem_base, mem_len);
+	if (!denali->host) {
 		dev_err(&dev->dev, "Spectra: ioremap_nocache failed!");
 		ret = -ENOMEM;
 		goto failed_remap_reg;
@@ -94,9 +100,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 	return 0;
 
 failed_remap_mem:
-	iounmap(denali->flash_mem);
+	iounmap(denali->host);
 failed_remap_reg:
-	iounmap(denali->flash_reg);
+	iounmap(denali->reg);
 	return ret;
 }
 
@@ -106,8 +112,8 @@ static void denali_pci_remove(struct pci_dev *dev)
 	struct denali_nand_info *denali = pci_get_drvdata(dev);
 
 	denali_remove(denali);
-	iounmap(denali->flash_reg);
-	iounmap(denali->flash_mem);
+	iounmap(denali->reg);
+	iounmap(denali->host);
 }
 
 static struct pci_driver denali_pci_driver = {

+ 2 - 0
drivers/mtd/nand/docg4.c

@@ -1260,6 +1260,8 @@ static void __init init_mtd_structs(struct mtd_info *mtd)
 	nand->read_buf = docg4_read_buf;
 	nand->write_buf = docg4_write_buf16;
 	nand->erase = docg4_erase_block;
+	nand->onfi_set_features = nand_onfi_get_set_features_notsupp;
+	nand->onfi_get_features = nand_onfi_get_set_features_notsupp;
 	nand->ecc.read_page = docg4_read_page;
 	nand->ecc.write_page = docg4_write_page;
 	nand->ecc.read_page_raw = docg4_read_page_raw;

+ 2 - 0
drivers/mtd/nand/fsl_elbc_nand.c

@@ -775,6 +775,8 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
 	chip->select_chip = fsl_elbc_select_chip;
 	chip->cmdfunc = fsl_elbc_cmdfunc;
 	chip->waitfunc = fsl_elbc_wait;
+	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
+	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
 
 	chip->bbt_td = &bbt_main_descr;
 	chip->bbt_md = &bbt_mirror_descr;

+ 45 - 36
drivers/mtd/nand/fsl_ifc_nand.c

@@ -171,34 +171,6 @@ static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
 		ifc_nand_ctrl->index += mtd->writesize;
 }
 
-static int is_blank(struct mtd_info *mtd, unsigned int bufnum)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
-	u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
-	u32 __iomem *mainarea = (u32 __iomem *)addr;
-	u8 __iomem *oob = addr + mtd->writesize;
-	struct mtd_oob_region oobregion = { };
-	int i, section = 0;
-
-	for (i = 0; i < mtd->writesize / 4; i++) {
-		if (__raw_readl(&mainarea[i]) != 0xffffffff)
-			return 0;
-	}
-
-	mtd_ooblayout_ecc(mtd, section++, &oobregion);
-	while (oobregion.length) {
-		for (i = 0; i < oobregion.length; i++) {
-			if (__raw_readb(&oob[oobregion.offset + i]) != 0xff)
-				return 0;
-		}
-
-		mtd_ooblayout_ecc(mtd, section++, &oobregion);
-	}
-
-	return 1;
-}
-
 /* returns nonzero if entire page is blank */
 static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
 			  u32 *eccstat, unsigned int bufnum)
@@ -274,16 +246,14 @@ static void fsl_ifc_run_command(struct mtd_info *mtd)
 			if (errors == 15) {
 				/*
 				 * Uncorrectable error.
-				 * OK only if the whole page is blank.
+				 * We'll check for blank pages later.
 				 *
 				 * We disable ECCER reporting due to...
 				 * erratum IFC-A002770 -- so report it now if we
 				 * see an uncorrectable error in ECCSTAT.
 				 */
-				if (!is_blank(mtd, bufnum))
-					ctrl->nand_stat |=
-						IFC_NAND_EVTER_STAT_ECCER;
-				break;
+				ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
+				continue;
 			}
 
 			mtd->ecc_stats.corrected += errors;
@@ -678,6 +648,39 @@ static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
 	return nand_fsr | NAND_STATUS_WP;
 }
 
+/*
+ * The controller does not check for bitflips in erased pages,
+ * therefore software must check instead.
+ */
+static int check_erased_page(struct nand_chip *chip, u8 *buf)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 *ecc = chip->oob_poi;
+	const int ecc_size = chip->ecc.bytes;
+	const int pkt_size = chip->ecc.size;
+	int i, res, bitflips = 0;
+	struct mtd_oob_region oobregion = { };
+
+	mtd_ooblayout_ecc(mtd, 0, &oobregion);
+	ecc += oobregion.offset;
+
+	for (i = 0; i < chip->ecc.steps; ++i) {
+		res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
+						  NULL, 0,
+						  chip->ecc.strength);
+		if (res < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += res;
+
+		bitflips = max(res, bitflips);
+		buf += pkt_size;
+		ecc += ecc_size;
+	}
+
+	return bitflips;
+}
+
 static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 			     uint8_t *buf, int oob_required, int page)
 {
@@ -689,8 +692,12 @@ static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
 	if (oob_required)
 		fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
 
-	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER)
-		dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n");
+	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
+		if (!oob_required)
+			fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+		return check_erased_page(chip, buf);
+	}
 
 	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
 		mtd->ecc_stats.failed++;
@@ -831,6 +838,8 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
 	chip->select_chip = fsl_ifc_select_chip;
 	chip->cmdfunc = fsl_ifc_cmdfunc;
 	chip->waitfunc = fsl_ifc_wait;
+	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
+	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
 
 	chip->bbt_td = &bbt_main_descr;
 	chip->bbt_md = &bbt_mirror_descr;
@@ -904,7 +913,7 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
 		chip->ecc.algo = NAND_ECC_HAMMING;
 	}
 
-	if (ctrl->version == FSL_IFC_VERSION_1_1_0)
+	if (ctrl->version >= FSL_IFC_VERSION_1_1_0)
 		fsl_ifc_sram_init(priv);
 
 	return 0;

+ 96 - 26
drivers/mtd/nand/fsmc_nand.c

@@ -302,25 +302,13 @@ static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
  * This routine initializes timing parameters related to NAND memory access in
  * FSMC registers
  */
-static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
-			   uint32_t busw, struct fsmc_nand_timings *timings)
+static void fsmc_nand_setup(struct fsmc_nand_data *host,
+			    struct fsmc_nand_timings *tims)
 {
 	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 	uint32_t tclr, tar, thiz, thold, twait, tset;
-	struct fsmc_nand_timings *tims;
-	struct fsmc_nand_timings default_timings = {
-		.tclr	= FSMC_TCLR_1,
-		.tar	= FSMC_TAR_1,
-		.thiz	= FSMC_THIZ_1,
-		.thold	= FSMC_THOLD_4,
-		.twait	= FSMC_TWAIT_6,
-		.tset	= FSMC_TSET_0,
-	};
-
-	if (timings)
-		tims = timings;
-	else
-		tims = &default_timings;
+	unsigned int bank = host->bank;
+	void __iomem *regs = host->regs_va;
 
 	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
@@ -329,7 +317,7 @@ static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
 	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
 	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 
-	if (busw)
+	if (host->nand.options & NAND_BUSWIDTH_16)
 		writel_relaxed(value | FSMC_DEVWID_16,
 				FSMC_NAND_REG(regs, bank, PC));
 	else
@@ -344,6 +332,87 @@ static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
 			FSMC_NAND_REG(regs, bank, ATTRIB));
 }
 
+static int fsmc_calc_timings(struct fsmc_nand_data *host,
+			     const struct nand_sdr_timings *sdrt,
+			     struct fsmc_nand_timings *tims)
+{
+	unsigned long hclk = clk_get_rate(host->clk);
+	unsigned long hclkn = NSEC_PER_SEC / hclk;
+	uint32_t thiz, thold, twait, tset;
+
+	if (sdrt->tRC_min < 30000)
+		return -EOPNOTSUPP;
+
+	tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
+	if (tims->tar > FSMC_TAR_MASK)
+		tims->tar = FSMC_TAR_MASK;
+	tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
+	if (tims->tclr > FSMC_TCLR_MASK)
+		tims->tclr = FSMC_TCLR_MASK;
+
+	thiz = sdrt->tCS_min - sdrt->tWP_min;
+	tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
+
+	thold = sdrt->tDH_min;
+	if (thold < sdrt->tCH_min)
+		thold = sdrt->tCH_min;
+	if (thold < sdrt->tCLH_min)
+		thold = sdrt->tCLH_min;
+	if (thold < sdrt->tWH_min)
+		thold = sdrt->tWH_min;
+	if (thold < sdrt->tALH_min)
+		thold = sdrt->tALH_min;
+	if (thold < sdrt->tREH_min)
+		thold = sdrt->tREH_min;
+	tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
+	if (tims->thold == 0)
+		tims->thold = 1;
+	else if (tims->thold > FSMC_THOLD_MASK)
+		tims->thold = FSMC_THOLD_MASK;
+
+	twait = max(sdrt->tRP_min, sdrt->tWP_min);
+	tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
+	if (tims->twait == 0)
+		tims->twait = 1;
+	else if (tims->twait > FSMC_TWAIT_MASK)
+		tims->twait = FSMC_TWAIT_MASK;
+
+	tset = max(sdrt->tCS_min - sdrt->tWP_min,
+		   sdrt->tCEA_max - sdrt->tREA_max);
+	tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
+	if (tims->tset == 0)
+		tims->tset = 1;
+	else if (tims->tset > FSMC_TSET_MASK)
+		tims->tset = FSMC_TSET_MASK;
+
+	return 0;
+}
+
+static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
+				     const struct nand_data_interface *conf)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct fsmc_nand_data *host = nand_get_controller_data(nand);
+	struct fsmc_nand_timings tims;
+	const struct nand_sdr_timings *sdrt;
+	int ret;
+
+	sdrt = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdrt))
+		return PTR_ERR(sdrt);
+
+	ret = fsmc_calc_timings(host, sdrt, &tims);
+	if (ret)
+		return ret;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	fsmc_nand_setup(host, &tims);
+
+	return 0;
+}
+
 /*
  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
  */
@@ -796,10 +865,8 @@ static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 		return -ENOMEM;
 	ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
 						sizeof(*host->dev_timings));
-	if (ret) {
-		dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
+	if (ret)
 		host->dev_timings = NULL;
-	}
 
 	/* Set default NAND bank to 0 */
 	host->bank = 0;
@@ -933,9 +1000,10 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
 		break;
 	}
 
