|
@@ -0,0 +1,1070 @@
|
|
|
+/*
|
|
|
+ * Copyright 2016 Advanced Micro Devices, Inc.
|
|
|
+ *
|
|
|
+ * Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
+ * copy of this software and associated documentation files (the "Software"),
|
|
|
+ * to deal in the Software without restriction, including without limitation
|
|
|
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
+ * and/or sell copies of the Software, and to permit persons to whom the
|
|
|
+ * Software is furnished to do so, subject to the following conditions:
|
|
|
+ *
|
|
|
+ * The above copyright notice and this permission notice shall be included in
|
|
|
+ * all copies or substantial portions of the Software.
|
|
|
+ *
|
|
|
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
|
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
|
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
|
+ * OTHER DEALINGS IN THE SOFTWARE.
|
|
|
+ *
|
|
|
+ * Authors: AMD
|
|
|
+ *
|
|
|
+ */
|
|
|
+
|
|
|
+#include "dc.h"
|
|
|
+#include "opp.h"
|
|
|
+#include "color_gamma.h"
|
|
|
+
|
|
|
+/* MAX_HW_POINTS = NUM_REGIONS * NUM_PTS_IN_REGION */
|
|
|
+#define NUM_PTS_IN_REGION 16
|
|
|
+#define NUM_REGIONS 32
|
|
|
+#define MAX_HW_POINTS 512
|
|
|
+
|
|
|
+static struct hw_x_point coordinates_x[MAX_HW_POINTS + 2];
|
|
|
+static struct fixed31_32 pq_table[MAX_HW_POINTS + 2];
|
|
|
+static bool pq_initialized; /* = false; */
|
|
|
+
|
|
|
+/* one-time setup of X points */
|
|
|
+void setup_x_points_distribution(void)
|
|
|
+{
|
|
|
+ struct fixed31_32 region_size = dal_fixed31_32_from_int(128);
|
|
|
+ int32_t segment;
|
|
|
+ uint32_t seg_offset;
|
|
|
+ uint32_t index;
|
|
|
+ struct fixed31_32 increment;
|
|
|
+
|
|
|
+ coordinates_x[NUM_REGIONS * NUM_PTS_IN_REGION].x = region_size;
|
|
|
+ coordinates_x[NUM_REGIONS * NUM_PTS_IN_REGION + 1].x = region_size;
|
|
|
+
|
|
|
+ for (segment = 6; segment > (6 - NUM_REGIONS); segment--) {
|
|
|
+ region_size = dal_fixed31_32_div_int(region_size, 2);
|
|
|
+ increment = dal_fixed31_32_div_int(region_size,
|
|
|
+ NUM_PTS_IN_REGION);
|
|
|
+ seg_offset = (segment + (NUM_REGIONS - 7)) * NUM_PTS_IN_REGION;
|
|
|
+ coordinates_x[seg_offset].x = region_size;
|
|
|
+
|
|
|
+ for (index = seg_offset + 1;
|
|
|
+ index < seg_offset + NUM_PTS_IN_REGION;
|
|
|
+ index++) {
|
|
|
+ coordinates_x[index].x = dal_fixed31_32_add
|
|
|
+ (coordinates_x[index-1].x, increment);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void compute_pq(struct fixed31_32 in_x, struct fixed31_32 *out_y)
|
|
|
+{
|
|
|
+ /* consts for PQ gamma formula. */
|
|
|
+ const struct fixed31_32 m1 =
|
|
|
+ dal_fixed31_32_from_fraction(159301758, 1000000000);
|
|
|
+ const struct fixed31_32 m2 =
|
|
|
+ dal_fixed31_32_from_fraction(7884375, 100000);
|
|
|
+ const struct fixed31_32 c1 =
|
|
|
+ dal_fixed31_32_from_fraction(8359375, 10000000);
|
|
|
+ const struct fixed31_32 c2 =
|
|
|
+ dal_fixed31_32_from_fraction(188515625, 10000000);
|
|
|
+ const struct fixed31_32 c3 =
|
|
|
+ dal_fixed31_32_from_fraction(186875, 10000);
|
|
|
+
|
|
|
+ struct fixed31_32 l_pow_m1;
|
|
|
+ struct fixed31_32 base;
|
|
|
+
|
|
|
+ if (dal_fixed31_32_lt(in_x, dal_fixed31_32_zero))
|
|
|
+ in_x = dal_fixed31_32_zero;
|
|
|
+
|
|
|
+ l_pow_m1 = dal_fixed31_32_pow(in_x, m1);
|
|
|
+ base = dal_fixed31_32_div(
|
|
|
+ dal_fixed31_32_add(c1,
|
|
|
+ (dal_fixed31_32_mul(c2, l_pow_m1))),
|
|
|
+ dal_fixed31_32_add(dal_fixed31_32_one,
|
|
|
+ (dal_fixed31_32_mul(c3, l_pow_m1))));
|
|
|
+ *out_y = dal_fixed31_32_pow(base, m2);
|
|
|
+}
|
|
|
+
|
|
|
+/* one-time pre-compute PQ values - only for sdr_white_level 80 */
|
|
|
+void precompute_pq(void)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ struct fixed31_32 x;
|
|
|
+ const struct hw_x_point *coord_x = coordinates_x + 32;
|
|
|
+ struct fixed31_32 scaling_factor =
|
|
|
+ dal_fixed31_32_from_fraction(80, 10000);
|
|
|
+
|
|
|
+ /* pow function has problems with arguments too small */
|
|
|
+ for (i = 0; i < 32; i++)
|
|
|
+ pq_table[i] = dal_fixed31_32_zero;
|
|
|
+
|
|
|
+ for (i = 32; i <= MAX_HW_POINTS; i++) {
|
|
|
+ x = dal_fixed31_32_mul(coord_x->x, scaling_factor);
|
|
|
+ compute_pq(x, &pq_table[i]);
|
|
|
+ ++coord_x;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+struct dividers {
