|
@@ -0,0 +1,392 @@
|
|
|
+/*
|
|
|
+ * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or
|
|
|
+ * modify it under the terms of the GNU General Public License
|
|
|
+ * as published by the Free Software Foundation; either version
|
|
|
+ * 2 of the License, or (at your option) any later version.
|
|
|
+ */
|
|
|
+
|
|
|
+#define pr_fmt(fmt) "powernv: " fmt
|
|
|
+
|
|
|
+#include <linux/kernel.h>
|
|
|
+#include <linux/cpu.h>
|
|
|
+#include <linux/cpumask.h>
|
|
|
+#include <linux/device.h>
|
|
|
+#include <linux/gfp.h>
|
|
|
+#include <linux/smp.h>
|
|
|
+#include <linux/stop_machine.h>
|
|
|
+
|
|
|
+#include <asm/cputhreads.h>
|
|
|
+#include <asm/kvm_ppc.h>
|
|
|
+#include <asm/machdep.h>
|
|
|
+#include <asm/opal.h>
|
|
|
+#include <asm/smp.h>
|
|
|
+
|
|
|
+#include "subcore.h"
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * Split/unsplit procedure:
|
|
|
+ *
|
|
|
+ * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
|
|
|
+ *
|
|
|
+ * The mapping to subcores_per_core is simple:
|
|
|
+ *
|
|
|
+ * State | subcores_per_core
|
|
|
+ * ------------|------------------
|
|
|
+ * Unsplit | 1
|
|
|
+ * 2-way split | 2
|
|
|
+ * 4-way split | 4
|
|
|
+ *
|
|
|
+ * The core is split along thread boundaries, the mapping between subcores and
|
|
|
+ * threads is as follows:
|
|
|
+ *
|
|
|
+ * Unsplit:
|
|
|
+ * ----------------------------
|
|
|
+ * Subcore | 0 |
|
|
|
+ * ----------------------------
|
|
|
+ * Thread | 0 1 2 3 4 5 6 7 |
|
|
|
+ * ----------------------------
|
|
|
+ *
|
|
|
+ * 2-way split:
|
|
|
+ * -------------------------------------
|
|
|
+ * Subcore | 0 | 1 |
|
|
|
+ * -------------------------------------
|
|
|
+ * Thread | 0 1 2 3 | 4 5 6 7 |
|
|
|
+ * -------------------------------------
|
|
|
+ *
|
|
|
+ * 4-way split:
|
|
|
+ * -----------------------------------------
|
|
|
+ * Subcore | 0 | 1 | 2 | 3 |
|
|
|
+ * -----------------------------------------
|
|
|
+ * Thread | 0 1 | 2 3 | 4 5 | 6 7 |
|
|
|
+ * -----------------------------------------
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * Transitions
|
|
|
+ * -----------
|
|
|
+ *
|
|
|
+ * It is not possible to transition between either of the split states, the
|
|
|
+ * core must first be unsplit. The legal transitions are:
|
|
|
+ *
|
|
|
+ * ----------- ---------------
|
|
|
+ * | | <----> | 2-way split |
|
|
|
+ * | | ---------------
|
|
|
+ * | Unsplit |
|
|
|
+ * | | ---------------
|
|
|
+ * | | <----> | 4-way split |
|
|
|
+ * ----------- ---------------
|
|
|
+ *
|
|
|
+ * Unsplitting
|
|
|
+ * -----------
|
|
|
+ *
|
|
|
+ * Unsplitting is the simpler procedure. It requires thread 0 to request the
|
|
|
+ * unsplit while all other threads NAP.
|
|
|
+ *
|
|
|
+ * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
|
|
|
+ * the hardware that if all threads except 0 are napping, the hardware should
|
|
|
+ * unsplit the core.
|
|
|
+ *
|
|
|
+ * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
|
|
|
+ * see the core unsplit.
|
|
|
+ *
|
|
|
+ * Core 0 spins waiting for the hardware to see all the other threads napping
|
|
|
+ * and perform the unsplit.
|
|
|
+ *
|
|
|
+ * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
|
|
|
+ * out of NAP. They will then see the core unsplit and exit the NAP loop.
|
|
|
+ *
|
|
|
+ * Splitting
|
|
|
+ * ---------
|
|
|
+ *
|
|
|
+ * The basic splitting procedure is fairly straight forward. However it is
|
|
|
+ * complicated by the fact that after the split occurs, the newly created
|
|
|
+ * subcores are not in a fully initialised state.
|
|
|
+ *
|
|
|
+ * Most notably the subcores do not have the correct value for SDR1, which
|
|
|
+ * means they must not be running in virtual mode when the split occurs. The
|
|
|
+ * subcores have separate timebases SPRs but these are pre-synchronised by
|
|
|
+ * opal.
|
|
|
+ *
|
|
|
+ * To begin with secondary threads are sent to an assembly routine. There they
|
|
|
+ * switch to real mode, so they are immune to the uninitialised SDR1 value.
|
|
|
+ * Once in real mode they indicate that they are in real mode, and spin waiting
|
|
|
+ * to see the core split.