-	fsmc_nand_setup(host->regs_va, host->bank,
-			nand->options & NAND_BUSWIDTH_16,
-			host->dev_timings);
+	if (host->dev_timings)
+		fsmc_nand_setup(host, host->dev_timings);
+	else
+		nand->setup_data_interface = fsmc_setup_data_interface;
 
 	if (AMBA_REV_BITS(host->pid) >= 8) {
 		nand->ecc.read_page = fsmc_read_page_hwecc;
@@ -986,6 +1054,9 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
 				break;
 			}
 
+		case NAND_ECC_ON_DIE:
+			break;
+
 		default:
 			dev_err(&pdev->dev, "Unsupported ECC mode!\n");
 			goto err_probe;
@@ -1073,9 +1144,8 @@ static int fsmc_nand_resume(struct device *dev)
 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
 	if (host) {
 		clk_prepare_enable(host->clk);
-		fsmc_nand_setup(host->regs_va, host->bank,
-				host->nand.options & NAND_BUSWIDTH_16,
-				host->dev_timings);
+		if (host->dev_timings)
+			fsmc_nand_setup(host, host->dev_timings);
 	}
 	return 0;
 }

+ 3 - 3
drivers/mtd/nand/gpmi-nand/gpmi-lib.c

@@ -26,7 +26,7 @@
 #include "gpmi-regs.h"
 #include "bch-regs.h"
 
-static struct timing_threshod timing_default_threshold = {
+static struct timing_threshold timing_default_threshold = {
 	.max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
 						BP_GPMI_TIMING0_DATA_SETUP),
 	.internal_data_setup_in_ns   = 0,
@@ -329,7 +329,7 @@ static unsigned int ns_to_cycles(unsigned int time,
 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
 					struct gpmi_nfc_hardware_timing *hw)
 {
-	struct timing_threshod *nfc = &timing_default_threshold;
+	struct timing_threshold *nfc = &timing_default_threshold;
 	struct resources *r = &this->resources;
 	struct nand_chip *nand = &this->nand;
 	struct nand_timing target = this->timing;
@@ -932,7 +932,7 @@ static int enable_edo_mode(struct gpmi_nand_data *this, int mode)
 
 	nand->select_chip(mtd, 0);
 
-	/* [1] send SET FEATURE commond to NAND */
+	/* [1] send SET FEATURE command to NAND */
 	feature[0] = mode;
 	ret = nand->onfi_set_features(mtd, nand,
 				ONFI_FEATURE_ADDR_TIMING_MODE, feature);

+ 41 - 34
drivers/mtd/nand/gpmi-nand/gpmi-nand.c

@@ -82,6 +82,10 @@ static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
 	return 0;
 }
 
+static const char * const gpmi_clks_for_mx2x[] = {
+	"gpmi_io",
+};
+
 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
 	.ecc = gpmi_ooblayout_ecc,
 	.free = gpmi_ooblayout_free,
@@ -91,24 +95,48 @@ static const struct gpmi_devdata gpmi_devdata_imx23 = {
 	.type = IS_MX23,
 	.bch_max_ecc_strength = 20,
 	.max_chain_delay = 16,
+	.clks = gpmi_clks_for_mx2x,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
 };
 
 static const struct gpmi_devdata gpmi_devdata_imx28 = {
 	.type = IS_MX28,
 	.bch_max_ecc_strength = 20,
 	.max_chain_delay = 16,
+	.clks = gpmi_clks_for_mx2x,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
+};
+
+static const char * const gpmi_clks_for_mx6[] = {
+	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
 };
 
 static const struct gpmi_devdata gpmi_devdata_imx6q = {
 	.type = IS_MX6Q,
 	.bch_max_ecc_strength = 40,
 	.max_chain_delay = 12,
+	.clks = gpmi_clks_for_mx6,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
 };
 
 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
 	.type = IS_MX6SX,
 	.bch_max_ecc_strength = 62,
 	.max_chain_delay = 12,
+	.clks = gpmi_clks_for_mx6,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
+};
+
+static const char * const gpmi_clks_for_mx7d[] = {
+	"gpmi_io", "gpmi_bch_apb",
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx7d = {
+	.type = IS_MX7D,
+	.bch_max_ecc_strength = 62,
+	.max_chain_delay = 12,
+	.clks = gpmi_clks_for_mx7d,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
 };
 
 static irqreturn_t bch_irq(int irq, void *cookie)
@@ -599,35 +627,14 @@ acquire_err:
 	return -EINVAL;
 }
 
-static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
-	"gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
-};
-
 static int gpmi_get_clks(struct gpmi_nand_data *this)
 {
 	struct resources *r = &this->resources;
-	char **extra_clks = NULL;
 	struct clk *clk;
 	int err, i;
 
-	/* The main clock is stored in the first. */
-	r->clock[0] = devm_clk_get(this->dev, "gpmi_io");
-	if (IS_ERR(r->clock[0])) {
-		err = PTR_ERR(r->clock[0]);
-		goto err_clock;
-	}
-
-	/* Get extra clocks */
-	if (GPMI_IS_MX6(this))
-		extra_clks = extra_clks_for_mx6q;
-	if (!extra_clks)
-		return 0;
-
-	for (i = 1; i < GPMI_CLK_MAX; i++) {
-		if (extra_clks[i - 1] == NULL)
-			break;
-
-		clk = devm_clk_get(this->dev, extra_clks[i - 1]);
+	for (i = 0; i < this->devdata->clks_count; i++) {
+		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
 		if (IS_ERR(clk)) {
 			err = PTR_ERR(clk);
 			goto err_clock;
@@ -1929,12 +1936,6 @@ static int gpmi_set_geometry(struct gpmi_nand_data *this)
 	return gpmi_alloc_dma_buffer(this);
 }
 
-static void gpmi_nand_exit(struct gpmi_nand_data *this)
-{
-	nand_release(nand_to_mtd(&this->nand));
-	gpmi_free_dma_buffer(this);
-}
-
 static int gpmi_init_last(struct gpmi_nand_data *this)
 {
 	struct nand_chip *chip = &this->nand;
@@ -2048,18 +2049,20 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
 
 	ret = nand_boot_init(this);
 	if (ret)
-		goto err_out;
+		goto err_nand_cleanup;
 	ret = chip->scan_bbt(mtd);
 	if (ret)
-		goto err_out;
+		goto err_nand_cleanup;
 
 	ret = mtd_device_register(mtd, NULL, 0);
 	if (ret)
-		goto err_out;
+		goto err_nand_cleanup;
 	return 0;
 
+err_nand_cleanup:
+	nand_cleanup(chip);
 err_out:
-	gpmi_nand_exit(this);
+	gpmi_free_dma_buffer(this);
 	return ret;
 }
 
@@ -2076,6 +2079,9 @@ static const struct of_device_id gpmi_nand_id_table[] = {
 	}, {
 		.compatible = "fsl,imx6sx-gpmi-nand",
 		.data = &gpmi_devdata_imx6sx,
+	}, {
+		.compatible = "fsl,imx7d-gpmi-nand",
+		.data = &gpmi_devdata_imx7d,
 	}, {}
 };
 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
@@ -2129,7 +2135,8 @@ static int gpmi_nand_remove(struct platform_device *pdev)
 {
 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
 
-	gpmi_nand_exit(this);
+	nand_release(nand_to_mtd(&this->nand));
+	gpmi_free_dma_buffer(this);
 	release_resources(this);
 	return 0;
 }

+ 9 - 4
drivers/mtd/nand/gpmi-nand/gpmi-nand.h

@@ -123,13 +123,16 @@ enum gpmi_type {
 	IS_MX23,
 	IS_MX28,
 	IS_MX6Q,
-	IS_MX6SX
+	IS_MX6SX,
+	IS_MX7D,
 };
 
 struct gpmi_devdata {
 	enum gpmi_type type;
 	int bch_max_ecc_strength;
 	int max_chain_delay; /* See the async EDO mode */
+	const char * const *clks;
+	const int clks_count;
 };
 
 struct gpmi_nand_data {
@@ -231,7 +234,7 @@ struct gpmi_nfc_hardware_timing {
 };
 
 /**
- * struct timing_threshod - Timing threshold
+ * struct timing_threshold - Timing threshold
  * @max_data_setup_cycles:       The maximum number of data setup cycles that
  *                               can be expressed in the hardware.
  * @internal_data_setup_in_ns:   The time, in ns, that the NFC hardware requires
@@ -253,7 +256,7 @@ struct gpmi_nfc_hardware_timing {
  *                               progress, this is the clock frequency during
  *                               the most recent I/O transaction.
  */
-struct timing_threshod {
+struct timing_threshold {
 	const unsigned int      max_chip_count;
 	const unsigned int      max_data_setup_cycles;
 	const unsigned int      internal_data_setup_in_ns;
@@ -305,6 +308,8 @@ void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
 #define GPMI_IS_MX28(x)		((x)->devdata->type == IS_MX28)
 #define GPMI_IS_MX6Q(x)		((x)->devdata->type == IS_MX6Q)
 #define GPMI_IS_MX6SX(x)	((x)->devdata->type == IS_MX6SX)
+#define GPMI_IS_MX7D(x)		((x)->devdata->type == IS_MX7D)
 
-#define GPMI_IS_MX6(x)		(GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x))
+#define GPMI_IS_MX6(x)		(GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \
+				 GPMI_IS_MX7D(x))
 #endif

+ 2 - 0
drivers/mtd/nand/hisi504_nand.c

@@ -764,6 +764,8 @@ static int hisi_nfc_probe(struct platform_device *pdev)
 	chip->write_buf		= hisi_nfc_write_buf;
 	chip->read_buf		= hisi_nfc_read_buf;
 	chip->chip_delay	= HINFC504_CHIP_DELAY;
+	chip->onfi_set_features	= nand_onfi_get_set_features_notsupp;
+	chip->onfi_get_features	= nand_onfi_get_set_features_notsupp;
 
 	hisi_nfc_host_init(host);
 

+ 1 - 1
drivers/mtd/nand/jz4780_nand.c

@@ -205,7 +205,7 @@ static int jz4780_nand_init_ecc(struct jz4780_nand_chip *nand, struct device *de
 		return -EINVAL;
 	}
 