|
|
|
+ struct fixed31_32 divider1;
|
|
|
+ struct fixed31_32 divider2;
|
|
|
+ struct fixed31_32 divider3;
|
|
|
+};
|
|
|
+
|
|
|
+static void build_regamma_coefficients(struct gamma_coefficients *coefficients)
|
|
|
+{
|
|
|
+ /* sRGB should apply 2.4 */
|
|
|
+ static const int32_t numerator01[3] = { 31308, 31308, 31308 };
|
|
|
+ static const int32_t numerator02[3] = { 12920, 12920, 12920 };
|
|
|
+ static const int32_t numerator03[3] = { 55, 55, 55 };
|
|
|
+ static const int32_t numerator04[3] = { 55, 55, 55 };
|
|
|
+ static const int32_t numerator05[3] = { 2400, 2400, 2400 };
|
|
|
+
|
|
|
+ const int32_t *numerator1;
|
|
|
+ const int32_t *numerator2;
|
|
|
+ const int32_t *numerator3;
|
|
|
+ const int32_t *numerator4;
|
|
|
+ const int32_t *numerator5;
|
|
|
+
|
|
|
+ uint32_t i = 0;
|
|
|
+
|
|
|
+ numerator1 = numerator01;
|
|
|
+ numerator2 = numerator02;
|
|
|
+ numerator3 = numerator03;
|
|
|
+ numerator4 = numerator04;
|
|
|
+ numerator5 = numerator05;
|
|
|
+
|
|
|
+ do {
|
|
|
+ coefficients->a0[i] = dal_fixed31_32_from_fraction(
|
|
|
+ numerator1[i], 10000000);
|
|
|
+ coefficients->a1[i] = dal_fixed31_32_from_fraction(
|
|
|
+ numerator2[i], 1000);
|
|
|
+ coefficients->a2[i] = dal_fixed31_32_from_fraction(
|
|
|
+ numerator3[i], 1000);
|
|
|
+ coefficients->a3[i] = dal_fixed31_32_from_fraction(
|
|
|
+ numerator4[i], 1000);
|
|
|
+ coefficients->user_gamma[i] = dal_fixed31_32_from_fraction(
|
|
|
+ numerator5[i], 1000);
|
|
|
+
|
|
|
+ ++i;
|
|
|
+ } while (i != ARRAY_SIZE(coefficients->a0));
|
|
|
+}
|
|
|
+
|
|
|
+static struct fixed31_32 translate_from_linear_space(
|
|
|
+ struct fixed31_32 arg,
|
|
|
+ struct fixed31_32 a0,
|
|
|
+ struct fixed31_32 a1,
|
|
|
+ struct fixed31_32 a2,
|
|
|
+ struct fixed31_32 a3,
|
|
|
+ struct fixed31_32 gamma)
|
|
|
+{
|
|
|
+ const struct fixed31_32 one = dal_fixed31_32_from_int(1);
|
|
|
+
|
|
|
+ if (dal_fixed31_32_lt(one, arg))
|
|
|
+ return one;
|
|
|
+
|
|
|
+ if (dal_fixed31_32_le(arg, dal_fixed31_32_neg(a0)))
|
|
|
+ return dal_fixed31_32_sub(
|
|
|
+ a2,
|
|
|
+ dal_fixed31_32_mul(
|
|
|
+ dal_fixed31_32_add(
|
|
|
+ one,
|
|
|
+ a3),
|
|
|
+ dal_fixed31_32_pow(
|
|
|
+ dal_fixed31_32_neg(arg),
|
|
|
+ dal_fixed31_32_recip(gamma))));
|
|
|
+ else if (dal_fixed31_32_le(a0, arg))
|
|
|
+ return dal_fixed31_32_sub(
|
|
|
+ dal_fixed31_32_mul(
|
|
|
+ dal_fixed31_32_add(
|
|
|
+ one,
|
|
|
+ a3),
|
|
|
+ dal_fixed31_32_pow(
|
|
|
+ arg,
|
|
|
+ dal_fixed31_32_recip(gamma))),
|
|
|
+ a2);
|
|
|
+ else
|
|
|
+ return dal_fixed31_32_mul(
|
|
|
+ arg,
|
|
|
+ a1);
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct fixed31_32 translate_from_linear_space_ex(
|
|
|
+ struct fixed31_32 arg,
|
|
|
+ struct gamma_coefficients *coeff,
|
|
|
+ uint32_t color_index)
|
|
|
+{
|
|
|
+ return translate_from_linear_space(
|
|
|
+ arg,
|
|
|
+ coeff->a0[color_index],
|
|
|
+ coeff->a1[color_index],
|
|
|
+ coeff->a2[color_index],
|
|
|
+ coeff->a3[color_index],
|
|
|
+ coeff->user_gamma[color_index]);
|
|
|
+}
|
|
|
+
|
|
|
+static bool find_software_points(
|
|
|
+ const struct dc_gamma *ramp,
|
|
|
+ const struct gamma_pixel *axis_x,
|
|
|
+ struct fixed31_32 hw_point,
|
|
|
+ enum channel_name channel,
|
|
|
+ uint32_t *index_to_start,
|
|
|
+ uint32_t *index_left,
|
|
|
+ uint32_t *index_right,
|
|
|
+ enum hw_point_position *pos)
|
|
|
+{
|
|
|
+ const uint32_t max_number = ramp->num_entries + 3;
|
|
|
+
|
|
|
+ struct fixed31_32 left, right;
|
|
|
+
|
|
|
+ uint32_t i = *index_to_start;
|
|
|
+
|
|
|
+ while (i < max_number) {
|
|
|
+ if (channel == CHANNEL_NAME_RED) {
|
|
|
+ left = axis_x[i].r;
|
|
|
+
|
|
|
+ if (i < max_number - 1)
|
|
|
+ right = axis_x[i + 1].r;
|
|
|
+ else
|
|
|
+ right = axis_x[max_number - 1].r;
|
|
|
+ } else if (channel == CHANNEL_NAME_GREEN) {
|
|
|
+ left = axis_x[i].g;
|
|
|
+
|
|
|
+ if (i < max_number - 1)
|
|
|
+ right = axis_x[i + 1].g;
|
|
|
+ else
|
|
|
+ right = axis_x[max_number - 1].g;
|
|
|
+ } else {
|
|
|
+ left = axis_x[i].b;
|
|
|
+
|
|
|
+ if (i < max_number - 1)
|
|
|
+ right = axis_x[i + 1].b;
|
|
|
+ else
|
|
|
+ right = axis_x[max_number - 1].b;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (dal_fixed31_32_le(left, hw_point) &&
