|
@@ -29,6 +29,7 @@
|
|
|
struct xfs_writepage_ctx {
|
|
|
struct xfs_bmbt_irec imap;
|
|
|
unsigned int io_type;
|
|
|
+ unsigned int cow_seq;
|
|
|
struct xfs_ioend *ioend;
|
|
|
};
|
|
|
|
|
@@ -310,6 +311,7 @@ xfs_map_blocks(
|
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
ssize_t count = i_blocksize(inode);
|
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb;
|
|
|
+ xfs_fileoff_t cow_fsb = NULLFILEOFF;
|
|
|
struct xfs_bmbt_irec imap;
|
|
|
int whichfork = XFS_DATA_FORK;
|
|
|
struct xfs_iext_cursor icur;
|
|
@@ -333,12 +335,23 @@ xfs_map_blocks(
|
|
|
* COW fork blocks can overlap data fork blocks even if the blocks
|
|
|
* aren't shared. COW I/O always takes precedent, so we must always
|
|
|
* check for overlap on reflink inodes unless the mapping is already a
|
|
|
- * COW one.
|
|
|
+ * COW one, or the COW fork hasn't changed from the last time we looked
|
|
|
+ * at it.
|
|
|
+ *
|
|
|
+ * It's safe to check the COW fork if_seq here without the ILOCK because
|
|
|
+ * we've indirectly protected against concurrent updates: writeback has
|
|
|
+ * the page locked, which prevents concurrent invalidations by reflink
|
|
|
+ * and directio and prevents concurrent buffered writes to the same
|
|
|
+ * page. Changes to if_seq always happen under i_lock, which protects
|
|
|
+ * against concurrent updates and provides a memory barrier on the way
|
|
|
+ * out that ensures that we always see the current value.
|
|
|
*/
|
|
|
imap_valid = offset_fsb >= wpc->imap.br_startoff &&
|
|
|
offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount;
|
|
|
if (imap_valid &&
|
|
|
- (!xfs_inode_has_cow_data(ip) || wpc->io_type == XFS_IO_COW))
|
|
|
+ (!xfs_inode_has_cow_data(ip) ||
|
|
|
+ wpc->io_type == XFS_IO_COW ||
|
|
|
+ wpc->cow_seq == ip->i_cowfp->if_seq))
|
|
|
return 0;
|
|
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
@@ -364,8 +377,10 @@ xfs_map_blocks(
|
|
|
* it directly instead of looking up anything in the data fork.
|
|
|
*/
|
|
|
if (xfs_inode_has_cow_data(ip) &&
|
|
|
- xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap) &&
|
|
|
- imap.br_startoff <= offset_fsb) {
|
|
|
+ xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
|
|
|
+ cow_fsb = imap.br_startoff;
|
|
|
+ if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
|
|
|
+ wpc->cow_seq = ip->i_cowfp->if_seq;
|
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
/*
|
|
|
* Truncate can race with writeback since writeback doesn't
|
|
@@ -411,6 +426,16 @@ xfs_map_blocks(
|
|
|
imap.br_startblock = HOLESTARTBLOCK;
|
|
|
wpc->io_type = XFS_IO_HOLE;
|
|
|
} else {
|
|
|
+ /*
|
|
|
+ * Truncate to the next COW extent if there is one. This is the
|
|
|
+ * only opportunity to do this because we can skip COW fork
|
|
|
+ * lookups for the subsequent blocks in the mapping; however,
|
|
|
+ * the requirement to treat the COW range separately remains.
|
|
|
+ */
|
|
|
+ if (cow_fsb != NULLFILEOFF &&
|
|
|
+ cow_fsb < imap.br_startoff + imap.br_blockcount)
|
|
|
+ imap.br_blockcount = cow_fsb - imap.br_startoff;
|
|
|
+
|
|
|
if (isnullstartblock(imap.br_startblock)) {
|
|
|
/* got a delalloc extent */
|
|
|
wpc->io_type = XFS_IO_DELALLOC;
|
|
@@ -427,9 +452,12 @@ xfs_map_blocks(
|
|
|
trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
|
|
|
return 0;
|
|
|
allocate_blocks:
|
|
|
- error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap);
|
|
|
+ error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap,
|
|
|
+ &wpc->cow_seq);
|
|
|
if (error)
|
|
|
return error;
|
|
|
+ ASSERT(whichfork == XFS_COW_FORK || cow_fsb == NULLFILEOFF ||
|
|
|
+ imap.br_startoff + imap.br_blockcount <= cow_fsb);
|
|
|
wpc->imap = imap;
|
|
|
trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
|
|
|
return 0;
|