|
@@ -0,0 +1,395 @@
|
|
|
+#include <linux/mm.h>
|
|
|
+#include <linux/mmzone.h>
|
|
|
+#include <linux/bootmem.h>
|
|
|
+#include <linux/page_ext.h>
|
|
|
+#include <linux/memory.h>
|
|
|
+#include <linux/vmalloc.h>
|
|
|
+#include <linux/kmemleak.h>
|
|
|
+
|
|
|
+/*
|
|
|
+ * struct page extension
|
|
|
+ *
|
|
|
+ * This is the feature to manage memory for extended data per page.
|
|
|
+ *
|
|
|
+ * Until now, we must modify struct page itself to store extra data per page.
|
|
|
+ * This requires rebuilding the kernel and it is really time consuming process.
|
|
|
+ * And, sometimes, rebuild is impossible due to third party module dependency.
|
|
|
+ * At last, enlarging struct page could cause un-wanted system behaviour change.
|
|
|
+ *
|
|
|
+ * This feature is intended to overcome above mentioned problems. This feature
|
|
|
+ * allocates memory for extended data per page in certain place rather than
|
|
|
+ * the struct page itself. This memory can be accessed by the accessor
|
|
|
+ * functions provided by this code. During the boot process, it checks whether
|
|
|
+ * allocation of huge chunk of memory is needed or not. If not, it avoids
|
|
|
+ * allocating memory at all. With this advantage, we can include this feature
|
|
|
+ * into the kernel in default and can avoid rebuild and solve related problems.
|
|
|
+ *
|
|
|
+ * To help these things to work well, there are two callbacks for clients. One
|
|
|
+ * is the need callback which is mandatory if user wants to avoid useless
|
|
|
+ * memory allocation at boot-time. The other is optional, init callback, which
|
|
|
+ * is used to do proper initialization after memory is allocated.
|
|
|
+ *
|
|
|
+ * The need callback is used to decide whether extended memory allocation is
|
|
|
+ * needed or not. Sometimes users want to deactivate some features in this
|
|
|
+ * boot and extra memory would be unneccessary. In this case, to avoid
|
|
|
+ * allocating huge chunk of memory, each clients represent their need of
|
|
|
+ * extra memory through the need callback. If one of the need callbacks
|
|
|
+ * returns true, it means that someone needs extra memory so that
|
|
|
+ * page extension core should allocates memory for page extension. If
|
|
|
+ * none of need callbacks return true, memory isn't needed at all in this boot
|
|
|
+ * and page extension core can skip to allocate memory. As result,
|
|
|
+ * none of memory is wasted.
|
|
|
+ *
|
|
|
+ * The init callback is used to do proper initialization after page extension
|
|
|
+ * is completely initialized. In sparse memory system, extra memory is
|
|
|
+ * allocated some time later than memmap is allocated. In other words, lifetime
|
|
|
+ * of memory for page extension isn't same with memmap for struct page.
|
|
|
+ * Therefore, clients can't store extra data until page extension is
|
|
|
+ * initialized, even if pages are allocated and used freely. This could
|
|
|
+ * cause inadequate state of extra data per page, so, to prevent it, client
|
|
|
+ * can utilize this callback to initialize the state of it correctly.
|
|
|
+ */
|
|
|
+
|
|
|
+static struct page_ext_operations *page_ext_ops[] = {
|
|
|
+};
|
|
|
+
|
|
|
+static unsigned long total_usage;
|
|
|
+
|
|
|
+static bool __init invoke_need_callbacks(void)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ int entries = ARRAY_SIZE(page_ext_ops);
|
|
|
+
|
|
|
+ for (i = 0; i < entries; i++) {
|
|
|
+ if (page_ext_ops[i]->need && page_ext_ops[i]->need())
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+static void __init invoke_init_callbacks(void)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ int entries = ARRAY_SIZE(page_ext_ops);
|
|
|
+
|
|
|
+ for (i = 0; i < entries; i++) {
|
|
|
+ if (page_ext_ops[i]->init)
|
|
|
+ page_ext_ops[i]->init();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#if !defined(CONFIG_SPARSEMEM)
|
|
|
+
|
|
|
+
|
|
|
+void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
|
|
|
+{
|
|
|
+ pgdat->node_page_ext = NULL;
|
|
|
+}
|
|
|
+
|
|
|
+struct page_ext *lookup_page_ext(struct page *page)
|
|
|
+{
|
|
|
+ unsigned long pfn = page_to_pfn(page);
|
|
|
+ unsigned long offset;
|
|
|
+ struct page_ext *base;
|
|
|
+
|
|
|
+ base = NODE_DATA(page_to_nid(page))->node_page_ext;
|
|
|
+#ifdef CONFIG_DEBUG_VM
|
|
|
+ /*
|
|
|
+ * The sanity checks the page allocator does upon freeing a
|
|
|
+ * page can reach here before the page_ext arrays are
|
|
|
+ * allocated when feeding a range of pages to the allocator
|
|
|
+ * for the first time during bootup or memory hotplug.