|
|
|
+ dal_fixed31_32_le(hw_point, right)) {
|
|
|
+ *index_to_start = i;
|
|
|
+ *index_left = i;
|
|
|
+
|
|
|
+ if (i < max_number - 1)
|
|
|
+ *index_right = i + 1;
|
|
|
+ else
|
|
|
+ *index_right = max_number - 1;
|
|
|
+
|
|
|
+ *pos = HW_POINT_POSITION_MIDDLE;
|
|
|
+
|
|
|
+ return true;
|
|
|
+ } else if ((i == *index_to_start) &&
|
|
|
+ dal_fixed31_32_le(hw_point, left)) {
|
|
|
+ *index_to_start = i;
|
|
|
+ *index_left = i;
|
|
|
+ *index_right = i;
|
|
|
+
|
|
|
+ *pos = HW_POINT_POSITION_LEFT;
|
|
|
+
|
|
|
+ return true;
|
|
|
+ } else if ((i == max_number - 1) &&
|
|
|
+ dal_fixed31_32_le(right, hw_point)) {
|
|
|
+ *index_to_start = i;
|
|
|
+ *index_left = i;
|
|
|
+ *index_right = i;
|
|
|
+
|
|
|
+ *pos = HW_POINT_POSITION_RIGHT;
|
|
|
+
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ ++i;
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+static bool build_custom_gamma_mapping_coefficients_worker(
|
|
|
+ const struct dc_gamma *ramp,
|
|
|
+ struct pixel_gamma_point *coeff,
|
|
|
+ const struct hw_x_point *coordinates_x,
|
|
|
+ const struct gamma_pixel *axis_x,
|
|
|
+ enum channel_name channel,
|
|
|
+ uint32_t number_of_points)
|
|
|
+{
|
|
|
+ uint32_t i = 0;
|
|
|
+
|
|
|
+ while (i <= number_of_points) {
|
|
|
+ struct fixed31_32 coord_x;
|
|
|
+
|
|
|
+ uint32_t index_to_start = 0;
|
|
|
+ uint32_t index_left = 0;
|
|
|
+ uint32_t index_right = 0;
|
|
|
+
|
|
|
+ enum hw_point_position hw_pos;
|
|
|
+
|
|
|
+ struct gamma_point *point;
|
|
|
+
|
|
|
+ struct fixed31_32 left_pos;
|
|
|
+ struct fixed31_32 right_pos;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * TODO: confirm enum in surface_pixel_format
|
|
|
+ * if (pixel_format == PIXEL_FORMAT_FP16)
|
|
|
+ *coord_x = coordinates_x[i].adjusted_x;
|
|
|
+ *else
|
|
|
+ */
|
|
|
+ if (channel == CHANNEL_NAME_RED)
|
|
|
+ coord_x = coordinates_x[i].regamma_y_red;
|
|
|
+ else if (channel == CHANNEL_NAME_GREEN)
|
|
|
+ coord_x = coordinates_x[i].regamma_y_green;
|
|
|
+ else
|
|
|
+ coord_x = coordinates_x[i].regamma_y_blue;
|
|
|
+
|
|
|
+ if (!find_software_points(
|
|
|
+ ramp, axis_x, coord_x, channel,
|
|
|
+ &index_to_start, &index_left, &index_right, &hw_pos)) {
|
|
|
+ BREAK_TO_DEBUGGER();
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (index_left >= ramp->num_entries + 3) {
|
|
|
+ BREAK_TO_DEBUGGER();
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (index_right >= ramp->num_entries + 3) {
|
|
|
+ BREAK_TO_DEBUGGER();
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (channel == CHANNEL_NAME_RED) {
|
|
|
+ point = &coeff[i].r;
|
|
|
+
|
|
|
+ left_pos = axis_x[index_left].r;
|
|
|
+ right_pos = axis_x[index_right].r;
|
|
|
+ } else if (channel == CHANNEL_NAME_GREEN) {
|
|
|
+ point = &coeff[i].g;
|
|
|
+
|
|
|
+ left_pos = axis_x[index_left].g;
|
|
|
+ right_pos = axis_x[index_right].g;
|
|
|
+ } else {
|
|
|
+ point = &coeff[i].b;
|
|
|
+
|
|
|
+ left_pos = axis_x[index_left].b;
|
|
|
+ right_pos = axis_x[index_right].b;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hw_pos == HW_POINT_POSITION_MIDDLE)
|
|
|
+ point->coeff = dal_fixed31_32_div(
|
|
|
+ dal_fixed31_32_sub(
|
|
|
+ coord_x,
|
|
|
+ left_pos),
|
|
|
+ dal_fixed31_32_sub(
|
|
|
+ right_pos,
|
|
|
+ left_pos));
|
|
|
+ else if (hw_pos == HW_POINT_POSITION_LEFT)
|
|
|
+ point->coeff = dal_fixed31_32_zero;
|
|
|
+ else if (hw_pos == HW_POINT_POSITION_RIGHT)
|
|
|
+ point->coeff = dal_fixed31_32_from_int(2);
|
|
|
+ else {
|
|
|
+ BREAK_TO_DEBUGGER();
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ point->left_index = index_left;
|
|
|
+ point->right_index = index_right;
|
|
|
+ point->pos = hw_pos;
|
|
|
+
|
|
|
+ ++i;
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+static struct fixed31_32 calculate_mapped_value(
|
|
|
+ struct pwl_float_data *rgb,
|
|
|
+ const struct pixel_gamma_point *coeff,
|
|
|
+ enum channel_name channel,
|
|
|
+ uint32_t max_index)
|
|
|
+{
|
|
|
+ const struct gamma_point *point;
|
|
|
+
|
|
|
+ struct fixed31_32 result;
|
|
|
+
|
|
|
+ if (channel == CHANNEL_NAME_RED)
|
|
|
+ point = &coeff->r;
|
|
|
+ else if (channel == CHANNEL_NAME_GREEN)
|
|
|
+ point = &coeff->g;
|
|
|
+ else
|
|
|
+ point = &coeff->b;
|
|
|
+
|
|
|