-	mtd->ooblayout = &nand_ooblayout_lp_ops;
+	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
 
 	return 0;
 }

+ 2 - 0
drivers/mtd/nand/mpc5121_nfc.c

@@ -708,6 +708,8 @@ static int mpc5121_nfc_probe(struct platform_device *op)
 	chip->read_buf = mpc5121_nfc_read_buf;
 	chip->write_buf = mpc5121_nfc_write_buf;
 	chip->select_chip = mpc5121_nfc_select_chip;
+	chip->onfi_set_features	= nand_onfi_get_set_features_notsupp;
+	chip->onfi_get_features	= nand_onfi_get_set_features_notsupp;
 	chip->bbt_options = NAND_BBT_USE_FLASH;
 	chip->ecc.mode = NAND_ECC_SOFT;
 	chip->ecc.algo = NAND_ECC_HAMMING;

+ 115 - 113
drivers/mtd/nand/mtk_ecc.c

@@ -28,36 +28,16 @@
 
 #define ECC_IDLE_MASK		BIT(0)
 #define ECC_IRQ_EN		BIT(0)
+#define ECC_PG_IRQ_SEL		BIT(1)
 #define ECC_OP_ENABLE		(1)
 #define ECC_OP_DISABLE		(0)
 
 #define ECC_ENCCON		(0x00)
 #define ECC_ENCCNFG		(0x04)
-#define		ECC_CNFG_4BIT		(0)
-#define		ECC_CNFG_6BIT		(1)
-#define		ECC_CNFG_8BIT		(2)
-#define		ECC_CNFG_10BIT		(3)
-#define		ECC_CNFG_12BIT		(4)
-#define		ECC_CNFG_14BIT		(5)
-#define		ECC_CNFG_16BIT		(6)
-#define		ECC_CNFG_18BIT		(7)
-#define		ECC_CNFG_20BIT		(8)
-#define		ECC_CNFG_22BIT		(9)
-#define		ECC_CNFG_24BIT		(0xa)
-#define		ECC_CNFG_28BIT		(0xb)
-#define		ECC_CNFG_32BIT		(0xc)
-#define		ECC_CNFG_36BIT		(0xd)
-#define		ECC_CNFG_40BIT		(0xe)
-#define		ECC_CNFG_44BIT		(0xf)
-#define		ECC_CNFG_48BIT		(0x10)
-#define		ECC_CNFG_52BIT		(0x11)
-#define		ECC_CNFG_56BIT		(0x12)
-#define		ECC_CNFG_60BIT		(0x13)
 #define		ECC_MODE_SHIFT		(5)
 #define		ECC_MS_SHIFT		(16)
 #define ECC_ENCDIADDR		(0x08)
 #define ECC_ENCIDLE		(0x0C)
-#define ECC_ENCPAR(x)		(0x10 + (x) * sizeof(u32))
 #define ECC_ENCIRQ_EN		(0x80)
 #define ECC_ENCIRQ_STA		(0x84)
 #define ECC_DECCON		(0x100)
@@ -66,7 +46,6 @@
 #define		DEC_CNFG_CORRECT	(0x3 << 12)
 #define ECC_DECIDLE		(0x10C)
 #define ECC_DECENUM0		(0x114)
-#define		ERR_MASK		(0x3f)
 #define ECC_DECDONE		(0x124)
 #define ECC_DECIRQ_EN		(0x200)
 #define ECC_DECIRQ_STA		(0x204)
@@ -78,8 +57,17 @@
 #define ECC_IRQ_REG(op)		((op) == ECC_ENCODE ? \
 					ECC_ENCIRQ_EN : ECC_DECIRQ_EN)
 
+struct mtk_ecc_caps {
+	u32 err_mask;
+	const u8 *ecc_strength;
+	u8 num_ecc_strength;
+	u32 encode_parity_reg0;
+	int pg_irq_sel;
+};
+
 struct mtk_ecc {
 	struct device *dev;
+	const struct mtk_ecc_caps *caps;
 	void __iomem *regs;
 	struct clk *clk;
 
@@ -87,7 +75,18 @@ struct mtk_ecc {
 	struct mutex lock;
 	u32 sectors;
 
-	u8 eccdata[112];
+	u8 *eccdata;
+};
+
+/* ecc strength that each IP supports */
+static const u8 ecc_strength_mt2701[] = {
+	4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
+	40, 44, 48, 52, 56, 60
+};
+
+static const u8 ecc_strength_mt2712[] = {
+	4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
+	40, 44, 48, 52, 56, 60, 68, 72, 80
 };
 
 static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
@@ -136,77 +135,24 @@ static irqreturn_t mtk_ecc_irq(int irq, void *id)
 	return IRQ_HANDLED;
 }
 
-static void mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
+static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
 {
-	u32 ecc_bit = ECC_CNFG_4BIT, dec_sz, enc_sz;
-	u32 reg;
-
-	switch (config->strength) {
-	case 4:
-		ecc_bit = ECC_CNFG_4BIT;
-		break;
-	case 6:
-		ecc_bit = ECC_CNFG_6BIT;
-		break;
-	case 8:
-		ecc_bit = ECC_CNFG_8BIT;
-		break;
-	case 10:
-		ecc_bit = ECC_CNFG_10BIT;
-		break;
-	case 12:
-		ecc_bit = ECC_CNFG_12BIT;
-		break;
-	case 14:
-		ecc_bit = ECC_CNFG_14BIT;
-		break;
-	case 16:
-		ecc_bit = ECC_CNFG_16BIT;
-		break;
-	case 18:
-		ecc_bit = ECC_CNFG_18BIT;
-		break;
-	case 20:
-		ecc_bit = ECC_CNFG_20BIT;
-		break;
-	case 22:
-		ecc_bit = ECC_CNFG_22BIT;
-		break;
-	case 24:
-		ecc_bit = ECC_CNFG_24BIT;
-		break;
-	case 28:
-		ecc_bit = ECC_CNFG_28BIT;
-		break;
-	case 32:
-		ecc_bit = ECC_CNFG_32BIT;
-		break;
-	case 36:
-		ecc_bit = ECC_CNFG_36BIT;
-		break;
-	case 40:
-		ecc_bit = ECC_CNFG_40BIT;
-		break;
-	case 44:
-		ecc_bit = ECC_CNFG_44BIT;
-		break;
-	case 48:
-		ecc_bit = ECC_CNFG_48BIT;
-		break;
-	case 52:
-		ecc_bit = ECC_CNFG_52BIT;
-		break;
-	case 56:
-		ecc_bit = ECC_CNFG_56BIT;
-		break;
-	case 60:
-		ecc_bit = ECC_CNFG_60BIT;
-		break;
-	default:
-		dev_err(ecc->dev, "invalid strength %d, default to 4 bits\n",
+	u32 ecc_bit, dec_sz, enc_sz;
+	u32 reg, i;
+
+	for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
+		if (ecc->caps->ecc_strength[i] == config->strength)
+			break;
+	}
+
+	if (i == ecc->caps->num_ecc_strength) {
+		dev_err(ecc->dev, "invalid ecc strength %d\n",
 			config->strength);
+		return -EINVAL;
 	}
 
+	ecc_bit = i;
+
 	if (config->op == ECC_ENCODE) {
 		/* configure ECC encoder (in bits) */
 		enc_sz = config->len << 3;
@@ -232,6 +178,8 @@ static void mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
 		if (config->sectors)
 			ecc->sectors = 1 << (config->sectors - 1);
 	}
+
+	return 0;
 }
 
 void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
@@ -247,8 +195,8 @@ void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
 		offset = (i >> 2) << 2;
 		err = readl(ecc->regs + ECC_DECENUM0 + offset);
 		err = err >> ((i % 4) * 8);
-		err &= ERR_MASK;
-		if (err == ERR_MASK) {
+		err &= ecc->caps->err_mask;
+		if (err == ecc->caps->err_mask) {
 			/* uncorrectable errors */
 			stats->failed++;
 			continue;
@@ -313,6 +261,7 @@ EXPORT_SYMBOL(of_mtk_ecc_get);
 int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
 {
 	enum mtk_ecc_operation op = config->op;
+	u16 reg_val;
 	int ret;
 
 	ret = mutex_lock_interruptible(&ecc->lock);
@@ -322,11 +271,27 @@ int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
 	}
 
 	mtk_ecc_wait_idle(ecc, op);
-	mtk_ecc_config(ecc, config);
-	writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
 
-	init_completion(&ecc->done);
-	writew(ECC_IRQ_EN, ecc->regs + ECC_IRQ_REG(op));
+	ret = mtk_ecc_config(ecc, config);
+	if (ret) {
+		mutex_unlock(&ecc->lock);
+		return ret;
+	}
+
+	if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
+		init_completion(&ecc->done);
+		reg_val = ECC_IRQ_EN;
+		/*
+		 * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
+		 * means this chip can only generate one ecc irq during page
+		 * read / write. If is 0, generate one ecc irq each ecc step.
+		 */
+		if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
+			reg_val |= ECC_PG_IRQ_SEL;
+		writew(reg_val, ecc->regs + ECC_IRQ_REG(op));
+	}
+
+	writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
 
 	return 0;
 }
@@ -396,7 +361,9 @@ int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
 	len = (config->strength * ECC_PARITY_BITS + 7) >> 3;
 
 	/* write the parity bytes generated by the ECC back to temp buffer */
-	__ioread32_copy(ecc->eccdata, ecc->regs + ECC_ENCPAR(0), round_up(len, 4));
+	__ioread32_copy(ecc->eccdata,
+			ecc->regs + ecc->caps->encode_parity_reg0,
+			round_up(len, 4));
 
 	/* copy into possibly unaligned OOB region with actual length */
 	memcpy(data + bytes, ecc->eccdata, len);
@@ -409,37 +376,79 @@ timeout:
 }
 EXPORT_SYMBOL(mtk_ecc_encode);
 
-void mtk_ecc_adjust_strength(u32 *p)
+void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
 {
-	u32 ecc[] = {4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
-			40, 44, 48, 52, 56, 60};
+	const u8 *ecc_strength = ecc->caps->ecc_strength;
 	int i;
 
-	for (i = 0; i < ARRAY_SIZE(ecc); i++) {
-		if (*p <= ecc[i]) {
+	for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
+		if (*p <= ecc_strength[i]) {
 			if (!i)
-				*p = ecc[i];
-			else if (*p != ecc[i])
-				*p = ecc[i - 1];
+				*p = ecc_strength[i];
+			else if (*p != ecc_strength[i])
+				*p = ecc_strength[i - 1];
 			return;
 		}
 	}
 