|
|
|
+ */
|
|
|
+ if (unlikely(!base))
|
|
|
+ return NULL;
|
|
|
+#endif
|
|
|
+ offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
|
|
|
+ MAX_ORDER_NR_PAGES);
|
|
|
+ return base + offset;
|
|
|
+}
|
|
|
+
|
|
|
+static int __init alloc_node_page_ext(int nid)
|
|
|
+{
|
|
|
+ struct page_ext *base;
|
|
|
+ unsigned long table_size;
|
|
|
+ unsigned long nr_pages;
|
|
|
+
|
|
|
+ nr_pages = NODE_DATA(nid)->node_spanned_pages;
|
|
|
+ if (!nr_pages)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Need extra space if node range is not aligned with
|
|
|
+ * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
|
|
|
+ * checks buddy's status, range could be out of exact node range.
|
|
|
+ */
|
|
|
+ if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
|
|
|
+ !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
|
|
|
+ nr_pages += MAX_ORDER_NR_PAGES;
|
|
|
+
|
|
|
+ table_size = sizeof(struct page_ext) * nr_pages;
|
|
|
+
|
|
|
+ base = memblock_virt_alloc_try_nid_nopanic(
|
|
|
+ table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
|
|
|
+ BOOTMEM_ALLOC_ACCESSIBLE, nid);
|
|
|
+ if (!base)
|
|
|
+ return -ENOMEM;
|
|
|
+ NODE_DATA(nid)->node_page_ext = base;
|
|
|
+ total_usage += table_size;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+void __init page_ext_init_flatmem(void)
|
|
|
+{
|
|
|
+
|
|
|
+ int nid, fail;
|
|
|
+
|
|
|
+ if (!invoke_need_callbacks())
|
|
|
+ return;
|
|
|
+
|
|
|
+ for_each_online_node(nid) {
|
|
|
+ fail = alloc_node_page_ext(nid);
|
|
|
+ if (fail)
|
|
|
+ goto fail;
|
|
|
+ }
|
|
|
+ pr_info("allocated %ld bytes of page_ext\n", total_usage);
|
|
|
+ invoke_init_callbacks();
|
|
|
+ return;
|
|
|
+
|
|
|
+fail:
|
|
|
+ pr_crit("allocation of page_ext failed.\n");
|
|
|
+ panic("Out of memory");
|
|
|
+}
|
|
|
+
|
|
|
+#else /* CONFIG_FLAT_NODE_MEM_MAP */
|
|
|
+
|
|
|
+struct page_ext *lookup_page_ext(struct page *page)
|
|
|
+{
|
|
|
+ unsigned long pfn = page_to_pfn(page);
|
|
|
+ struct mem_section *section = __pfn_to_section(pfn);
|
|
|
+#ifdef CONFIG_DEBUG_VM
|
|
|
+ /*
|
|
|
+ * The sanity checks the page allocator does upon freeing a
|
|
|
+ * page can reach here before the page_ext arrays are
|
|
|
+ * allocated when feeding a range of pages to the allocator
|
|
|
+ * for the first time during bootup or memory hotplug.