+ if ((point->left_index < 0) || (point->left_index > max_index)) {
|
|
|
+ BREAK_TO_DEBUGGER();
|
|
|
+ return dal_fixed31_32_zero;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((point->right_index < 0) || (point->right_index > max_index)) {
|
|
|
+ BREAK_TO_DEBUGGER();
|
|
|
+ return dal_fixed31_32_zero;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (point->pos == HW_POINT_POSITION_MIDDLE)
|
|
|
+ if (channel == CHANNEL_NAME_RED)
|
|
|
+ result = dal_fixed31_32_add(
|
|
|
+ dal_fixed31_32_mul(
|
|
|
+ point->coeff,
|
|
|
+ dal_fixed31_32_sub(
|
|
|
+ rgb[point->right_index].r,
|
|
|
+ rgb[point->left_index].r)),
|
|
|
+ rgb[point->left_index].r);
|
|
|
+ else if (channel == CHANNEL_NAME_GREEN)
|
|
|
+ result = dal_fixed31_32_add(
|
|
|
+ dal_fixed31_32_mul(
|
|
|
+ point->coeff,
|
|
|
+ dal_fixed31_32_sub(
|
|
|
+ rgb[point->right_index].g,
|
|
|
+ rgb[point->left_index].g)),
|
|
|
+ rgb[point->left_index].g);
|
|
|
+ else
|
|
|
+ result = dal_fixed31_32_add(
|
|
|
+ dal_fixed31_32_mul(
|
|
|
+ point->coeff,
|
|
|
+ dal_fixed31_32_sub(
|
|
|
+ rgb[point->right_index].b,
|
|
|
+ rgb[point->left_index].b)),
|
|
|
+ rgb[point->left_index].b);
|
|
|
+ else if (point->pos == HW_POINT_POSITION_LEFT) {
|
|
|
+ BREAK_TO_DEBUGGER();
|
|
|
+ result = dal_fixed31_32_zero;
|
|
|
+ } else {
|
|
|
+ BREAK_TO_DEBUGGER();
|
|
|
+ result = dal_fixed31_32_one;
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+static void build_regamma_curve_pq(struct pwl_float_data_ex *rgb_regamma,
|
|
|
+ uint32_t hw_points_num,
|
|
|
+ const struct hw_x_point *coordinate_x,
|
|
|
+ uint32_t sdr_white_level)
|
|
|
+{
|
|
|
+ uint32_t i, start_index;
|
|
|
+
|
|
|
+ struct pwl_float_data_ex *rgb = rgb_regamma;
|
|
|
+ const struct hw_x_point *coord_x = coordinate_x;
|
|
|
+ struct fixed31_32 x;
|
|
|
+ struct fixed31_32 output;
|
|
|
+ struct fixed31_32 scaling_factor =
|
|
|
+ dal_fixed31_32_from_fraction(sdr_white_level, 10000);
|
|
|
+
|
|
|
+ if (!pq_initialized && sdr_white_level == 80) {
|
|
|
+ precompute_pq();
|
|
|
+ pq_initialized = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* TODO: start index is from segment 2^-24, skipping first segment
|
|
|
+ * due to x values too small for power calculations
|
|
|
+ */
|
|
|
+ start_index = 32;
|
|
|
+ rgb += start_index;
|
|
|
+ coord_x += start_index;
|
|
|
+
|
|
|
+ /* use coord_x to retrieve coordinates chosen base on given user curve
|
|
|
+ * the x values are exponentially distributed and currently it is hard
|
|
|
+ * coded, the user curve shape is ignored. Need to recalculate coord_x
|
|
|
+ * based on input curve, translation from 256/1025 to 128 PWL points.
|
|
|
+ */
|
|
|
+ for (i = start_index; i <= hw_points_num; i++) {
|
|
|
+ /* Multiply 0.008 as regamma is 0-1 and FP16 input is 0-125.
|
|
|
+ * FP 1.0 = 80nits
|
|
|
+ */
|
|
|
+ if (sdr_white_level == 80) {
|
|
|
+ output = pq_table[i];
|
|
|
+ } else {
|
|
|
+ x = dal_fixed31_32_mul(coord_x->x, scaling_factor);
|
|
|
+ compute_pq(x, &output);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* should really not happen? */
|
|
|
+ if (dal_fixed31_32_lt(output, dal_fixed31_32_zero))
|
|
|
+ output = dal_fixed31_32_zero;
|
|
|
+ else if (dal_fixed31_32_lt(dal_fixed31_32_one, output))
|
|
|
+ output = dal_fixed31_32_one;
|
|
|
+
|
|
|
+ rgb->r = output;
|
|
|
+ rgb->g = output;
|
|
|
+ rgb->b = output;
|
|
|
+
|
|
|
+ ++coord_x;
|
|
|
+ ++rgb;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void build_regamma_curve(struct pwl_float_data_ex *rgb_regamma,
|
|
|
+ uint32_t hw_points_num,
|
|
|
+ const struct hw_x_point *coordinate_x)
|
|
|
+{
|
|
|
+ uint32_t i;
|
|
|
+
|
|
|
+ struct gamma_coefficients coeff;
|
|
|
+ struct pwl_float_data_ex *rgb = rgb_regamma;
|
|
|
+ const struct hw_x_point *coord_x = coordinate_x;
|
|
|
+
|
|
|
+ build_regamma_coefficients(&coeff);
|
|
|
+
|
|
|
+ /* Use opp110->regamma.coordinates_x to retrieve
|
|
|
+ * coordinates chosen base on given user curve (future task).
|
|
|
+ * The x values are exponentially distributed and currently
|
|
|
+ * it is hard-coded, the user curve shape is ignored.
|
|
|
+ * The future task is to recalculate opp110-
|
|
|
+ * regamma.coordinates_x based on input/user curve,
|
|
|
+ * translation from 256/1025 to 128 pwl points.