-	*p = ecc[ARRAY_SIZE(ecc) - 1];
+	*p = ecc_strength[ecc->caps->num_ecc_strength - 1];
 }
 EXPORT_SYMBOL(mtk_ecc_adjust_strength);
 
+static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
+	.err_mask = 0x3f,
+	.ecc_strength = ecc_strength_mt2701,
+	.num_ecc_strength = 20,
+	.encode_parity_reg0 = 0x10,
+	.pg_irq_sel = 0,
+};
+
+static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
+	.err_mask = 0x7f,
+	.ecc_strength = ecc_strength_mt2712,
+	.num_ecc_strength = 23,
+	.encode_parity_reg0 = 0x300,
+	.pg_irq_sel = 1,
+};
+
+static const struct of_device_id mtk_ecc_dt_match[] = {
+	{
+		.compatible = "mediatek,mt2701-ecc",
+		.data = &mtk_ecc_caps_mt2701,
+	}, {
+		.compatible = "mediatek,mt2712-ecc",
+		.data = &mtk_ecc_caps_mt2712,
+	},
+	{},
+};
+
 static int mtk_ecc_probe(struct platform_device *pdev)
 {
 	struct device *dev = &pdev->dev;
 	struct mtk_ecc *ecc;
 	struct resource *res;
+	const struct of_device_id *of_ecc_id = NULL;
+	u32 max_eccdata_size;
 	int irq, ret;
 
 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
 	if (!ecc)
 		return -ENOMEM;
 
+	of_ecc_id = of_match_device(mtk_ecc_dt_match, &pdev->dev);
+	if (!of_ecc_id)
+		return -ENODEV;
+
+	ecc->caps = of_ecc_id->data;
+
+	max_eccdata_size = ecc->caps->num_ecc_strength - 1;
+	max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
+	max_eccdata_size = (max_eccdata_size * ECC_PARITY_BITS + 7) >> 3;
+	max_eccdata_size = round_up(max_eccdata_size, 4);
+	ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
+	if (!ecc->eccdata)
+		return -ENOMEM;
+
 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 	ecc->regs = devm_ioremap_resource(dev, res);
 	if (IS_ERR(ecc->regs)) {
@@ -500,19 +509,12 @@ static int mtk_ecc_resume(struct device *dev)
 		return ret;
 	}
 
-	mtk_ecc_hw_init(ecc);
-
 	return 0;
 }
 
 static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
 #endif
 
-static const struct of_device_id mtk_ecc_dt_match[] = {
-	{ .compatible = "mediatek,mt2701-ecc" },
-	{},
-};
-
 MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
 
 static struct platform_driver mtk_ecc_driver = {

+ 1 - 1
drivers/mtd/nand/mtk_ecc.h

@@ -42,7 +42,7 @@ void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
 int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
 int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
 void mtk_ecc_disable(struct mtk_ecc *);
-void mtk_ecc_adjust_strength(u32 *);
+void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
 
 struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
 void mtk_ecc_release(struct mtk_ecc *);

+ 168 - 111
drivers/mtd/nand/mtk_nand.c

@@ -24,6 +24,7 @@
 #include <linux/module.h>
 #include <linux/iopoll.h>
 #include <linux/of.h>
+#include <linux/of_device.h>
 #include "mtk_ecc.h"
 
 /* NAND controller register definition */
@@ -38,23 +39,6 @@
 #define NFI_PAGEFMT		(0x04)
 #define		PAGEFMT_FDM_ECC_SHIFT	(12)
 #define		PAGEFMT_FDM_SHIFT	(8)
-#define		PAGEFMT_SPARE_16	(0)
-#define		PAGEFMT_SPARE_26	(1)
-#define		PAGEFMT_SPARE_27	(2)
-#define		PAGEFMT_SPARE_28	(3)
-#define		PAGEFMT_SPARE_32	(4)
-#define		PAGEFMT_SPARE_36	(5)
-#define		PAGEFMT_SPARE_40	(6)
-#define		PAGEFMT_SPARE_44	(7)
-#define		PAGEFMT_SPARE_48	(8)
-#define		PAGEFMT_SPARE_49	(9)
-#define		PAGEFMT_SPARE_50	(0xa)
-#define		PAGEFMT_SPARE_51	(0xb)
-#define		PAGEFMT_SPARE_52	(0xc)
-#define		PAGEFMT_SPARE_62	(0xd)
-#define		PAGEFMT_SPARE_63	(0xe)
-#define		PAGEFMT_SPARE_64	(0xf)
-#define		PAGEFMT_SPARE_SHIFT	(4)
 #define		PAGEFMT_SEC_SEL_512	BIT(2)
 #define		PAGEFMT_512_2K		(0)
 #define		PAGEFMT_2K_4K		(1)
@@ -115,6 +99,17 @@
 #define MTK_RESET_TIMEOUT	(1000000)
 #define MTK_MAX_SECTOR		(16)
 #define MTK_NAND_MAX_NSELS	(2)
+#define MTK_NFC_MIN_SPARE	(16)
+#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
+	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
+	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
+
+struct mtk_nfc_caps {
+	const u8 *spare_size;
+	u8 num_spare_size;
+	u8 pageformat_spare_shift;
+	u8 nfi_clk_div;
+};
 
 struct mtk_nfc_bad_mark_ctl {
 	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
@@ -155,6 +150,7 @@ struct mtk_nfc {
 	struct mtk_ecc *ecc;
 
 	struct device *dev;
+	const struct mtk_nfc_caps *caps;
 	void __iomem *regs;
 
 	struct completion done;
@@ -163,6 +159,20 @@ struct mtk_nfc {
 	u8 *buffer;
 };
 
+/*
+ * supported spare size of each IP.
+ * order should be the same with the spare size bitfiled defination of
+ * register NFI_PAGEFMT.
+ */
+static const u8 spare_size_mt2701[] = {
+	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
+};
+
+static const u8 spare_size_mt2712[] = {
+	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
+	74
+};
+
 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
 {
 	return container_of(nand, struct mtk_nfc_nand_chip, nand);
@@ -308,7 +318,7 @@ static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
 	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
-	u32 fmt, spare;
+	u32 fmt, spare, i;
 
 	if (!mtd->writesize)
 		return 0;
@@ -352,63 +362,21 @@ static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
 	if (chip->ecc.size == 1024)
 		spare >>= 1;
 
-	switch (spare) {
-	case 16:
-		fmt |= (PAGEFMT_SPARE_16 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 26:
-		fmt |= (PAGEFMT_SPARE_26 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 27:
-		fmt |= (PAGEFMT_SPARE_27 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 28:
-		fmt |= (PAGEFMT_SPARE_28 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 32:
-		fmt |= (PAGEFMT_SPARE_32 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 36:
-		fmt |= (PAGEFMT_SPARE_36 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 40:
-		fmt |= (PAGEFMT_SPARE_40 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 44:
-		fmt |= (PAGEFMT_SPARE_44 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 48:
-		fmt |= (PAGEFMT_SPARE_48 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 49:
-		fmt |= (PAGEFMT_SPARE_49 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 50:
-		fmt |= (PAGEFMT_SPARE_50 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 51:
-		fmt |= (PAGEFMT_SPARE_51 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 52:
-		fmt |= (PAGEFMT_SPARE_52 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 62:
-		fmt |= (PAGEFMT_SPARE_62 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 63:
-		fmt |= (PAGEFMT_SPARE_63 << PAGEFMT_SPARE_SHIFT);
-		break;
-	case 64:
-		fmt |= (PAGEFMT_SPARE_64 << PAGEFMT_SPARE_SHIFT);
-		break;
-	default:
-		dev_err(nfc->dev, "invalid spare per sector %d\n", spare);
+	for (i = 0; i < nfc->caps->num_spare_size; i++) {
+		if (nfc->caps->spare_size[i] == spare)
+			break;
+	}
+
+	if (i == nfc->caps->num_spare_size) {
+		dev_err(nfc->dev, "invalid spare size %d\n", spare);
 		return -EINVAL;
 	}
 
+	fmt |= i << nfc->caps->pageformat_spare_shift;
+
 	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
 	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
-	nfi_writew(nfc, fmt, NFI_PAGEFMT);
+	nfi_writel(nfc, fmt, NFI_PAGEFMT);
 
 	nfc->ecc_cfg.strength = chip->ecc.strength;
 	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
@@ -531,6 +499,74 @@ static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 		mtk_nfc_write_byte(mtd, buf[i]);
 }
 
+static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+	const struct nand_sdr_timings *timings;
+	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return -ENOTSUPP;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	rate = clk_get_rate(nfc->clk.nfi_clk);
+	/* There is a frequency divider in some IPs */
+	rate /= nfc->caps->nfi_clk_div;
+
+	/* turn clock rate into KHZ */
+	rate /= 1000;
+
+	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
+	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
+	tpoecs &= 0xf;
+
+	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
+	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
+	tprecs &= 0x3f;
+
+	/* sdr interface has no tCR which means CE# low to RE# low */
+	tc2r = 0;
+
+	tw2r = timings->tWHR_min / 1000;
+	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
+	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
+	tw2r &= 0xf;
+
+	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
+	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
+	twh &= 0xf;
+
+	twst = timings->tWP_min / 1000;
+	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
+	twst &= 0xf;
+
+	trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
+	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
+	trlt &= 0xf;
+
+	/*
+	 * ACCON: access timing control register
+	 * -------------------------------------
+	 * 31:28: tpoecs, minimum required time for CS post pulling down after
+	 *        accessing the device
+	 * 27:22: tprecs, minimum required time for CS pre pulling down before
+	 *        accessing the device
+	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
+	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
+	 * 11:08: twh, write enable hold time
+	 * 07:04: twst, write wait states
+	 * 03:00: trlt, read wait states
+	 */
+	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
+	nfi_writel(nfc, trlt, NFI_ACCCON);
+
+	return 0;
+}
+
 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
 {
 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
@@ -987,21 +1023,6 @@ static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
 
 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
 {
-	/*
-	 * ACCON: access timing control register
-	 * -------------------------------------
-	 * 31:28: minimum required time for CS post pulling down after accessing
-	 *	the device
-	 * 27:22: minimum required time for CS pre pulling down before accessing
-	 *	the device
-	 * 21:16: minimum required time from NCEB low to NREB low
-	 * 15:12: minimum required time from NWEB high to NREB low.
-	 * 11:08: write enable hold time
-	 * 07:04: write wait states
-	 * 03:00: read wait states
-	 */
-	nfi_writel(nfc, 0x10804211, NFI_ACCCON);
-
 	/*
 	 * CNRNB: nand ready/busy register
 	 * -------------------------------
@@ -1009,7 +1030,7 @@ static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
 	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
 	 */
 	nfi_writew(nfc, 0xf1, NFI_CNRNB);
-	nfi_writew(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
+	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
 
 	mtk_nfc_hw_reset(nfc);
 
