|
@@ -34,11 +34,10 @@
|
|
#include <linux/platform_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
+#include <linux/edac.h>
|
|
|
|
|
|
-#define EDAC_MC_LABEL_LEN 31
|
|
|
|
#define EDAC_DEVICE_NAME_LEN 31
|
|
#define EDAC_DEVICE_NAME_LEN 31
|
|
#define EDAC_ATTRIB_VALUE_LEN 15
|
|
#define EDAC_ATTRIB_VALUE_LEN 15
|
|
-#define MC_PROC_NAME_MAX_LEN 7
|
|
|
|
|
|
|
|
#if PAGE_SHIFT < 20
|
|
#if PAGE_SHIFT < 20
|
|
#define PAGES_TO_MiB(pages) ((pages) >> (20 - PAGE_SHIFT))
|
|
#define PAGES_TO_MiB(pages) ((pages) >> (20 - PAGE_SHIFT))
|
|
@@ -101,353 +100,6 @@ extern int edac_debug_level;
|
|
|
|
|
|
#define edac_dev_name(dev) (dev)->dev_name
|
|
#define edac_dev_name(dev) (dev)->dev_name
|
|
|
|
|
|
-/* memory devices */
|
|
|
|
-enum dev_type {
|
|
|
|
- DEV_UNKNOWN = 0,
|
|
|
|
- DEV_X1,
|
|
|
|
- DEV_X2,
|
|
|
|
- DEV_X4,
|
|
|
|
- DEV_X8,
|
|
|
|
- DEV_X16,
|
|
|
|
- DEV_X32, /* Do these parts exist? */
|
|
|
|
- DEV_X64 /* Do these parts exist? */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
|
|
|
|
-#define DEV_FLAG_X1 BIT(DEV_X1)
|
|
|
|
-#define DEV_FLAG_X2 BIT(DEV_X2)
|
|
|
|
-#define DEV_FLAG_X4 BIT(DEV_X4)
|
|
|
|
-#define DEV_FLAG_X8 BIT(DEV_X8)
|
|
|
|
-#define DEV_FLAG_X16 BIT(DEV_X16)
|
|
|
|
-#define DEV_FLAG_X32 BIT(DEV_X32)
|
|
|
|
-#define DEV_FLAG_X64 BIT(DEV_X64)
|
|
|
|
-
|
|
|
|
-/* memory types */
|
|
|
|
-enum mem_type {
|
|
|
|
- MEM_EMPTY = 0, /* Empty csrow */
|
|
|
|
- MEM_RESERVED, /* Reserved csrow type */
|
|
|
|
- MEM_UNKNOWN, /* Unknown csrow type */
|
|
|
|
- MEM_FPM, /* Fast page mode */
|
|
|
|
- MEM_EDO, /* Extended data out */
|
|
|
|
- MEM_BEDO, /* Burst Extended data out */
|
|
|
|
- MEM_SDR, /* Single data rate SDRAM */
|
|
|
|
- MEM_RDR, /* Registered single data rate SDRAM */
|
|
|
|
- MEM_DDR, /* Double data rate SDRAM */
|
|
|
|
- MEM_RDDR, /* Registered Double data rate SDRAM */
|
|
|
|
- MEM_RMBS, /* Rambus DRAM */
|
|
|
|
- MEM_DDR2, /* DDR2 RAM */
|
|
|
|
- MEM_FB_DDR2, /* fully buffered DDR2 */
|
|
|
|
- MEM_RDDR2, /* Registered DDR2 RAM */
|
|
|
|
- MEM_XDR, /* Rambus XDR */
|
|
|
|
- MEM_DDR3, /* DDR3 RAM */
|
|
|
|
- MEM_RDDR3, /* Registered DDR3 RAM */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-#define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
|
|
|
|
-#define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
|
|
|
|
-#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
|
|
|
|
-#define MEM_FLAG_FPM BIT(MEM_FPM)
|
|
|
|
-#define MEM_FLAG_EDO BIT(MEM_EDO)
|
|
|
|
-#define MEM_FLAG_BEDO BIT(MEM_BEDO)
|
|
|
|
-#define MEM_FLAG_SDR BIT(MEM_SDR)
|
|
|
|
-#define MEM_FLAG_RDR BIT(MEM_RDR)
|
|
|
|
-#define MEM_FLAG_DDR BIT(MEM_DDR)
|
|
|
|
-#define MEM_FLAG_RDDR BIT(MEM_RDDR)
|
|
|
|
-#define MEM_FLAG_RMBS BIT(MEM_RMBS)
|
|
|
|
-#define MEM_FLAG_DDR2 BIT(MEM_DDR2)
|
|
|
|
-#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
|
|
|
|
-#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
|
|
|
|
-#define MEM_FLAG_XDR BIT(MEM_XDR)
|
|
|
|
-#define MEM_FLAG_DDR3 BIT(MEM_DDR3)
|
|
|
|
-#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
|
|
|
|
-
|
|
|
|
-/* chipset Error Detection and Correction capabilities and mode */
|
|
|
|
-enum edac_type {
|
|
|
|
- EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
|
|
|
|
- EDAC_NONE, /* Doesn't support ECC */
|
|
|
|
- EDAC_RESERVED, /* Reserved ECC type */
|
|
|
|
- EDAC_PARITY, /* Detects parity errors */
|
|
|
|
- EDAC_EC, /* Error Checking - no correction */
|
|
|
|
- EDAC_SECDED, /* Single bit error correction, Double detection */
|
|
|
|
- EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
|
|
|
|
- EDAC_S4ECD4ED, /* Chipkill x4 devices */
|
|
|
|
- EDAC_S8ECD8ED, /* Chipkill x8 devices */
|
|
|
|
- EDAC_S16ECD16ED, /* Chipkill x16 devices */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
|
|
|
|
-#define EDAC_FLAG_NONE BIT(EDAC_NONE)
|
|
|
|
-#define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
|
|
|
|
-#define EDAC_FLAG_EC BIT(EDAC_EC)