|
|
|
+ */
|
|
|
+
|
|
|
+ i = 0;
|
|
|
+
|
|
|
+ while (i != hw_points_num + 1) {
|
|
|
+ rgb->r = translate_from_linear_space_ex(
|
|
|
+ coord_x->x, &coeff, 0);
|
|
|
+ rgb->g = translate_from_linear_space_ex(
|
|
|
+ coord_x->x, &coeff, 1);
|
|
|
+ rgb->b = translate_from_linear_space_ex(
|
|
|
+ coord_x->x, &coeff, 2);
|
|
|
+
|
|
|
+ ++coord_x;
|
|
|
+ ++rgb;
|
|
|
+ ++i;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static bool scale_gamma(struct pwl_float_data *pwl_rgb,
|
|
|
+ const struct dc_gamma *ramp,
|
|
|
+ struct dividers dividers)
|
|
|
+{
|
|
|
+ const struct fixed31_32 max_driver = dal_fixed31_32_from_int(0xFFFF);
|
|
|
+ const struct fixed31_32 max_os = dal_fixed31_32_from_int(0xFF00);
|
|
|
+ struct fixed31_32 scaler = max_os;
|
|
|
+ uint32_t i;
|
|
|
+ struct pwl_float_data *rgb = pwl_rgb;
|
|
|
+ struct pwl_float_data *rgb_last = rgb + ramp->num_entries - 1;
|
|
|
+
|
|
|
+ i = 0;
|
|
|
+
|
|
|
+ do {
|
|
|
+ if (dal_fixed31_32_lt(max_os, ramp->entries.red[i]) ||
|
|
|
+ dal_fixed31_32_lt(max_os, ramp->entries.green[i]) ||
|
|
|
+ dal_fixed31_32_lt(max_os, ramp->entries.blue[i])) {
|
|
|
+ scaler = max_driver;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ++i;
|
|
|
+ } while (i != ramp->num_entries);
|
|
|
+
|
|
|
+ i = 0;
|
|
|
+
|
|
|
+ do {
|
|
|
+ rgb->r = dal_fixed31_32_div(
|
|
|
+ ramp->entries.red[i], scaler);
|
|
|
+ rgb->g = dal_fixed31_32_div(
|
|
|
+ ramp->entries.green[i], scaler);
|
|
|
+ rgb->b = dal_fixed31_32_div(
|
|
|
+ ramp->entries.blue[i], scaler);
|
|
|
+
|
|
|
+ ++rgb;
|
|
|
+ ++i;
|
|
|
+ } while (i != ramp->num_entries);
|
|
|
+
|
|
|
+ rgb->r = dal_fixed31_32_mul(rgb_last->r,
|
|
|
+ dividers.divider1);
|
|
|
+ rgb->g = dal_fixed31_32_mul(rgb_last->g,
|
|
|
+ dividers.divider1);
|
|
|
+ rgb->b = dal_fixed31_32_mul(rgb_last->b,
|
|
|
+ dividers.divider1);
|
|
|
+
|
|
|
+ ++rgb;
|
|
|
+
|
|
|
+ rgb->r = dal_fixed31_32_mul(rgb_last->r,
|
|
|
+ dividers.divider2);
|
|
|
+ rgb->g = dal_fixed31_32_mul(rgb_last->g,
|
|
|
+ dividers.divider2);
|
|
|
+ rgb->b = dal_fixed31_32_mul(rgb_last->b,
|
|
|
+ dividers.divider2);
|
|
|
+
|
|
|
+ ++rgb;
|
|
|
+
|
|
|
+ rgb->r = dal_fixed31_32_mul(rgb_last->r,
|
|
|
+ dividers.divider3);
|
|
|
+ rgb->g = dal_fixed31_32_mul(rgb_last->g,
|
|
|
+ dividers.divider3);
|
|
|
+ rgb->b = dal_fixed31_32_mul(rgb_last->b,
|
|
|
+ dividers.divider3);
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+static bool scale_gamma_dx(struct pwl_float_data *pwl_rgb,
|
|
|
+ const struct dc_gamma *ramp,
|
|
|
+ struct dividers dividers)
|
|
|
+{
|
|
|
+ uint32_t i;
|
|
|
+ struct fixed31_32 min = dal_fixed31_32_zero;
|
|
|
+ struct fixed31_32 max = dal_fixed31_32_one;
|
|
|
+
|
|
|
+ struct fixed31_32 delta = dal_fixed31_32_zero;
|
|
|
+ struct fixed31_32 offset = dal_fixed31_32_zero;
|
|
|
+
|
|
|
+ for (i = 0 ; i < ramp->num_entries; i++) {
|
|
|
+ if (dal_fixed31_32_lt(ramp->entries.red[i], min))
|
|
|
+ min = ramp->entries.red[i];
|
|
|
+
|
|
|
+ if (dal_fixed31_32_lt(ramp->entries.green[i], min))
|
|
|
+ min = ramp->entries.green[i];
|
|
|
+
|
|
|
+ if (dal_fixed31_32_lt(ramp->entries.blue[i], min))
|
|
|
+ min = ramp->entries.blue[i];
|
|
|
+
|
|
|
+ if (dal_fixed31_32_lt(max, ramp->entries.red[i]))
|
|
|
+ max = ramp->entries.red[i];
|
|
|
+
|
|
|
+ if (dal_fixed31_32_lt(max, ramp->entries.green[i]))
|
|
|
+ max = ramp->entries.green[i];
|
|
|
+
|
|
|
+ if (dal_fixed31_32_lt(max, ramp->entries.blue[i]))
|
|
|
+ max = ramp->entries.blue[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ if (dal_fixed31_32_lt(min, dal_fixed31_32_zero))
|
|
|
+ delta = dal_fixed31_32_neg(min);
|
|
|
+
|
|
|
+ offset = dal_fixed31_32_add(min, max);
|
|
|
+
|
|
|
+ for (i = 0 ; i < ramp->num_entries; i++) {
|
|
|
+ pwl_rgb[i].r = dal_fixed31_32_div(
|
|
|
+ dal_fixed31_32_add(
|
|
|
+ ramp->entries.red[i], delta), offset);
|
|
|
+ pwl_rgb[i].g = dal_fixed31_32_div(
|
|
|
+ dal_fixed31_32_add(
|
|
|
+ ramp->entries.green[i], delta), offset);
|
|
|
+ pwl_rgb[i].b = dal_fixed31_32_div(
|
|
|
+ dal_fixed31_32_add(
|
|
|
+ ramp->entries.blue[i], delta), offset);
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ pwl_rgb[i].r = dal_fixed31_32_sub(dal_fixed31_32_mul_int(
|
|
|
+ pwl_rgb[i-1].r, 2), pwl_rgb[i-2].r);
|
|
|
+ pwl_rgb[i].g = dal_fixed31_32_sub(dal_fixed31_32_mul_int(
|
|
|
+ pwl_rgb[i-1].g, 2), pwl_rgb[i-2].g);
|
|
|
+ pwl_rgb[i].b = dal_fixed31_32_sub(dal_fixed31_32_mul_int(
|
|
|
+ pwl_rgb[i-1].b, 2), pwl_rgb[i-2].b);
|
|
|
+ ++i;
|
|
|
+ pwl_rgb[i].r = dal_fixed31_32_sub(dal_fixed31_32_mul_int(
|
|
|
+ pwl_rgb[i-1].r, 2), pwl_rgb[i-2].r);
|
|
|
+ pwl_rgb[i].g = dal_fixed31_32_sub(dal_fixed31_32_mul_int(
|
|
|
+ pwl_rgb[i-1].g, 2), pwl_rgb[i-2].g);
|
|
|
+ pwl_rgb[i].b = dal_fixed31_32_sub(dal_fixed31_32_mul_int(
|
|
|
+ pwl_rgb[i-1].b, 2), pwl_rgb[i-2].b);
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * RS3+ color transform DDI - 1D LUT adjustment is composed with regamma here
|
|
|
+ * Input is evenly distributed in the output color space as specified in
|
|
|
+ * SetTimings
|
|
|
+ *
|
|
|
+ * Interpolation details:
|
|
|
+ * 1D LUT has 4096 values which give curve correction in 0-1 float range
|
|
|
+ * for evenly spaced points in 0-1 range. lut1D[index] gives correction
|
|
|
+ * for index/4095.