@@ -1131,12 +1152,12 @@ static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
 	}
 }
 
-static void mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
+static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
 {
 	struct nand_chip *nand = mtd_to_nand(mtd);
-	u32 spare[] = {16, 26, 27, 28, 32, 36, 40, 44,
-			48, 49, 50, 51, 52, 62, 63, 64};
-	u32 eccsteps, i;
+	struct mtk_nfc *nfc = nand_get_controller_data(nand);
+	const u8 *spare = nfc->caps->spare_size;
+	u32 eccsteps, i, closest_spare = 0;
 
 	eccsteps = mtd->writesize / nand->ecc.size;
 	*sps = mtd->oobsize / eccsteps;
@@ -1144,28 +1165,31 @@ static void mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
 	if (nand->ecc.size == 1024)
 		*sps >>= 1;
 
-	for (i = 0; i < ARRAY_SIZE(spare); i++) {
-		if (*sps <= spare[i]) {
-			if (!i)
-				*sps = spare[i];
-			else if (*sps != spare[i])
-				*sps = spare[i - 1];
-			break;
+	if (*sps < MTK_NFC_MIN_SPARE)
+		return -EINVAL;
+
+	for (i = 0; i < nfc->caps->num_spare_size; i++) {
+		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
+			closest_spare = i;
+			if (*sps == spare[i])
+				break;
 		}
 	}
 
-	if (i >= ARRAY_SIZE(spare))
-		*sps = spare[ARRAY_SIZE(spare) - 1];
+	*sps = spare[closest_spare];
 
 	if (nand->ecc.size == 1024)
 		*sps <<= 1;
+
+	return 0;
 }
 
 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
 {
 	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtk_nfc *nfc = nand_get_controller_data(nand);
 	u32 spare;
-	int free;
+	int free, ret;
 
 	/* support only ecc hw mode */
 	if (nand->ecc.mode != NAND_ECC_HW) {
@@ -1194,7 +1218,9 @@ static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
 			nand->ecc.size = 1024;
 		}
 
-		mtk_nfc_set_spare_per_sector(&spare, mtd);
+		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
+		if (ret)
+			return ret;
 
 		/* calculate oob bytes except ecc parity data */
 		free = ((nand->ecc.strength * ECC_PARITY_BITS) + 7) >> 3;
@@ -1214,7 +1240,7 @@ static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
 		}
 	}
 
-	mtk_ecc_adjust_strength(&nand->ecc.strength);
+	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
 
 	dev_info(dev, "eccsize %d eccstrength %d\n",
 		 nand->ecc.size, nand->ecc.strength);
@@ -1271,6 +1297,7 @@ static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
 	nand->read_byte = mtk_nfc_read_byte;
 	nand->read_buf = mtk_nfc_read_buf;
 	nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
+	nand->setup_data_interface = mtk_nfc_setup_data_interface;
 
 	/* set default mode in case dt entry is missing */
 	nand->ecc.mode = NAND_ECC_HW;
@@ -1312,7 +1339,10 @@ static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
 		return -EINVAL;
 	}
 
-	mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd);
+	ret = mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd);
+	if (ret)
+		return ret;
+
 	mtk_nfc_set_fdm(&chip->fdm, mtd);
 	mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd);
 
@@ -1354,12 +1384,39 @@ static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
 	return 0;
 }
 
+static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
+	.spare_size = spare_size_mt2701,
+	.num_spare_size = 16,
+	.pageformat_spare_shift = 4,
+	.nfi_clk_div = 1,
+};
+
+static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
+	.spare_size = spare_size_mt2712,
+	.num_spare_size = 19,
+	.pageformat_spare_shift = 16,
+	.nfi_clk_div = 2,
+};
+
+static const struct of_device_id mtk_nfc_id_table[] = {
+	{
+		.compatible = "mediatek,mt2701-nfc",
+		.data = &mtk_nfc_caps_mt2701,
+	}, {
+		.compatible = "mediatek,mt2712-nfc",
+		.data = &mtk_nfc_caps_mt2712,
+	},
+	{}
+};
+MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
+
 static int mtk_nfc_probe(struct platform_device *pdev)
 {
 	struct device *dev = &pdev->dev;
 	struct device_node *np = dev->of_node;
 	struct mtk_nfc *nfc;
 	struct resource *res;
+	const struct of_device_id *of_nfc_id = NULL;
 	int ret, irq;
 
 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
@@ -1423,6 +1480,14 @@ static int mtk_nfc_probe(struct platform_device *pdev)
 		goto clk_disable;
 	}
 
+	of_nfc_id = of_match_device(mtk_nfc_id_table, &pdev->dev);
+	if (!of_nfc_id) {
+		ret = -ENODEV;
+		goto clk_disable;
+	}
+
+	nfc->caps = of_nfc_id->data;
+
 	platform_set_drvdata(pdev, nfc);
 
 	ret = mtk_nfc_nand_chips_init(dev, nfc);
@@ -1485,8 +1550,6 @@ static int mtk_nfc_resume(struct device *dev)
 	if (ret)
 		return ret;
 
-	mtk_nfc_hw_init(nfc);
-
 	/* reset NAND chip if VCC was powered off */
 	list_for_each_entry(chip, &nfc->chips, node) {
 		nand = &chip->nand;
@@ -1503,12 +1566,6 @@ static int mtk_nfc_resume(struct device *dev)
 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
 #endif
 
-static const struct of_device_id mtk_nfc_id_table[] = {
-	{ .compatible = "mediatek,mt2701-nfc" },
-	{}
-};
-MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
-
 static struct platform_driver mtk_nfc_driver = {
 	.probe  = mtk_nfc_probe,
 	.remove = mtk_nfc_remove,

+ 5 - 7
drivers/mtd/nand/mxc_nand.c

@@ -152,9 +152,8 @@ struct mxc_nand_devtype_data {
 	void (*select_chip)(struct mtd_info *mtd, int chip);
 	int (*correct_data)(struct mtd_info *mtd, u_char *dat,
 			u_char *read_ecc, u_char *calc_ecc);
-	int (*setup_data_interface)(struct mtd_info *mtd,
-				    const struct nand_data_interface *conf,
-				    bool check_only);
+	int (*setup_data_interface)(struct mtd_info *mtd, int csline,
+				    const struct nand_data_interface *conf);
 
 	/*
 	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
@@ -1015,9 +1014,8 @@ static void preset_v1(struct mtd_info *mtd)
 	writew(0x4, NFC_V1_V2_WRPROT);
 }
 
-static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd,
-					const struct nand_data_interface *conf,
-					bool check_only)
+static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
 {
 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
@@ -1075,7 +1073,7 @@ static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd,
 		return -EINVAL;
 	}
 
-	if (check_only)
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
 		return 0;
 
 	ret = clk_set_rate(host->clk, rate);

+ 303 - 46
drivers/mtd/nand/nand_base.c

@@ -753,6 +753,16 @@ static void nand_command(struct mtd_info *mtd, unsigned int command,
 		return;
 
 		/* This applies to read commands */
+	case NAND_CMD_READ0:
+		/*
+		 * READ0 is sometimes used to exit GET STATUS mode. When this
+		 * is the case no address cycles are requested, and we can use
+		 * this information to detect that we should not wait for the
+		 * device to be ready.
+		 */
+		if (column == -1 && page_addr == -1)
+			return;
+
 	default:
 		/*
 		 * If we don't have access to the busy pin, we apply the given
@@ -887,6 +897,15 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 		return;
 
 	case NAND_CMD_READ0:
+		/*
+		 * READ0 is sometimes used to exit GET STATUS mode. When this
+		 * is the case no address cycles are requested, and we can use
+		 * this information to detect that READSTART should not be
+		 * issued.
+		 */
+		if (column == -1 && page_addr == -1)
+			return;
+
 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
@@ -1042,12 +1061,13 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
 /**
  * nand_reset_data_interface - Reset data interface and timings
  * @chip: The NAND chip
+ * @chipnr: Internal die id
  *
  * Reset the Data interface and timings to ONFI mode 0.
  *
  * Returns 0 for success or negative error code otherwise.
  */
-static int nand_reset_data_interface(struct nand_chip *chip)
+static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
 	const struct nand_data_interface *conf;
@@ -1071,7 +1091,7 @@ static int nand_reset_data_interface(struct nand_chip *chip)
 	 */
 
 	conf = nand_get_default_data_interface();
-	ret = chip->setup_data_interface(mtd, conf, false);
+	ret = chip->setup_data_interface(mtd, chipnr, conf);
 	if (ret)
 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
 
@@ -1081,6 +1101,7 @@ static int nand_reset_data_interface(struct nand_chip *chip)
 /**
  * nand_setup_data_interface - Setup the best data interface and timings
  * @chip: The NAND chip
+ * @chipnr: Internal die id
  *
  * Find and configure the best data interface and NAND timings supported by
  * the chip and the driver.
@@ -1090,7 +1111,7 @@ static int nand_reset_data_interface(struct nand_chip *chip)
  *
  * Returns 0 for success or negative error code otherwise.
  */
-static int nand_setup_data_interface(struct nand_chip *chip)
+static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
@@ -1114,7 +1135,7 @@ static int nand_setup_data_interface(struct nand_chip *chip)
 			goto err;
 	}
 
-	ret = chip->setup_data_interface(mtd, chip->data_interface, false);
+	ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
 err:
 	return ret;
 }
@@ -1165,8 +1186,10 @@ static int nand_init_data_interface(struct nand_chip *chip)
 		if (ret)
 			continue;
 
-		ret = chip->setup_data_interface(mtd, chip->data_interface,
-						 true);
+		/* Pass -1 to only */
+		ret = chip->setup_data_interface(mtd,
+						 NAND_DATA_IFACE_CHECK_ONLY,
+						 chip->data_interface);
 		if (!ret) {
 			chip->onfi_timing_mode_default = mode;
 			break;
@@ -1193,7 +1216,7 @@ int nand_reset(struct nand_chip *chip, int chipnr)
 	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 
-	ret = nand_reset_data_interface(chip);
+	ret = nand_reset_data_interface(chip, chipnr);
 	if (ret)
 		return ret;
 