|
|
|
|
-#define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
|
|
|
|
-#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
|
|
|
|
-#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
|
|
|
|
-#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
|
|
|
|
-#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
|
|
|
|
-
|
|
|
|
-/* scrubbing capabilities */
|
|
|
|
-enum scrub_type {
|
|
|
|
- SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
|
|
|
|
- SCRUB_NONE, /* No scrubber */
|
|
|
|
- SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
|
|
|
|
- SCRUB_SW_SRC, /* Software scrub only errors */
|
|
|
|
- SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
|
|
|
|
- SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
|
|
|
|
- SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
|
|
|
|
- SCRUB_HW_SRC, /* Hardware scrub only errors */
|
|
|
|
- SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
|
|
|
|
- SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
|
|
|
|
-#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
|
|
|
|
-#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
|
|
|
|
-#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
|
|
|
|
-#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
|
|
|
|
-#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
|
|
|
|
-#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
|
|
|
|
-#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
|
|
|
|
-
|
|
|
|
-/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
|
|
|
|
-
|
|
|
|
-/* EDAC internal operation states */
|
|
|
|
-#define OP_ALLOC 0x100
|
|
|
|
-#define OP_RUNNING_POLL 0x201
|
|
|
|
-#define OP_RUNNING_INTERRUPT 0x202
|
|
|
|
-#define OP_RUNNING_POLL_INTR 0x203
|
|
|
|
-#define OP_OFFLINE 0x300
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * There are several things to be aware of that aren't at all obvious:
|
|
|
|
- *
|
|
|
|
- *
|
|
|
|
- * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
|
|
|
|
- *
|
|
|
|
- * These are some of the many terms that are thrown about that don't always
|
|
|
|
- * mean what people think they mean (Inconceivable!). In the interest of
|
|
|
|
- * creating a common ground for discussion, terms and their definitions
|
|
|
|
- * will be established.
|
|
|
|
- *
|
|
|
|
- * Memory devices: The individual chip on a memory stick. These devices
|
|
|
|
- * commonly output 4 and 8 bits each. Grouping several
|
|
|
|
- * of these in parallel provides 64 bits which is common
|
|
|
|
- * for a memory stick.
|
|
|
|
- *
|
|
|
|
- * Memory Stick: A printed circuit board that aggregates multiple
|
|
|
|
- * memory devices in parallel. This is the atomic
|
|
|
|
- * memory component that is purchaseable by Joe consumer
|
|
|
|
- * and loaded into a memory socket.
|
|
|
|
- *
|
|
|
|
- * Socket: A physical connector on the motherboard that accepts
|
|
|
|
- * a single memory stick.
|
|
|
|
- *
|
|
|
|
- * Channel: Set of memory devices on a memory stick that must be
|
|
|
|
- * grouped in parallel with one or more additional
|
|
|
|
- * channels from other memory sticks. This parallel
|
|
|
|
- * grouping of the output from multiple channels are
|
|
|
|
- * necessary for the smallest granularity of memory access.
|
|
|
|
- * Some memory controllers are capable of single channel -
|
|
|
|
- * which means that memory sticks can be loaded
|
|
|
|
- * individually. Other memory controllers are only
|
|
|
|
- * capable of dual channel - which means that memory
|
|
|
|
- * sticks must be loaded as pairs (see "socket set").
|
|
|
|
- *
|
|
|
|
- * Chip-select row: All of the memory devices that are selected together.
|
|
|
|
- * for a single, minimum grain of memory access.
|
|
|
|
- * This selects all of the parallel memory devices across
|
|
|
|
- * all of the parallel channels. Common chip-select rows
|
|
|
|
- * for single channel are 64 bits, for dual channel 128
|
|
|
|
- * bits.