|
|
|
+ * First we find index for which:
|
|
|
+ * index/4095 < regamma_y < (index+1)/4095 =>
|
|
|
+ * index < 4095*regamma_y < index + 1
|
|
|
+ * norm_y = 4095*regamma_y, and index is just truncating to nearest integer
|
|
|
+ * lut1 = lut1D[index], lut2 = lut1D[index+1]
|
|
|
+ *
|
|
|
+ *adjustedY is then linearly interpolating regamma Y between lut1 and lut2
|
|
|
+ */
|
|
|
+static void apply_lut_1d(
|
|
|
+ const struct dc_gamma *ramp,
|
|
|
+ uint32_t num_hw_points,
|
|
|
+ struct dc_transfer_func_distributed_points *tf_pts)
|
|
|
+{
|
|
|
+ int i = 0;
|
|
|
+ int color = 0;
|
|
|
+ struct fixed31_32 *regamma_y;
|
|
|
+ struct fixed31_32 norm_y;
|
|
|
+ struct fixed31_32 lut1;
|
|
|
+ struct fixed31_32 lut2;
|
|
|
+ const int max_lut_index = 4095;
|
|
|
+ const struct fixed31_32 max_lut_index_f =
|
|
|
+ dal_fixed31_32_from_int_nonconst(max_lut_index);
|
|
|
+ int32_t index = 0, index_next = 0;
|
|
|
+ struct fixed31_32 index_f;
|
|
|
+ struct fixed31_32 delta_lut;
|
|
|
+ struct fixed31_32 delta_index;
|
|
|
+
|
|
|
+ if (ramp->type != GAMMA_CS_TFM_1D)
|
|
|
+ return; // this is not expected
|
|
|
+
|
|
|
+ for (i = 0; i < num_hw_points; i++) {
|
|
|
+ for (color = 0; color < 3; color++) {
|
|
|
+ if (color == 0)
|
|
|
+ regamma_y = &tf_pts->red[i];
|
|
|
+ else if (color == 1)
|
|
|
+ regamma_y = &tf_pts->green[i];
|
|
|
+ else
|
|
|
+ regamma_y = &tf_pts->blue[i];
|
|
|
+
|
|
|
+ norm_y = dal_fixed31_32_mul(max_lut_index_f,
|
|
|
+ *regamma_y);
|
|
|
+ index = dal_fixed31_32_floor(norm_y);
|
|
|
+ index_f = dal_fixed31_32_from_int_nonconst(index);
|
|
|
+
|
|
|
+ if (index < 0 || index > max_lut_index)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ index_next = (index == max_lut_index) ? index : index+1;
|
|
|
+
|
|
|
+ if (color == 0) {
|
|
|
+ lut1 = ramp->entries.red[index];
|
|
|
+ lut2 = ramp->entries.red[index_next];
|
|
|
+ } else if (color == 1) {
|
|
|
+ lut1 = ramp->entries.green[index];
|
|
|
+ lut2 = ramp->entries.green[index_next];
|
|
|
+ } else {
|
|
|
+ lut1 = ramp->entries.blue[index];
|
|
|
+ lut2 = ramp->entries.blue[index_next];
|
|
|
+ }
|
|
|
+
|
|
|
+ // we have everything now, so interpolate
|
|
|
+ delta_lut = dal_fixed31_32_sub(lut2, lut1);
|
|
|
+ delta_index = dal_fixed31_32_sub(norm_y, index_f);
|
|
|
+
|
|
|
+ *regamma_y = dal_fixed31_32_add(lut1,
|
|
|
+ dal_fixed31_32_mul(delta_index, delta_lut));
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void build_evenly_distributed_points(
|
|
|
+ struct gamma_pixel *points,
|
|
|
+ uint32_t numberof_points,
|
|
|
+ struct dividers dividers)
|
|
|
+{
|
|
|
+ struct gamma_pixel *p = points;
|
|
|
+ struct gamma_pixel *p_last = p + numberof_points - 1;
|
|
|
+
|
|
|
+ uint32_t i = 0;
|
|
|
+
|
|
|
+ do {
|
|
|
+ struct fixed31_32 value = dal_fixed31_32_from_fraction(i,
|
|
|
+ numberof_points - 1);
|
|
|
+
|
|
|
+ p->r = value;
|
|
|
+ p->g = value;
|
|
|
+ p->b = value;
|
|
|
+
|
|
|
+ ++p;
|
|
|
+ ++i;
|
|
|
+ } while (i != numberof_points);
|
|
|
+
|
|
|
+ p->r = dal_fixed31_32_div(p_last->r, dividers.divider1);
|
|
|
+ p->g = dal_fixed31_32_div(p_last->g, dividers.divider1);
|
|
|
+ p->b = dal_fixed31_32_div(p_last->b, dividers.divider1);
|
|
|
+
|
|
|
+ ++p;
|
|
|
+
|
|
|
+ p->r = dal_fixed31_32_div(p_last->r, dividers.divider2);
|
|
|
+ p->g = dal_fixed31_32_div(p_last->g, dividers.divider2);
|
|
|
+ p->b = dal_fixed31_32_div(p_last->b, dividers.divider2);
|
|
|
+
|
|
|
+ ++p;
|
|
|
+
|
|
|
+ p->r = dal_fixed31_32_div(p_last->r, dividers.divider3);
|
|
|
+ p->g = dal_fixed31_32_div(p_last->g, dividers.divider3);
|
|
|
+ p->b = dal_fixed31_32_div(p_last->b, dividers.divider3);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void copy_rgb_regamma_to_coordinates_x(
|
|
|
+ struct hw_x_point *coordinates_x,
|
|
|
+ uint32_t hw_points_num,
|
|
|
+ const struct pwl_float_data_ex *rgb_ex)
|
|
|
+{
|
|
|
+ struct hw_x_point *coords = coordinates_x;
|
|
|
+ uint32_t i = 0;
|
|
|
+ const struct pwl_float_data_ex *rgb_regamma = rgb_ex;
|
|
|
+
|
|
|
+ while (i <= hw_points_num) {
|
|
|
+ coords->regamma_y_red = rgb_regamma->r;
|
|
|
+ coords->regamma_y_green = rgb_regamma->g;
|
|
|