@@ -1206,7 +1229,7 @@ int nand_reset(struct nand_chip *chip, int chipnr)
 	chip->select_chip(mtd, -1);
 
 	chip->select_chip(mtd, chipnr);
-	ret = nand_setup_data_interface(chip);
+	ret = nand_setup_data_interface(chip, chipnr);
 	chip->select_chip(mtd, -1);
 	if (ret)
 		return ret;
@@ -1421,7 +1444,10 @@ static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
 
 	for (; len >= sizeof(long);
 	     len -= sizeof(long), bitmap += sizeof(long)) {
-		weight = hweight_long(*((unsigned long *)bitmap));
+		unsigned long d = *((unsigned long *)bitmap);
+		if (d == ~0UL)
+			continue;
+		weight = hweight_long(d);
 		bitflips += BITS_PER_LONG - weight;
 		if (unlikely(bitflips > bitflips_threshold))
 			return -EBADMSG;
@@ -1524,14 +1550,15 @@ EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
  *
  * Not for syndrome calculating ECC controllers, which use a special oob layout.
  */
-static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-			      uint8_t *buf, int oob_required, int page)
+int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+		       uint8_t *buf, int oob_required, int page)
 {
 	chip->read_buf(mtd, buf, mtd->writesize);
 	if (oob_required)
 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 	return 0;
 }
+EXPORT_SYMBOL(nand_read_page_raw);
 
 /**
  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
@@ -2469,8 +2496,8 @@ static int nand_read_oob(struct mtd_info *mtd, loff_t from,
  *
  * Not for syndrome calculating ECC controllers, which use a special oob layout.
  */
-static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-			       const uint8_t *buf, int oob_required, int page)
+int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+			const uint8_t *buf, int oob_required, int page)
 {
 	chip->write_buf(mtd, buf, mtd->writesize);
 	if (oob_required)
@@ -2478,6 +2505,7 @@ static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
 
 	return 0;
 }
+EXPORT_SYMBOL(nand_write_page_raw);
 
 /**
  * nand_write_page_raw_syndrome - [INTERN] raw page write function
@@ -2715,7 +2743,7 @@ static int nand_write_page_syndrome(struct mtd_info *mtd,
  */
 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 		uint32_t offset, int data_len, const uint8_t *buf,
-		int oob_required, int page, int cached, int raw)
+		int oob_required, int page, int raw)
 {
 	int status, subpage;
 
@@ -2741,30 +2769,12 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 	if (status < 0)
 		return status;
 
-	/*
-	 * Cached progamming disabled for now. Not sure if it's worth the
-	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
-	 */
-	cached = 0;
+	if (nand_standard_page_accessors(&chip->ecc)) {
+		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 
-	if (!cached || !NAND_HAS_CACHEPROG(chip)) {
-
-		if (nand_standard_page_accessors(&chip->ecc))
-			chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 		status = chip->waitfunc(mtd, chip);
-		/*
-		 * See if operation failed and additional status checks are
-		 * available.
-		 */
-		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
-			status = chip->errstat(mtd, chip, FL_WRITING, status,
-					       page);
-
 		if (status & NAND_STATUS_FAIL)
 			return -EIO;
-	} else {
-		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
-		status = chip->waitfunc(mtd, chip);
 	}
 
 	return 0;
@@ -2872,7 +2882,6 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
 
 	while (1) {
 		int bytes = mtd->writesize;
-		int cached = writelen > bytes && page != blockmask;
 		uint8_t *wbuf = buf;
 		int use_bufpoi;
 		int part_pagewr = (column || writelen < mtd->writesize);
@@ -2890,7 +2899,6 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
 		if (use_bufpoi) {
 			pr_debug("%s: using write bounce buffer for buf@%p\n",
 					 __func__, buf);
-			cached = 0;
 			if (part_pagewr)
 				bytes = min_t(int, bytes - column, writelen);
 			chip->pagebuf = -1;
@@ -2909,7 +2917,7 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
 		}
 
 		ret = nand_write_page(mtd, chip, column, bytes, wbuf,
-				      oob_required, page, cached,
+				      oob_required, page,
 				      (ops->mode == MTD_OPS_RAW));
 		if (ret)
 			break;
@@ -3225,14 +3233,6 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
 
 		status = chip->erase(mtd, page & chip->pagemask);
 
-		/*
-		 * See if operation failed and additional status checks are
-		 * available
-		 */
-		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
-			status = chip->errstat(mtd, chip, FL_ERASING,
-					       status, page);
-
 		/* See if block erase succeeded */
 		if (status & NAND_STATUS_FAIL) {
 			pr_debug("%s: failed erase, page 0x%08x\n",
@@ -3418,6 +3418,25 @@ static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
 	return 0;
 }
 
+/**
+ * nand_onfi_get_set_features_notsupp - set/get features stub returning
+ *					-ENOTSUPP
+ * @mtd: MTD device structure
+ * @chip: nand chip info structure
+ * @addr: feature address.
+ * @subfeature_param: the subfeature parameters, a four bytes array.
+ *
+ * Should be used by NAND controller drivers that do not support the SET/GET
+ * FEATURES operations.
+ */
+int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
+				       struct nand_chip *chip, int addr,
+				       u8 *subfeature_param)
+{
+	return -ENOTSUPP;
+}
+EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp);
+
 /**
  * nand_suspend - [MTD Interface] Suspend the NAND flash
  * @mtd: MTD device structure
@@ -4177,6 +4196,7 @@ static const char * const nand_ecc_modes[] = {
 	[NAND_ECC_HW]		= "hw",
 	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
 	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
+	[NAND_ECC_ON_DIE]	= "on-die",
 };
 
 static int of_get_nand_ecc_mode(struct device_node *np)
@@ -4371,7 +4391,7 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips,
 	 * For the other dies, nand_reset() will automatically switch to the
 	 * best mode for us.
 	 */
-	ret = nand_setup_data_interface(chip);
+	ret = nand_setup_data_interface(chip, 0);
 	if (ret)
 		goto err_nand_init;
 
@@ -4509,6 +4529,226 @@ static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
 	}
 }
 
+/**
+ * nand_check_ecc_caps - check the sanity of preset ECC settings
+ * @chip: nand chip info structure
+ * @caps: ECC caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * When ECC step size and strength are already set, check if they are supported
+ * by the controller and the calculated ECC bytes fit within the chip's OOB.
+ * On success, the calculated ECC bytes is set.
+ */
+int nand_check_ecc_caps(struct nand_chip *chip,
+			const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int preset_step = chip->ecc.size;
+	int preset_strength = chip->ecc.strength;
+	int nsteps, ecc_bytes;
+	int i, j;
+
+	if (WARN_ON(oobavail < 0))
+		return -EINVAL;
+
+	if (!preset_step || !preset_strength)
+		return -ENODATA;
+
+	nsteps = mtd->writesize / preset_step;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+
+		if (stepinfo->stepsize != preset_step)
+			continue;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			if (stepinfo->strengths[j] != preset_strength)
+				continue;
+
+			ecc_bytes = caps->calc_ecc_bytes(preset_step,
+							 preset_strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				return ecc_bytes;
+
+			if (ecc_bytes * nsteps > oobavail) {
+				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
+				       preset_step, preset_strength);
+				return -ENOSPC;
+			}
+
+			chip->ecc.bytes = ecc_bytes;
+
+			return 0;
+		}
+	}
+
+	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
+	       preset_step, preset_strength);
+
+	return -ENOTSUPP;
+}
+EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
+
+/**
+ * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * If a chip's ECC requirement is provided, try to meet it with the least
+ * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
+ * On success, the chosen ECC settings are set.
+ */
+int nand_match_ecc_req(struct nand_chip *chip,
+		       const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int req_step = chip->ecc_step_ds;
+	int req_strength = chip->ecc_strength_ds;
+	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
+	int best_step, best_strength, best_ecc_bytes;
+	int best_ecc_bytes_total = INT_MAX;
+	int i, j;
+
+	if (WARN_ON(oobavail < 0))
+		return -EINVAL;
+
+	/* No information provided by the NAND chip */
+	if (!req_step || !req_strength)
+		return -ENOTSUPP;
+
+	/* number of correctable bits the chip requires in a page */
+	req_corr = mtd->writesize / req_step * req_strength;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+		step_size = stepinfo->stepsize;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			strength = stepinfo->strengths[j];
+
+			/*
+			 * If both step size and strength are smaller than the
+			 * chip's requirement, it is not easy to compare the
+			 * resulted reliability.
+			 */
+			if (step_size < req_step && strength < req_strength)
+				continue;
+
+			if (mtd->writesize % step_size)
+				continue;
+
+			nsteps = mtd->writesize / step_size;
+
+			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				continue;
+			ecc_bytes_total = ecc_bytes * nsteps;
+
+			if (ecc_bytes_total > oobavail ||
+			    strength * nsteps < req_corr)
+				continue;
+
+			/*
+			 * We assume the best is to meet the chip's requrement
+			 * with the least number of ECC bytes.
+			 */
+			if (ecc_bytes_total < best_ecc_bytes_total) {
+				best_ecc_bytes_total = ecc_bytes_total;
+				best_step = step_size;
+				best_strength = strength;
+				best_ecc_bytes = ecc_bytes;
+			}
+		}
+	}
+
+	if (best_ecc_bytes_total == INT_MAX)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_step;
+	chip->ecc.strength = best_strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_match_ecc_req);
+
+/**
+ * nand_maximize_ecc - choose the max ECC strength available
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * Choose the max ECC strength that is supported on the controller, and can fit
+ * within the chip's OOB.  On success, the chosen ECC settings are set.
+ */
+int nand_maximize_ecc(struct nand_chip *chip,
+		      const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int step_size, strength, nsteps, ecc_bytes, corr;
+	int best_corr = 0;
+	int best_step = 0;
+	int best_strength, best_ecc_bytes;
+	int i, j;
+
+	if (WARN_ON(oobavail < 0))
+		return -EINVAL;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+		step_size = stepinfo->stepsize;
+
+		/* If chip->ecc.size is already set, respect it */
+		if (chip->ecc.size && step_size != chip->ecc.size)
+			continue;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			strength = stepinfo->strengths[j];
+
+			if (mtd->writesize % step_size)
+				continue;
+
+			nsteps = mtd->writesize / step_size;
+
+			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				continue;
+
+			if (ecc_bytes * nsteps > oobavail)
+				continue;
+
+			corr = strength * nsteps;
+
+			/*
+			 * If the number of correctable bits is the same,
+			 * bigger step_size has more reliability.
+			 */
+			if (corr > best_corr ||
+			    (corr == best_corr && step_size > best_step)) {
+				best_corr = corr;
+				best_step = step_size;
+				best_strength = strength;
+				best_ecc_bytes = ecc_bytes;
+			}
+		}
+	}
+
+	if (!best_corr)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_step;
+	chip->ecc.strength = best_strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_maximize_ecc);
+
 /*
  * Check if the chip configuration meet the datasheet requirements.
 