|
|
|
+ */
|
|
|
+ if (!section->page_ext)
|
|
|
+ return NULL;
|
|
|
+#endif
|
|
|
+ return section->page_ext + pfn;
|
|
|
+}
|
|
|
+
|
|
|
+static void *__meminit alloc_page_ext(size_t size, int nid)
|
|
|
+{
|
|
|
+ gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
|
|
|
+ void *addr = NULL;
|
|
|
+
|
|
|
+ addr = alloc_pages_exact_nid(nid, size, flags);
|
|
|
+ if (addr) {
|
|
|
+ kmemleak_alloc(addr, size, 1, flags);
|
|
|
+ return addr;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (node_state(nid, N_HIGH_MEMORY))
|
|
|
+ addr = vzalloc_node(size, nid);
|
|
|
+ else
|
|
|
+ addr = vzalloc(size);
|
|
|
+
|
|
|
+ return addr;
|
|
|
+}
|
|
|
+
|
|
|
+static int __meminit init_section_page_ext(unsigned long pfn, int nid)
|
|
|
+{
|
|
|
+ struct mem_section *section;
|
|
|
+ struct page_ext *base;
|
|
|
+ unsigned long table_size;
|
|
|
+
|
|
|
+ section = __pfn_to_section(pfn);
|
|
|
+
|
|
|
+ if (section->page_ext)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
|
|
|
+ base = alloc_page_ext(table_size, nid);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The value stored in section->page_ext is (base - pfn)
|
|
|
+ * and it does not point to the memory block allocated above,
|
|
|
+ * causing kmemleak false positives.
|
|
|
+ */
|
|
|
+ kmemleak_not_leak(base);
|
|
|
+
|
|
|
+ if (!base) {
|
|
|
+ pr_err("page ext allocation failure\n");
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The passed "pfn" may not be aligned to SECTION. For the calculation
|
|
|
+ * we need to apply a mask.
|
|
|
+ */
|
|
|
+ pfn &= PAGE_SECTION_MASK;
|
|
|
+ section->page_ext = base - pfn;
|
|
|
+ total_usage += table_size;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+#ifdef CONFIG_MEMORY_HOTPLUG
|
|
|
+static void free_page_ext(void *addr)
|
|
|
+{
|
|
|
+ if (is_vmalloc_addr(addr)) {
|
|
|
+ vfree(addr);
|
|
|
+ } else {
|
|
|
+ struct page *page = virt_to_page(addr);
|
|
|
+ size_t table_size;
|
|
|
+
|
|
|
+ table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
|
|
|
+
|
|
|
+ BUG_ON(PageReserved(page));
|
|
|
+ free_pages_exact(addr, table_size);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void __free_page_ext(unsigned long pfn)
|
|
|
+{
|
|
|
+ struct mem_section *ms;
|
|
|
+ struct page_ext *base;
|
|
|
+
|
|
|
+ ms = __pfn_to_section(pfn);
|
|
|
+ if (!ms || !ms->page_ext)
|
|
|
+ return;
|
|
|
+ base = ms->page_ext + pfn;
|
|
|
+ free_page_ext(base);
|
|
|
+ ms->page_ext = NULL;
|
|
|
+}
|
|
|
+
|
|
|
+static int __meminit online_page_ext(unsigned long start_pfn,
|
|
|
+ unsigned long nr_pages,
|
|
|
+ int nid)
|
|
|
+{
|
|
|
+ unsigned long start, end, pfn;
|
|
|
+ int fail = 0;
|
|
|
+
|
|
|
+ start = SECTION_ALIGN_DOWN(start_pfn);
|
|
|
+ end = SECTION_ALIGN_UP(start_pfn + nr_pages);
|
|
|
+
|
|
|
+ if (nid == -1) {
|
|
|
+ /*
|
|
|
+ * In this case, "nid" already exists and contains valid memory.
|
|
|
+ * "start_pfn" passed to us is a pfn which is an arg for
|
|
|
+ * online__pages(), and start_pfn should exist.