+ coords->regamma_y_blue = rgb_regamma->b;
|
|
|
+
|
|
|
+ ++coords;
|
|
|
+ ++rgb_regamma;
|
|
|
+ ++i;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static bool calculate_interpolated_hardware_curve(
|
|
|
+ const struct dc_gamma *ramp,
|
|
|
+ struct pixel_gamma_point *coeff128,
|
|
|
+ struct pwl_float_data *rgb_user,
|
|
|
+ const struct hw_x_point *coordinates_x,
|
|
|
+ const struct gamma_pixel *axis_x,
|
|
|
+ uint32_t number_of_points,
|
|
|
+ struct dc_transfer_func_distributed_points *tf_pts)
|
|
|
+{
|
|
|
+
|
|
|
+ const struct pixel_gamma_point *coeff = coeff128;
|
|
|
+ uint32_t max_entries = 3 - 1;
|
|
|
+
|
|
|
+ uint32_t i = 0;
|
|
|
+
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ if (!build_custom_gamma_mapping_coefficients_worker(
|
|
|
+ ramp, coeff128, coordinates_x, axis_x, i,
|
|
|
+ number_of_points))
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ i = 0;
|
|
|
+ max_entries += ramp->num_entries;
|
|
|
+
|
|
|
+ /* TODO: float point case */
|
|
|
+
|
|
|
+ while (i <= number_of_points) {
|
|
|
+ tf_pts->red[i] = calculate_mapped_value(
|
|
|
+ rgb_user, coeff, CHANNEL_NAME_RED, max_entries);
|
|
|
+ tf_pts->green[i] = calculate_mapped_value(
|
|
|
+ rgb_user, coeff, CHANNEL_NAME_GREEN, max_entries);
|
|
|
+ tf_pts->blue[i] = calculate_mapped_value(
|
|
|
+ rgb_user, coeff, CHANNEL_NAME_BLUE, max_entries);
|
|
|
+
|
|
|
+ ++coeff;
|
|
|
+ ++i;
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+static void build_new_custom_resulted_curve(
|
|
|
+ uint32_t hw_points_num,
|
|
|
+ struct dc_transfer_func_distributed_points *tf_pts)
|
|
|
+{
|
|
|
+ uint32_t i;
|
|
|
+
|
|
|
+ i = 0;
|
|
|
+
|
|
|
+ while (i != hw_points_num + 1) {
|
|
|
+ tf_pts->red[i] = dal_fixed31_32_clamp(
|
|
|
+ tf_pts->red[i], dal_fixed31_32_zero,
|
|
|
+ dal_fixed31_32_one);
|
|
|
+ tf_pts->green[i] = dal_fixed31_32_clamp(
|
|
|
+ tf_pts->green[i], dal_fixed31_32_zero,
|
|
|
+ dal_fixed31_32_one);
|
|
|
+ tf_pts->blue[i] = dal_fixed31_32_clamp(
|
|
|
+ tf_pts->blue[i], dal_fixed31_32_zero,
|
|
|
+ dal_fixed31_32_one);
|
|
|
+
|
|
|
+ ++i;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static bool map_regamma_hw_to_x_user(
|
|
|
+ const struct dc_gamma *ramp,
|
|
|
+ struct pixel_gamma_point *coeff128,
|
|
|
+ struct pwl_float_data *rgb_user,
|
|
|
+ struct hw_x_point *coords_x,
|
|
|
+ const struct gamma_pixel *axis_x,
|
|
|
+ const struct pwl_float_data_ex *rgb_regamma,
|
|
|
+ uint32_t hw_points_num,
|
|
|
+ struct dc_transfer_func_distributed_points *tf_pts,
|
|
|
+ bool mapUserRamp)
|
|
|
+{
|
|
|
+ /* setup to spare calculated ideal regamma values */
|
|
|
+
|
|
|
+ int i = 0;
|
|
|
+ struct hw_x_point *coords = coords_x;
|
|
|
+ const struct pwl_float_data_ex *regamma = rgb_regamma;
|
|
|
+
|
|
|
+ if (mapUserRamp) {
|
|
|
+ copy_rgb_regamma_to_coordinates_x(coords,
|
|
|
+ hw_points_num,
|
|
|
+ rgb_regamma);
|
|
|
+
|
|
|
+ calculate_interpolated_hardware_curve(
|
|
|
+ ramp, coeff128, rgb_user, coords, axis_x,
|
|
|
+ hw_points_num, tf_pts);
|
|
|
+ } else {
|
|
|
+ /* just copy current rgb_regamma into tf_pts */
|
|
|
+ while (i <= hw_points_num) {
|
|
|
+ tf_pts->red[i] = regamma->r;
|
|
|
+ tf_pts->green[i] = regamma->g;
|
|
|
+ tf_pts->blue[i] = regamma->b;
|
|
|
+
|
|
|
+ ++regamma;
|
|
|
+ ++i;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ build_new_custom_resulted_curve(hw_points_num, tf_pts);
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+bool mod_color_calculate_regamma_params(struct dc_transfer_func *output_tf,
|
|
|
+ const struct dc_gamma *ramp, bool mapUserRamp)
|
|
|
+{
|
|
|
+ struct dc_transfer_func_distributed_points *tf_pts = &output_tf->tf_pts;
|
|
|
+ struct dividers dividers;
|
|
|
+
|
|
|
+ struct pwl_float_data *rgb_user = NULL;
|
|
|
+ struct pwl_float_data_ex *rgb_regamma = NULL;
|
|
|
+ struct gamma_pixel *axix_x = NULL;
|
|
|
+ struct pixel_gamma_point *coeff128 = NULL;
|
|
|
+ enum dc_transfer_func_predefined tf = TRANSFER_FUNCTION_SRGB;
|
|
|
+ bool ret = false;
|
|
|
+
|
|
|
+ if (output_tf->type == TF_TYPE_BYPASS)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ /* we can use hardcoded curve for plain SRGB TF */
|
|
|