|
|
|
+ *
|
|
|
+ * Thread 0 waits to see that all secondaries are in real mode, and then begins
|
|
|
+ * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
|
|
|
+ * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
|
|
|
+ * to request the split, and spins waiting to see that the split has happened.
|
|
|
+ *
|
|
|
+ * Concurrently the secondaries will notice the split. When they do they set up
|
|
|
+ * their SPRs, notably SDR1, and then they can return to virtual mode and exit
|
|
|
+ * the procedure.
|
|
|
+ */
|
|
|
+
|
|
|
+/* Initialised at boot by subcore_init() */
|
|
|
+static int subcores_per_core;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Used to communicate to offline cpus that we want them to pop out of the
|
|
|
+ * offline loop and do a split or unsplit.
|
|
|
+ *
|
|
|
+ * 0 - no split happening
|
|
|
+ * 1 - unsplit in progress
|
|
|
+ * 2 - split to 2 in progress
|
|
|
+ * 4 - split to 4 in progress
|
|
|
+ */
|
|
|
+static int new_split_mode;
|
|
|
+
|
|
|
+static cpumask_var_t cpu_offline_mask;
|
|
|
+
|
|
|
+struct split_state {
|
|
|
+ u8 step;
|
|
|
+ u8 master;
|
|
|
+};
|
|
|
+
|
|
|
+static DEFINE_PER_CPU(struct split_state, split_state);
|
|
|
+
|
|
|
+static void wait_for_sync_step(int step)
|
|
|
+{
|
|
|
+ int i, cpu = smp_processor_id();
|
|
|
+
|
|
|
+ for (i = cpu + 1; i < cpu + threads_per_core; i++)
|
|
|
+ while(per_cpu(split_state, i).step < step)
|
|
|
+ barrier();
|
|
|
+
|
|
|
+ /* Order the wait loop vs any subsequent loads/stores. */
|
|
|
+ mb();
|
|
|
+}
|
|
|
+
|
|
|
+static void unsplit_core(void)
|
|
|
+{
|
|
|
+ u64 hid0, mask;
|
|
|
+ int i, cpu;
|
|
|
+
|
|
|
+ mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
|
|
|
+
|
|
|
+ cpu = smp_processor_id();
|
|
|
+ if (cpu_thread_in_core(cpu) != 0) {
|
|
|
+ while (mfspr(SPRN_HID0) & mask)
|
|
|
+ power7_nap(0);
|
|
|
+
|
|
|
+ per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ hid0 = mfspr(SPRN_HID0);
|
|
|
+ hid0 &= ~HID0_POWER8_DYNLPARDIS;
|
|
|
+ mtspr(SPRN_HID0, hid0);
|
|
|
+
|
|
|
+ while (mfspr(SPRN_HID0) & mask)
|
|
|
+ cpu_relax();
|
|
|
+
|
|
|
+ /* Wake secondaries out of NAP */
|
|
|
+ for (i = cpu + 1; i < cpu + threads_per_core; i++)
|
|
|
+ smp_send_reschedule(i);
|
|
|
+
|
|
|
+ wait_for_sync_step(SYNC_STEP_UNSPLIT);
|
|
|
+}
|
|
|
+
|
|
|
+static void split_core(int new_mode)
|
|
|
+{
|
|
|
+ struct { u64 value; u64 mask; } split_parms[2] = {
|
|
|
+ { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
|
|
|
+ { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
|
|
|
+ };
|
|
|
+ int i, cpu;
|
|
|
+ u64 hid0;
|
|
|
+
|
|
|
+ /* Convert new_mode (2 or 4) into an index into our parms array */
|
|
|
+ i = (new_mode >> 1) - 1;
|
|
|
+ BUG_ON(i < 0 || i > 1);
|
|
|
+
|
|
|
+ cpu = smp_processor_id();
|
|
|
+ if (cpu_thread_in_core(cpu) != 0) {
|
|
|
+ split_core_secondary_loop(&per_cpu(split_state, cpu).step);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ wait_for_sync_step(SYNC_STEP_REAL_MODE);
|
|
|
+
|
|
|
+ /* Write new mode */
|
|
|
+ hid0 = mfspr(SPRN_HID0);
|
|
|
+ hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
|
|
|
+ mtspr(SPRN_HID0, hid0);
|
|
|
+
|
|
|
+ /* Wait for it to happen */
|
|
|
+ while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
|
|
|
+ cpu_relax();
|
|
|
+}
|
|
|
+
|
|
|
+static void cpu_do_split(int new_mode)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * At boot subcores_per_core will be 0, so we will always unsplit at
|
|
|
+ * boot. In the usual case where the core is already unsplit it's a
|
|
|
+ * nop, and this just ensures the kernel's notion of the mode is
|
|
|
+ * consistent with the hardware.