@@ -4730,6 +4970,18 @@ int nand_scan_tail(struct mtd_info *mtd)
 		}
 		break;
 
+	case NAND_ECC_ON_DIE:
+		if (!ecc->read_page || !ecc->write_page) {
+			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
+			ret = -EINVAL;
+			goto err_free;
+		}
+		if (!ecc->read_oob)
+			ecc->read_oob = nand_read_oob_std;
+		if (!ecc->write_oob)
+			ecc->write_oob = nand_write_oob_std;
+		break;
+
 	case NAND_ECC_NONE:
 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
 		ecc->read_page = nand_read_page_raw;
@@ -4770,6 +5022,11 @@ int nand_scan_tail(struct mtd_info *mtd)
 		goto err_free;
 	}
 	ecc->total = ecc->steps * ecc->bytes;
+	if (ecc->total > mtd->oobsize) {
+		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
+		ret = -EINVAL;
+		goto err_free;
+	}
 
 	/*
 	 * The number of bytes available for a client to place data into

+ 222 - 0
drivers/mtd/nand/nand_micron.c

@@ -17,6 +17,12 @@
 
 #include <linux/mtd/nand.h>
 
+/*
+ * Special Micron status bit that indicates when the block has been
+ * corrected by on-die ECC and should be rewritten
+ */
+#define NAND_STATUS_WRITE_RECOMMENDED	BIT(3)
+
 struct nand_onfi_vendor_micron {
 	u8 two_plane_read;
 	u8 read_cache;
@@ -66,9 +72,197 @@ static int micron_nand_onfi_init(struct nand_chip *chip)
 	return 0;
 }
 
+static int micron_nand_on_die_ooblayout_ecc(struct mtd_info *mtd, int section,
+					    struct mtd_oob_region *oobregion)
+{
+	if (section >= 4)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 8;
+	oobregion->length = 8;
+
+	return 0;
+}
+
+static int micron_nand_on_die_ooblayout_free(struct mtd_info *mtd, int section,
+					     struct mtd_oob_region *oobregion)
+{
+	if (section >= 4)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 2;
+	oobregion->length = 6;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops micron_nand_on_die_ooblayout_ops = {
+	.ecc = micron_nand_on_die_ooblayout_ecc,
+	.free = micron_nand_on_die_ooblayout_free,
+};
+
+static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
+{
+	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
+
+	if (enable)
+		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
+
+	return chip->onfi_set_features(nand_to_mtd(chip), chip,
+				       ONFI_FEATURE_ON_DIE_ECC, feature);
+}
+
+static int
+micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
+				 uint8_t *buf, int oob_required,
+				 int page)
+{
+	int status;
+	int max_bitflips = 0;
+
+	micron_nand_on_die_ecc_setup(chip, true);
+
+	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+	status = chip->read_byte(mtd);
+	if (status & NAND_STATUS_FAIL)
+		mtd->ecc_stats.failed++;
+	/*
+	 * The internal ECC doesn't tell us the number of bitflips
+	 * that have been corrected, but tells us if it recommends to
+	 * rewrite the block. If it's the case, then we pretend we had
+	 * a number of bitflips equal to the ECC strength, which will
+	 * hint the NAND core to rewrite the block.
+	 */
+	else if (status & NAND_STATUS_WRITE_RECOMMENDED)
+		max_bitflips = chip->ecc.strength;
+
+	chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
+
+	nand_read_page_raw(mtd, chip, buf, oob_required, page);
+
+	micron_nand_on_die_ecc_setup(chip, false);
+
+	return max_bitflips;
+}
+
+static int
+micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
+				  const uint8_t *buf, int oob_required,
+				  int page)
+{
+	int status;
+
+	micron_nand_on_die_ecc_setup(chip, true);
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+	nand_write_page_raw(mtd, chip, buf, oob_required, page);
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
+
+	micron_nand_on_die_ecc_setup(chip, false);
+
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+static int
+micron_nand_read_page_raw_on_die_ecc(struct mtd_info *mtd,
+				     struct nand_chip *chip,
+				     uint8_t *buf, int oob_required,
+				     int page)
+{
+	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+	nand_read_page_raw(mtd, chip, buf, oob_required, page);
+
+	return 0;
+}
+
+static int
+micron_nand_write_page_raw_on_die_ecc(struct mtd_info *mtd,
+				      struct nand_chip *chip,
+				      const uint8_t *buf, int oob_required,
+				      int page)
+{
+	int status;
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+	nand_write_page_raw(mtd, chip, buf, oob_required, page);
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
+
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+enum {
+	/* The NAND flash doesn't support on-die ECC */
+	MICRON_ON_DIE_UNSUPPORTED,
+
+	/*
+	 * The NAND flash supports on-die ECC and it can be
+	 * enabled/disabled by a set features command.
+	 */
+	MICRON_ON_DIE_SUPPORTED,
+
+	/*
+	 * The NAND flash supports on-die ECC, and it cannot be
+	 * disabled.
+	 */
+	MICRON_ON_DIE_MANDATORY,
+};
+
+/*
+ * Try to detect if the NAND support on-die ECC. To do this, we enable
+ * the feature, and read back if it has been enabled as expected. We
+ * also check if it can be disabled, because some Micron NANDs do not
+ * allow disabling the on-die ECC and we don't support such NANDs for
+ * now.
+ *
+ * This function also has the side effect of disabling on-die ECC if
+ * it had been left enabled by the firmware/bootloader.
+ */
+static int micron_supports_on_die_ecc(struct nand_chip *chip)
+{
+	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
+	int ret;
+
+	if (chip->onfi_version == 0)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	if (chip->bits_per_cell != 1)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	ret = micron_nand_on_die_ecc_setup(chip, true);
+	if (ret)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	chip->onfi_get_features(nand_to_mtd(chip), chip,
+				ONFI_FEATURE_ON_DIE_ECC, feature);
+	if ((feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) == 0)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	ret = micron_nand_on_die_ecc_setup(chip, false);
+	if (ret)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	chip->onfi_get_features(nand_to_mtd(chip), chip,
+				ONFI_FEATURE_ON_DIE_ECC, feature);
+	if (feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN)
+		return MICRON_ON_DIE_MANDATORY;
+
+	/*
+	 * Some Micron NANDs have an on-die ECC of 4/512, some other
+	 * 8/512. We only support the former.
+	 */
+	if (chip->onfi_params.ecc_bits != 4)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	return MICRON_ON_DIE_SUPPORTED;
+}
+
 static int micron_nand_init(struct nand_chip *chip)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ondie;
 	int ret;
 
 	ret = micron_nand_onfi_init(chip);
@@ -78,6 +272,34 @@ static int micron_nand_init(struct nand_chip *chip)
 	if (mtd->writesize == 2048)
 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
 
+	ondie = micron_supports_on_die_ecc(chip);
+
+	if (ondie == MICRON_ON_DIE_MANDATORY) {
+		pr_err("On-die ECC forcefully enabled, not supported\n");
+		return -EINVAL;
+	}
+
+	if (chip->ecc.mode == NAND_ECC_ON_DIE) {
+		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
+			pr_err("On-die ECC selected but not supported\n");
+			return -EINVAL;
+		}
+
+		chip->ecc.options = NAND_ECC_CUSTOM_PAGE_ACCESS;
+		chip->ecc.bytes = 8;
+		chip->ecc.size = 512;
+		chip->ecc.strength = 4;
+		chip->ecc.algo = NAND_ECC_BCH;
+		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
+		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
+		chip->ecc.read_page_raw =
+			micron_nand_read_page_raw_on_die_ecc;
+		chip->ecc.write_page_raw =
+			micron_nand_write_page_raw_on_die_ecc;
+
+		mtd_set_ooblayout(mtd, &micron_nand_on_die_ooblayout_ops);
+	}
+
 	return 0;
 }
 

+ 5 - 1
drivers/mtd/nand/orion_nand.c

@@ -166,7 +166,11 @@ static int __init orion_nand_probe(struct platform_device *pdev)
 		}
 	}
 
-	clk_prepare_enable(info->clk);
+	ret = clk_prepare_enable(info->clk);
+	if (ret) {
+		dev_err(&pdev->dev, "failed to prepare clock!\n");
+		return ret;
+	}
 
 	ret = nand_scan(mtd, 1);
 	if (ret)

+ 2 - 0
drivers/mtd/nand/pxa3xx_nand.c

@@ -1812,6 +1812,8 @@ static int alloc_nand_resource(struct platform_device *pdev)
 		chip->write_buf		= pxa3xx_nand_write_buf;
 		chip->options		|= NAND_NO_SUBPAGE_WRITE;
 		chip->cmdfunc		= nand_cmdfunc;
+		chip->onfi_set_features	= nand_onfi_get_set_features_notsupp;
+		chip->onfi_get_features	= nand_onfi_get_set_features_notsupp;
 	}
 
 	nand_hw_control_init(chip->controller);

+ 2 - 0
drivers/mtd/nand/qcom_nandc.c

@@ -2008,6 +2008,8 @@ static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
 	chip->read_byte		= qcom_nandc_read_byte;
 	chip->read_buf		= qcom_nandc_read_buf;
 	chip->write_buf		= qcom_nandc_write_buf;
+	chip->onfi_set_features	= nand_onfi_get_set_features_notsupp;
+	chip->onfi_get_features	= nand_onfi_get_set_features_notsupp;
 
 	/*
 	 * the bad block marker is readable only when we read the last codeword

+ 2 - 3
drivers/mtd/nand/s3c2410.c

@@ -812,9 +812,8 @@ static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
 	return -ENODEV;
 }
 
-static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd,
-					const struct nand_data_interface *conf,
-					bool check_only)
+static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
 {
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 	struct s3c2410_platform_nand *pdata = info->platform;