+ if (output_tf->type == TF_TYPE_PREDEFINED &&
|
|
|
+ output_tf->tf == TRANSFER_FUNCTION_SRGB &&
|
|
|
+ (!mapUserRamp && ramp->type == GAMMA_RGB_256))
|
|
|
+ return true;
|
|
|
+
|
|
|
+ output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
|
|
|
+
|
|
|
+ rgb_user = kzalloc(sizeof(*rgb_user) * (ramp->num_entries + 3),
|
|
|
+ GFP_KERNEL);
|
|
|
+ if (!rgb_user)
|
|
|
+ goto rgb_user_alloc_fail;
|
|
|
+ rgb_regamma = kzalloc(sizeof(*rgb_regamma) * (MAX_HW_POINTS + 3),
|
|
|
+ GFP_KERNEL);
|
|
|
+ if (!rgb_regamma)
|
|
|
+ goto rgb_regamma_alloc_fail;
|
|
|
+ axix_x = kzalloc(sizeof(*axix_x) * (ramp->num_entries + 3),
|
|
|
+ GFP_KERNEL);
|
|
|
+ if (!axix_x)
|
|
|
+ goto axix_x_alloc_fail;
|
|
|
+ coeff128 = kzalloc(sizeof(*coeff128) * (MAX_HW_POINTS + 3), GFP_KERNEL);
|
|
|
+ if (!coeff128)
|
|
|
+ goto coeff128_alloc_fail;
|
|
|
+
|
|
|
+ dividers.divider1 = dal_fixed31_32_from_fraction(3, 2);
|
|
|
+ dividers.divider2 = dal_fixed31_32_from_int(2);
|
|
|
+ dividers.divider3 = dal_fixed31_32_from_fraction(5, 2);
|
|
|
+
|
|
|
+ tf = output_tf->tf;
|
|
|
+
|
|
|
+ build_evenly_distributed_points(
|
|
|
+ axix_x,
|
|
|
+ ramp->num_entries,
|
|
|
+ dividers);
|
|
|
+
|
|
|
+ if (ramp->type == GAMMA_RGB_256 && mapUserRamp)
|
|
|
+ scale_gamma(rgb_user, ramp, dividers);
|
|
|
+ else if (ramp->type == GAMMA_RGB_FLOAT_1024)
|
|
|
+ scale_gamma_dx(rgb_user, ramp, dividers);
|
|
|
+
|
|
|
+ if (tf == TRANSFER_FUNCTION_PQ) {
|
|
|
+ tf_pts->end_exponent = 7;
|
|
|
+ tf_pts->x_point_at_y1_red = 125;
|
|
|
+ tf_pts->x_point_at_y1_green = 125;
|
|
|
+ tf_pts->x_point_at_y1_blue = 125;
|
|
|
+
|
|
|
+ build_regamma_curve_pq(rgb_regamma,
|
|
|
+ MAX_HW_POINTS,
|
|
|
+ coordinates_x,
|
|
|
+ output_tf->sdr_ref_white_level);
|
|
|
+ } else {
|
|
|
+ tf_pts->end_exponent = 0;
|
|
|
+ tf_pts->x_point_at_y1_red = 1;
|
|
|
+ tf_pts->x_point_at_y1_green = 1;
|
|
|
+ tf_pts->x_point_at_y1_blue = 1;
|
|
|
+
|
|
|
+ build_regamma_curve(rgb_regamma,
|
|
|
+ MAX_HW_POINTS,
|
|
|
+ coordinates_x);
|
|
|
+ }
|
|
|
+
|
|
|
+ map_regamma_hw_to_x_user(ramp, coeff128, rgb_user,
|
|
|
+ coordinates_x, axix_x, rgb_regamma,
|
|
|
+ MAX_HW_POINTS, tf_pts,
|
|
|
+ (mapUserRamp || ramp->type != GAMMA_RGB_256) &&
|
|
|
+ ramp->type != GAMMA_CS_TFM_1D);
|
|
|
+
|
|
|
+ if (ramp->type == GAMMA_CS_TFM_1D)
|
|
|
+ apply_lut_1d(ramp, MAX_HW_POINTS, tf_pts);
|
|
|
+
|
|
|
+ ret = true;
|
|
|
+
|
|
|
+ kfree(coeff128);
|
|
|
+coeff128_alloc_fail:
|
|
|
+ kfree(axix_x);
|
|
|
+axix_x_alloc_fail:
|
|
|
+ kfree(rgb_regamma);
|
|
|
+rgb_regamma_alloc_fail:
|
|
|
+ kfree(rgb_user);
|
|
|
+rgb_user_alloc_fail:
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*TODO fix me should be 2*/
|
|
|
+#define _EXTRA_POINTS 3
|
|
|
+
|
|
|
+bool mod_color_calculate_curve(enum dc_transfer_func_predefined trans,
|
|
|
+ struct dc_transfer_func_distributed_points *points)
|
|
|
+{
|
|
|
+ uint32_t i;
|
|
|
+ bool ret = false;
|
|
|
+ struct pwl_float_data_ex *rgb_regamma = NULL;
|
|
|
+
|
|
|
+ if (trans == TRANSFER_FUNCTION_UNITY) {
|
|
|
+ //setup_x_points_distribution(coordinates_x);
|
|
|
+ for (i = 0; i < MAX_HW_POINTS ; i++) {
|
|
|
+ points->red[i] = coordinates_x[i].x;
|
|
|
+ points->green[i] = coordinates_x[i].x;
|
|
|
+ points->blue[i] = coordinates_x[i].x;
|
|
|
+ }
|
|
|
+ ret = true;
|
|
|
+ } else if (trans == TRANSFER_FUNCTION_PQ) {
|
|
|
+ rgb_regamma = kzalloc(sizeof(*rgb_regamma) * (MAX_HW_POINTS +
|
|
|
+ _EXTRA_POINTS), GFP_KERNEL);
|
|
|
+ if (!rgb_regamma)
|
|
|
+ goto rgb_regamma_alloc_fail;
|
|
|
+ //setup_x_points_distribution(coordinates_x);
|
|
|
+ points->end_exponent = 0;
|
|
|
+ points->x_point_at_y1_red = 1;
|
|
|
+ points->x_point_at_y1_green = 1;
|
|
|
+ points->x_point_at_y1_blue = 1;
|
|
|
+
|
|
|
+ build_regamma_curve_pq(rgb_regamma,
|
|
|
+ MAX_HW_POINTS,
|
|
|
+ coordinates_x,
|
|
|
+ 80);
|
|
|
+ for (i = 0; i < MAX_HW_POINTS ; i++) {
|
|
|
+ points->red[i] = rgb_regamma[i].r;
|
|
|
+ points->green[i] = rgb_regamma[i].g;
|
|
|
+ points->blue[i] = rgb_regamma[i].b;
|
|
|
+ }
|
|
|
+ ret = true;
|
|
|
+
|
|
|
+ kfree(rgb_regamma);
|
|
|
+ }
|
|
|
+rgb_regamma_alloc_fail:
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+
|