|
|
|
+ */
|
|
|
+ if (subcores_per_core != 1)
|
|
|
+ unsplit_core();
|
|
|
+
|
|
|
+ if (new_mode != 1)
|
|
|
+ split_core(new_mode);
|
|
|
+
|
|
|
+ mb();
|
|
|
+ per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
|
|
|
+}
|
|
|
+
|
|
|
+bool cpu_core_split_required(void)
|
|
|
+{
|
|
|
+ smp_rmb();
|
|
|
+
|
|
|
+ if (!new_split_mode)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ cpu_do_split(new_split_mode);
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+static int cpu_update_split_mode(void *data)
|
|
|
+{
|
|
|
+ int cpu, new_mode = *(int *)data;
|
|
|
+
|
|
|
+ if (this_cpu_ptr(&split_state)->master) {
|
|
|
+ new_split_mode = new_mode;
|
|
|
+ smp_wmb();
|
|
|
+
|
|
|
+ cpumask_andnot(cpu_offline_mask, cpu_present_mask,
|
|
|
+ cpu_online_mask);
|
|
|
+
|
|
|
+ /* This should work even though the cpu is offline */
|
|
|
+ for_each_cpu(cpu, cpu_offline_mask)
|
|
|
+ smp_send_reschedule(cpu);
|
|
|
+ }
|
|
|
+
|
|
|
+ cpu_do_split(new_mode);
|
|
|
+
|
|
|
+ if (this_cpu_ptr(&split_state)->master) {
|
|
|
+ /* Wait for all cpus to finish before we touch subcores_per_core */
|
|
|
+ for_each_present_cpu(cpu) {
|
|
|
+ if (cpu >= setup_max_cpus)
|
|
|
+ break;
|
|
|
+
|
|
|
+ while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
|
|
|
+ barrier();
|
|
|
+ }
|
|
|
+
|
|
|
+ new_split_mode = 0;
|
|
|
+
|
|
|
+ /* Make the new mode public */
|
|
|
+ subcores_per_core = new_mode;
|
|
|
+ threads_per_subcore = threads_per_core / subcores_per_core;
|
|
|
+
|
|
|
+ /* Make sure the new mode is written before we exit */
|
|
|
+ mb();
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int set_subcores_per_core(int new_mode)
|
|
|
+{
|
|
|
+ struct split_state *state;
|
|
|
+ int cpu;
|
|
|
+
|
|
|
+ if (kvm_hv_mode_active()) {
|
|
|
+ pr_err("Unable to change split core mode while KVM active.\n");
|
|
|
+ return -EBUSY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We are only called at boot, or from the sysfs write. If that ever
|
|
|
+ * changes we'll need a lock here.
|
|
|
+ */
|
|
|
+ BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
|
|
|
+
|
|
|
+ for_each_present_cpu(cpu) {
|
|
|
+ state = &per_cpu(split_state, cpu);
|
|
|
+ state->step = SYNC_STEP_INITIAL;
|
|
|
+ state->master = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ get_online_cpus();
|
|
|
+
|
|
|
+ /* This cpu will update the globals before exiting stop machine */
|
|
|
+ this_cpu_ptr(&split_state)->master = 1;
|
|
|
+
|
|
|
+ /* Ensure state is consistent before we call the other cpus */
|
|
|
+ mb();
|
|
|
+
|
|
|
+ stop_machine(cpu_update_split_mode, &new_mode, cpu_online_mask);
|
|
|
+
|
|
|
+ put_online_cpus();
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static ssize_t __used store_subcores_per_core(struct device *dev,
|
|
|
+ struct device_attribute *attr, const char *buf,
|
|
|
+ size_t count)
|
|
|
+{
|
|
|
+ unsigned long val;
|
|
|
+ int rc;
|
|
|
+
|
|
|
+ /* We are serialised by the attribute lock */
|
|
|
+
|
|
|
+ rc = sscanf(buf, "%lx", &val);
|
|
|
+ if (rc != 1)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ switch (val) {
|
|
|
+ case 1:
|
|
|
+ case 2:
|
|
|
+ case 4:
|
|
|
+ if (subcores_per_core == val)
|
|
|
+ /* Nothing to do */
|
|
|
+ goto out;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ rc = set_subcores_per_core(val);
|
|
|
+ if (rc)
|
|
|
+ return rc;
|
|
|
+
|
|
|
+out:
|
|
|
+ return count;
|
|
|
+}
|
|
|
+
|
|
|
+static ssize_t show_subcores_per_core(struct device *dev,
|
|
|
+ struct device_attribute *attr, char *buf)
|
|
|
+{
|
|
|
+ return sprintf(buf, "%x\n", subcores_per_core);
|
|
|
+}
|
|
|
+
|
|
|
+static DEVICE_ATTR(subcores_per_core, 0644,
|
|
|
+ show_subcores_per_core, store_subcores_per_core);
|
|
|
+
|
|
|
+static int subcore_init(void)
|
|
|
+{
|
|
|
+ if (!cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We need all threads in a core to be present to split/unsplit so
|
|
|
+ * continue only if max_cpus are aligned to threads_per_core.
|
|
|
+ */
|
|
|
+ if (setup_max_cpus % threads_per_core)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
|
|
|
+
|
|
|
+ set_subcores_per_core(1);
|
|
|
+
|
|
|
+ return device_create_file(cpu_subsys.dev_root,
|
|
|
+ &dev_attr_subcores_per_core);
|
|
|
+}
|
|
|
+machine_device_initcall(powernv, subcore_init);
|