|
|
|
+ */
|
|
|
+ nid = pfn_to_nid(start_pfn);
|
|
|
+ VM_BUG_ON(!node_state(nid, N_ONLINE));
|
|
|
+ }
|
|
|
+
|
|
|
+ for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
|
|
|
+ if (!pfn_present(pfn))
|
|
|
+ continue;
|
|
|
+ fail = init_section_page_ext(pfn, nid);
|
|
|
+ }
|
|
|
+ if (!fail)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /* rollback */
|
|
|
+ for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
|
|
|
+ __free_page_ext(pfn);
|
|
|
+
|
|
|
+ return -ENOMEM;
|
|
|
+}
|
|
|
+
|
|
|
+static int __meminit offline_page_ext(unsigned long start_pfn,
|
|
|
+ unsigned long nr_pages, int nid)
|
|
|
+{
|
|
|
+ unsigned long start, end, pfn;
|
|
|
+
|
|
|
+ start = SECTION_ALIGN_DOWN(start_pfn);
|
|
|
+ end = SECTION_ALIGN_UP(start_pfn + nr_pages);
|
|
|
+
|
|
|
+ for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
|
|
|
+ __free_page_ext(pfn);
|
|
|
+ return 0;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+static int __meminit page_ext_callback(struct notifier_block *self,
|
|
|
+ unsigned long action, void *arg)
|
|
|
+{
|
|
|
+ struct memory_notify *mn = arg;
|
|
|
+ int ret = 0;
|
|
|
+
|
|
|
+ switch (action) {
|
|
|
+ case MEM_GOING_ONLINE:
|
|
|
+ ret = online_page_ext(mn->start_pfn,
|
|
|
+ mn->nr_pages, mn->status_change_nid);
|
|
|
+ break;
|
|
|
+ case MEM_OFFLINE:
|
|
|
+ offline_page_ext(mn->start_pfn,
|
|
|
+ mn->nr_pages, mn->status_change_nid);
|
|
|
+ break;
|
|
|
+ case MEM_CANCEL_ONLINE:
|
|
|
+ offline_page_ext(mn->start_pfn,
|
|
|
+ mn->nr_pages, mn->status_change_nid);
|
|
|
+ break;
|
|
|
+ case MEM_GOING_OFFLINE:
|
|
|
+ break;
|
|
|
+ case MEM_ONLINE:
|
|
|
+ case MEM_CANCEL_OFFLINE:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ return notifier_from_errno(ret);
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+void __init page_ext_init(void)
|
|
|
+{
|
|
|
+ unsigned long pfn;
|
|
|
+ int nid;
|
|
|
+
|
|
|
+ if (!invoke_need_callbacks())
|
|
|
+ return;
|
|
|
+
|
|
|
+ for_each_node_state(nid, N_MEMORY) {
|
|
|
+ unsigned long start_pfn, end_pfn;
|
|
|
+
|
|
|
+ start_pfn = node_start_pfn(nid);
|
|
|
+ end_pfn = node_end_pfn(nid);
|
|
|
+ /*
|
|
|
+ * start_pfn and end_pfn may not be aligned to SECTION and the
|
|
|
+ * page->flags of out of node pages are not initialized. So we
|
|
|
+ * scan [start_pfn, the biggest section's pfn < end_pfn) here.
|
|
|
+ */
|
|
|
+ for (pfn = start_pfn; pfn < end_pfn;
|
|
|
+ pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
|
|
|
+
|
|
|
+ if (!pfn_valid(pfn))
|
|
|
+ continue;
|
|
|
+ /*
|
|
|
+ * Nodes's pfns can be overlapping.
|
|
|
+ * We know some arch can have a nodes layout such as
|
|
|
+ * -------------pfn-------------->
|
|
|
+ * N0 | N1 | N2 | N0 | N1 | N2|....
|
|
|
+ */
|
|
|
+ if (pfn_to_nid(pfn) != nid)
|
|
|
+ continue;
|
|
|
+ if (init_section_page_ext(pfn, nid))
|
|
|
+ goto oom;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ hotplug_memory_notifier(page_ext_callback, 0);
|
|
|
+ pr_info("allocated %ld bytes of page_ext\n", total_usage);
|
|
|
+ invoke_init_callbacks();
|
|
|
+ return;
|
|
|
+
|
|
|
+oom:
|
|
|
+ panic("Out of memory");
|
|
|
+}
|
|
|
+
|
|
|
+void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|