+ 2 - 0
drivers/mtd/nand/sh_flctl.c

@@ -1183,6 +1183,8 @@ static int flctl_probe(struct platform_device *pdev)
 	nand->read_buf = flctl_read_buf;
 	nand->select_chip = flctl_select_chip;
 	nand->cmdfunc = flctl_cmdfunc;
+	nand->onfi_set_features = nand_onfi_get_set_features_notsupp;
+	nand->onfi_get_features = nand_onfi_get_set_features_notsupp;
 
 	if (pdata->flcmncr_val & SEL_16BIT)
 		nand->options |= NAND_BUSWIDTH_16;

+ 3 - 6
drivers/mtd/nand/sunxi_nand.c

@@ -1301,7 +1301,6 @@ static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
 
 	sunxi_nfc_hw_ecc_enable(mtd);
 
-	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 	for (i = data_offs / ecc->size;
 	     i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
 		int data_off = i * ecc->size;
@@ -1592,9 +1591,8 @@ static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
 #define sunxi_nand_lookup_timing(l, p, c) \
 			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
 
-static int sunxi_nfc_setup_data_interface(struct mtd_info *mtd,
-					const struct nand_data_interface *conf,
-					bool check_only)
+static int sunxi_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
 {
 	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nand_chip *chip = to_sunxi_nand(nand);
@@ -1707,7 +1705,7 @@ static int sunxi_nfc_setup_data_interface(struct mtd_info *mtd,
 		return tRHW;
 	}
 
-	if (check_only)
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
 		return 0;
 
 	/*
@@ -1922,7 +1920,6 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
 	ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage;
 	ecc->read_oob_raw = nand_read_oob_std;
 	ecc->write_oob_raw = nand_write_oob_std;
-	ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
 
 	return 0;
 }

+ 16 - 6
drivers/mtd/nand/tango_nand.c

@@ -303,7 +303,7 @@ static int tango_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 			    const u8 *buf, int oob_required, int page)
 {
 	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
-	int err, len = mtd->writesize;
+	int err, status, len = mtd->writesize;
 
 	/* Calling tango_write_oob() would send PAGEPROG twice */
 	if (oob_required)
@@ -314,6 +314,10 @@ static int tango_write_page(struct mtd_info *mtd, struct nand_chip *chip,
 	if (err)
 		return err;
 
+	status = chip->waitfunc(mtd, chip);
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+
 	return 0;
 }
 
@@ -340,7 +344,7 @@ static void aux_write(struct nand_chip *chip, const u8 **buf, int len, int *pos)
 
 	if (!*buf) {
 		/* skip over "len" bytes */
-		chip->cmdfunc(mtd, NAND_CMD_SEQIN, *pos, -1);
+		chip->cmdfunc(mtd, NAND_CMD_RNDIN, *pos, -1);
 	} else {
 		tango_write_buf(mtd, *buf, len);
 		*buf += len;
@@ -431,9 +435,16 @@ static int tango_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
 static int tango_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
 				const u8 *buf, int oob_required, int page)
 {
+	int status;
+
 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0, page);
 	raw_write(chip, buf, chip->oob_poi);
 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+	status = chip->waitfunc(mtd, chip);
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+
 	return 0;
 }
 
@@ -484,9 +495,8 @@ static u32 to_ticks(int kHz, int ps)
 	return DIV_ROUND_UP_ULL((u64)kHz * ps, NSEC_PER_SEC);
 }
 
-static int tango_set_timings(struct mtd_info *mtd,
-			     const struct nand_data_interface *conf,
-			     bool check_only)
+static int tango_set_timings(struct mtd_info *mtd, int csline,
+			     const struct nand_data_interface *conf)
 {
 	const struct nand_sdr_timings *sdr = nand_get_sdr_timings(conf);
 	struct nand_chip *chip = mtd_to_nand(mtd);
@@ -498,7 +508,7 @@ static int tango_set_timings(struct mtd_info *mtd,
 	if (IS_ERR(sdr))
 		return PTR_ERR(sdr);
 
-	if (check_only)
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
 		return 0;
 
 	Trdy = to_ticks(kHz, sdr->tCEA_max - sdr->tREA_max);

+ 2 - 0
drivers/mtd/nand/vf610_nfc.c

@@ -703,6 +703,8 @@ static int vf610_nfc_probe(struct platform_device *pdev)
 	chip->read_buf = vf610_nfc_read_buf;
 	chip->write_buf = vf610_nfc_write_buf;
 	chip->select_chip = vf610_nfc_select_chip;
+	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
+	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
 
 	chip->options |= NAND_NO_SUBPAGE_WRITE;
 

+ 2 - 0
drivers/staging/mt29f_spinand/mt29f_spinand.c

@@ -915,6 +915,8 @@ static int spinand_probe(struct spi_device *spi_nand)
 	chip->waitfunc	= spinand_wait;
 	chip->options	|= NAND_CACHEPRG;
 	chip->select_chip = spinand_select_chip;
+	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
+	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
 
 	mtd = nand_to_mtd(chip);
 

+ 71 - 9
include/linux/mtd/nand.h

@@ -107,6 +107,8 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
 #define NAND_STATUS_READY	0x40
 #define NAND_STATUS_WP		0x80
 
+#define NAND_DATA_IFACE_CHECK_ONLY	-1
+
 /*
  * Constants for ECC_MODES
  */
@@ -116,6 +118,7 @@ typedef enum {
 	NAND_ECC_HW,
 	NAND_ECC_HW_SYNDROME,
 	NAND_ECC_HW_OOB_FIRST,
+	NAND_ECC_ON_DIE,
 } nand_ecc_modes_t;
 
 enum nand_ecc_algo {
@@ -257,6 +260,8 @@ struct nand_chip;
 
 /* Vendor-specific feature address (Micron) */
 #define ONFI_FEATURE_ADDR_READ_RETRY	0x89
+#define ONFI_FEATURE_ON_DIE_ECC		0x90
+#define   ONFI_FEATURE_ON_DIE_ECC_EN	BIT(3)
 
 /* ONFI subfeature parameters length */
 #define ONFI_SUBFEATURE_PARAM_LEN	4
@@ -476,6 +481,44 @@ static inline void nand_hw_control_init(struct nand_hw_control *nfc)
 	init_waitqueue_head(&nfc->wq);
 }
 
+/**
+ * struct nand_ecc_step_info - ECC step information of ECC engine
+ * @stepsize: data bytes per ECC step
+ * @strengths: array of supported strengths
+ * @nstrengths: number of supported strengths
+ */
+struct nand_ecc_step_info {
+	int stepsize;
+	const int *strengths;
+	int nstrengths;
+};
+
+/**
+ * struct nand_ecc_caps - capability of ECC engine
+ * @stepinfos: array of ECC step information
+ * @nstepinfos: number of ECC step information
+ * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
+ */
+struct nand_ecc_caps {
+	const struct nand_ecc_step_info *stepinfos;
+	int nstepinfos;
+	int (*calc_ecc_bytes)(int step_size, int strength);
+};
+
+/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
+#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)	\
+static const int __name##_strengths[] = { __VA_ARGS__ };	\
+static const struct nand_ecc_step_info __name##_stepinfo = {	\
+	.stepsize = __step,					\
+	.strengths = __name##_strengths,			\
+	.nstrengths = ARRAY_SIZE(__name##_strengths),		\
+};								\
+static const struct nand_ecc_caps __name = {			\
+	.stepinfos = &__name##_stepinfo,			\
+	.nstepinfos = 1,					\
+	.calc_ecc_bytes = __calc,				\
+}
+
 /**
  * struct nand_ecc_ctrl - Control structure for ECC
  * @mode:	ECC mode
@@ -815,7 +858,10 @@ struct nand_manufacturer_ops {
  * @read_retries:	[INTERN] the number of read retry modes supported
  * @onfi_set_features:	[REPLACEABLE] set the features for ONFI nand
  * @onfi_get_features:	[REPLACEABLE] get the features for ONFI nand
- * @setup_data_interface: [OPTIONAL] setup the data interface and timing
+ * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If
+ *			  chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this
+ *			  means the configuration should not be applied but
+ *			  only checked.
  * @bbt:		[INTERN] bad block table pointer
  * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash
  *			lookup.
@@ -826,9 +872,6 @@ struct nand_manufacturer_ops {
  *			structure which is shared among multiple independent
  *			devices.
  * @priv:		[OPTIONAL] pointer to private chip data
- * @errstat:		[OPTIONAL] hardware specific function to perform
- *			additional error status checks (determine if errors are
- *			correctable).
  * @manufacturer:	[INTERN] Contains manufacturer information
  */
 
@@ -852,16 +895,13 @@ struct nand_chip {
 	int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this);
 	int (*erase)(struct mtd_info *mtd, int page);
 	int (*scan_bbt)(struct mtd_info *mtd);
-	int (*errstat)(struct mtd_info *mtd, struct nand_chip *this, int state,
-			int status, int page);
 	int (*onfi_set_features)(struct mtd_info *mtd, struct nand_chip *chip,
 			int feature_addr, uint8_t *subfeature_para);
 	int (*onfi_get_features)(struct mtd_info *mtd, struct nand_chip *chip,
 			int feature_addr, uint8_t *subfeature_para);
 	int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode);
-	int (*setup_data_interface)(struct mtd_info *mtd,
-				    const struct nand_data_interface *conf,
-				    bool check_only);
+	int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
+				    const struct nand_data_interface *conf);
 
 
 	int chip_delay;
@@ -1244,6 +1284,15 @@ int nand_check_erased_ecc_chunk(void *data, int datalen,
 				void *extraoob, int extraooblen,
 				int threshold);
 
+int nand_check_ecc_caps(struct nand_chip *chip,
+			const struct nand_ecc_caps *caps, int oobavail);
+
+int nand_match_ecc_req(struct nand_chip *chip,
+		       const struct nand_ecc_caps *caps,  int oobavail);
+
+int nand_maximize_ecc(struct nand_chip *chip,
+		      const struct nand_ecc_caps *caps, int oobavail);
+
 /* Default write_oob implementation */
 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
 
@@ -1258,6 +1307,19 @@ int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page);
 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
 			   int page);
 
+/* Stub used by drivers that do not support GET/SET FEATURES operations */
+int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
+				       struct nand_chip *chip, int addr,
+				       u8 *subfeature_param);
+
+/* Default read_page_raw implementation */
+int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+		       uint8_t *buf, int oob_required, int page);
+
+/* Default write_page_raw implementation */
+int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+			const uint8_t *buf, int oob_required, int page);
+
 /* Reset and initialize a NAND device */
 int nand_reset(struct nand_chip *chip, int chipnr);