|
|
|
|
- *
|
|
|
|
- * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory.
|
|
|
|
- * Motherboards commonly drive two chip-select pins to
|
|
|
|
- * a memory stick. A single-ranked stick, will occupy
|
|
|
|
- * only one of those rows. The other will be unused.
|
|
|
|
- *
|
|
|
|
- * Double-Ranked stick: A double-ranked stick has two chip-select rows which
|
|
|
|
- * access different sets of memory devices. The two
|
|
|
|
- * rows cannot be accessed concurrently.
|
|
|
|
- *
|
|
|
|
- * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
|
|
|
|
- * A double-sided stick has two chip-select rows which
|
|
|
|
- * access different sets of memory devices. The two
|
|
|
|
- * rows cannot be accessed concurrently. "Double-sided"
|
|
|
|
- * is irrespective of the memory devices being mounted
|
|
|
|
- * on both sides of the memory stick.
|
|
|
|
- *
|
|
|
|
- * Socket set: All of the memory sticks that are required for
|
|
|
|
- * a single memory access or all of the memory sticks
|
|
|
|
- * spanned by a chip-select row. A single socket set
|
|
|
|
- * has two chip-select rows and if double-sided sticks
|
|
|
|
- * are used these will occupy those chip-select rows.
|
|
|
|
- *
|
|
|
|
- * Bank: This term is avoided because it is unclear when
|
|
|
|
- * needing to distinguish between chip-select rows and
|
|
|
|
- * socket sets.
|
|
|
|
- *
|
|
|
|
- * Controller pages:
|
|
|
|
- *
|
|
|
|
- * Physical pages:
|
|
|
|
- *
|
|
|
|
- * Virtual pages:
|
|
|
|
- *
|
|
|
|
- *
|
|
|
|
- * STRUCTURE ORGANIZATION AND CHOICES
|
|
|
|
- *
|
|
|
|
- *
|
|
|
|
- *
|
|
|
|
- * PS - I enjoyed writing all that about as much as you enjoyed reading it.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-struct channel_info {
|
|
|
|
- int chan_idx; /* channel index */
|
|
|
|
- u32 ce_count; /* Correctable Errors for this CHANNEL */
|
|
|
|
- char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
|
|
|
|
- struct csrow_info *csrow; /* the parent */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-struct csrow_info {
|
|
|
|
- unsigned long first_page; /* first page number in dimm */
|
|
|
|
- unsigned long last_page; /* last page number in dimm */
|
|
|
|
- unsigned long page_mask; /* used for interleaving -
|
|
|
|
- * 0UL for non intlv
|
|
|
|
- */
|
|
|
|
- u32 nr_pages; /* number of pages in csrow */
|
|
|
|
- u32 grain; /* granularity of reported error in bytes */
|
|
|
|
- int csrow_idx; /* the chip-select row */
|
|
|
|
- enum dev_type dtype; /* memory device type */
|
|
|
|
- u32 ue_count; /* Uncorrectable Errors for this csrow */
|
|
|
|
- u32 ce_count; /* Correctable Errors for this csrow */
|
|
|
|
- enum mem_type mtype; /* memory csrow type */
|
|
|
|
- enum edac_type edac_mode; /* EDAC mode for this csrow */
|
|
|
|
- struct mem_ctl_info *mci; /* the parent */
|
|
|
|
-
|
|
|
|
- struct kobject kobj; /* sysfs kobject for this csrow */
|
|
|
|
-
|
|
|
|
- /* channel information for this csrow */
|
|
|
|
- u32 nr_channels;
|
|
|
|
- struct channel_info *channels;
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-struct mcidev_sysfs_group {
|
|
|
|
- const char *name; /* group name */
|
|
|
|
- const struct mcidev_sysfs_attribute *mcidev_attr; /* group attributes */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-struct mcidev_sysfs_group_kobj {
|
|
|
|
- struct list_head list; /* list for all instances within a mc */
|
|
|
|
-
|
|
|
|
- struct kobject kobj; /* kobj for the group */
|
|
|
|
-
|
|
|
|
- const struct mcidev_sysfs_group *grp; /* group description table */
|
|
|
|
- struct mem_ctl_info *mci; /* the parent */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-/* mcidev_sysfs_attribute structure
|
|
|
|
- * used for driver sysfs attributes and in mem_ctl_info
|
|
|
|
- * sysfs top level entries
|
|
|
|
- */
|
|
|
|
-struct mcidev_sysfs_attribute {
|
|
|
|
- /* It should use either attr or grp */
|
|
|
|
- struct attribute attr;
|
|
|
|
- const struct mcidev_sysfs_group *grp; /* Points to a group of attributes */
|
|
|
|
-
|
|
|
|
- /* Ops for show/store values at the attribute - not used on group */
|
|
|
|
- ssize_t (*show)(struct mem_ctl_info *,char *);
|
|
|
|
- ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-/* MEMORY controller information structure
|
|
|
|
- */
|
|
|
|
-struct mem_ctl_info {
|
|
|
|
- struct list_head link; /* for global list of mem_ctl_info structs */
|
|
|
|
-
|
|
|
|
- struct module *owner; /* Module owner of this control struct */
|
|
|
|
-
|
|
|
|
- unsigned long mtype_cap; /* memory types supported by mc */
|
|
|
|
- unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
|
|
|
|
- unsigned long edac_cap; /* configuration capabilities - this is
|
|
|
|
- * closely related to edac_ctl_cap. The
|
|
|
|
- * difference is that the controller may be
|
|
|
|
- * capable of s4ecd4ed which would be listed
|
|
|
|
- * in edac_ctl_cap, but if channels aren't
|
|
|
|
- * capable of s4ecd4ed then the edac_cap would
|
|
|
|
- * not have that capability.
|
|
|
|
- */
|
|
|
|
- unsigned long scrub_cap; /* chipset scrub capabilities */
|
|
|
|
- enum scrub_type scrub_mode; /* current scrub mode */
|
|
|
|
-
|
|
|
|
- /* Translates sdram memory scrub rate given in bytes/sec to the
|
|
|
|
- internal representation and configures whatever else needs
|
|
|
|
- to be configured.
|
|
|
|
- */
|
|
|
|
- int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
|
|
|
|
-
|
|
|
|
- /* Get the current sdram memory scrub rate from the internal
|
|
|
|
- representation and converts it to the closest matching
|
|
|
|
- bandwidth in bytes/sec.
|
|
|
|
- */
|
|
|
|
- int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- /* pointer to edac checking routine */
|
|
|
|
- void (*edac_check) (struct mem_ctl_info * mci);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Remaps memory pages: controller pages to physical pages.
|
|
|
|
- * For most MC's, this will be NULL.
|
|
|
|
- */
|
|
|
|
- /* FIXME - why not send the phys page to begin with? */
|
|
|
|
- unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
|
|
|
|
- unsigned long page);
|
|
|
|
- int mc_idx;
|
|
|
|
- int nr_csrows;
|
|
|
|
- struct csrow_info *csrows;
|
|
|
|
- /*
|
|
|
|
- * FIXME - what about controllers on other busses? - IDs must be
|
|
|
|
- * unique. dev pointer should be sufficiently unique, but
|
|
|
|
- * BUS:SLOT.FUNC numbers may not be unique.
|
|
|
|
- */
|
|
|
|
- struct device *dev;
|
|
|
|
- const char *mod_name;
|
|
|
|
- const char *mod_ver;
|
|
|
|
- const char *ctl_name;
|
|
|
|
- const char *dev_name;
|
|
|
|
- char proc_name[MC_PROC_NAME_MAX_LEN + 1];
|
|
|
|
- void *pvt_info;
|
|
|
|
- u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
|
|
|
|
- u32 ce_noinfo_count; /* Correctable Errors w/o info */
|
|
|
|
- u32 ue_count; /* Total Uncorrectable Errors for this MC */
|
|
|
|
- u32 ce_count; /* Total Correctable Errors for this MC */
|
|
|
|
- unsigned long start_time; /* mci load start time (in jiffies) */
|
|
|
|
-
|
|
|
|
- struct completion complete;
|
|
|
|
-
|
|
|
|
- /* edac sysfs device control */
|
|
|
|
- struct kobject edac_mci_kobj;
|
|
|
|
-
|
|
|
|
- /* list for all grp instances within a mc */
|
|
|
|
- struct list_head grp_kobj_list;
|
|
|
|
-
|
|
|
|
- /* Additional top controller level attributes, but specified
|
|
|
|
- * by the low level driver.
|
|
|
|
- *
|
|
|
|
- * Set by the low level driver to provide attributes at the
|
|
|
|
- * controller level, same level as 'ue_count' and 'ce_count' above.
|
|
|
|
- * An array of structures, NULL terminated
|
|
|
|
- *
|
|
|
|
- * If attributes are desired, then set to array of attributes
|
|
|
|
- * If no attributes are desired, leave NULL
|
|
|
|
- */
|
|
|
|
- const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
|
|
|
|
-
|
|
|
|
- /* work struct for this MC */
|
|
|
|
- struct delayed_work work;
|
|
|
|
-
|
|
|
|
- /* the internal state of this controller instance */
|
|
|
|
- int op_state;
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
/*
|
|
/*
|
|
* The following are the structures to provide for a generic
|
|
* The following are the structures to provide for a generic
|
|
* or abstract 'edac_device'. This set of structures and the
|
|
* or abstract 'edac_device'. This set of structures and the
|