|
@@ -391,6 +391,11 @@ struct rq {
|
|
|
static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
|
|
|
static DEFINE_MUTEX(sched_hotcpu_mutex);
|
|
|
|
|
|
+static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ rq->curr->sched_class->check_preempt_curr(rq, p);
|
|
|
+}
|
|
|
+
|
|
|
static inline int cpu_of(struct rq *rq)
|
|
|
{
|
|
|
#ifdef CONFIG_SMP
|
|
@@ -669,8 +674,6 @@ static inline void resched_task(struct task_struct *p)
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
-#include "sched_stats.h"
|
|
|
-
|
|
|
static u64 div64_likely32(u64 divident, unsigned long divisor)
|
|
|
{
|
|
|
#if BITS_PER_LONG == 32
|
|
@@ -788,120 +791,146 @@ static void update_curr_load(struct rq *rq, u64 now)
|
|
|
* this code will need modification
|
|
|
*/
|
|
|
#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
|
|
|
-#define LOAD_WEIGHT(lp) \
|
|
|
+#define load_weight(lp) \
|
|
|
(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
|
|
|
#define PRIO_TO_LOAD_WEIGHT(prio) \
|
|
|
- LOAD_WEIGHT(static_prio_timeslice(prio))
|
|
|
+ load_weight(static_prio_timeslice(prio))
|
|
|
#define RTPRIO_TO_LOAD_WEIGHT(rp) \
|
|
|
- (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
|
|
|
+ (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
|
|
|
+
|
|
|
+#define WEIGHT_IDLEPRIO 2
|
|
|
+#define WMULT_IDLEPRIO (1 << 31)
|
|
|
+
|
|
|
+/*
|
|
|
+ * Nice levels are multiplicative, with a gentle 10% change for every
|
|
|
+ * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
|
|
|
+ * nice 1, it will get ~10% less CPU time than another CPU-bound task
|
|
|
+ * that remained on nice 0.
|
|
|
+ *
|
|
|
+ * The "10% effect" is relative and cumulative: from _any_ nice level,
|
|
|
+ * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
|
|
|
+ * it's +10% CPU usage.
|
|
|
+ */
|
|
|
+static const int prio_to_weight[40] = {
|
|
|
+/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
|
|
|
+/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
|
|
|
+/* 0 */ NICE_0_LOAD /* 1024 */,
|
|
|
+/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
|
|
|
+/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
|
|
|
+};
|
|
|
+
|
|
|
+static const u32 prio_to_wmult[40] = {
|
|
|
+ 48356, 60446, 75558, 94446, 118058, 147573,
|
|
|
+ 184467, 230589, 288233, 360285, 450347,
|
|
|
+ 562979, 703746, 879575, 1099582, 1374389,
|
|
|
+ 717986, 2147483, 2684354, 3355443, 4194304,
|
|
|
+ 244160, 6557201, 8196502, 10250518, 12782640,
|
|
|
+ 16025997, 19976592, 24970740, 31350126, 39045157,
|
|
|
+ 49367440, 61356675, 76695844, 95443717, 119304647,
|
|
|
+ 148102320, 186737708, 238609294, 286331153,
|
|
|
+};
|
|
|
|
|
|
static inline void
|
|
|
-inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
|
|
|
+inc_load(struct rq *rq, const struct task_struct *p, u64 now)
|
|
|
{
|
|
|
- rq->raw_weighted_load += p->load_weight;
|
|
|
+ update_curr_load(rq, now);
|
|
|
+ update_load_add(&rq->ls.load, p->se.load.weight);
|
|
|
}
|
|
|
|
|
|
static inline void
|
|
|
-dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
|
|
|
+dec_load(struct rq *rq, const struct task_struct *p, u64 now)
|
|
|
{
|
|
|
- rq->raw_weighted_load -= p->load_weight;
|
|
|
+ update_curr_load(rq, now);
|
|
|
+ update_load_sub(&rq->ls.load, p->se.load.weight);
|
|
|
}
|
|
|
|
|
|
-static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
|
|
|
+static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
|
|
|
{
|
|
|
rq->nr_running++;
|
|
|
- inc_raw_weighted_load(rq, p);
|
|
|
+ inc_load(rq, p, now);
|
|
|
}
|
|
|
|
|
|
-static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
|
|
|
+static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
|
|
|
{
|
|
|
rq->nr_running--;
|
|
|
- dec_raw_weighted_load(rq, p);
|
|
|
+ dec_load(rq, p, now);
|
|
|
}
|
|
|
|
|
|
+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
|
|
|
+
|
|
|
+/*
|
|
|
+ * runqueue iterator, to support SMP load-balancing between different
|
|
|
+ * scheduling classes, without having to expose their internal data
|
|
|
+ * structures to the load-balancing proper:
|
|
|
+ */
|
|
|
+struct rq_iterator {
|
|
|
+ void *arg;
|
|
|
+ struct task_struct *(*start)(void *);
|
|
|
+ struct task_struct *(*next)(void *);
|
|
|
+};
|
|
|
+
|
|
|
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
|
+ unsigned long max_nr_move, unsigned long max_load_move,
|
|
|
+ struct sched_domain *sd, enum cpu_idle_type idle,
|
|
|
+ int *all_pinned, unsigned long *load_moved,
|
|
|
+ int this_best_prio, int best_prio, int best_prio_seen,
|
|
|
+ struct rq_iterator *iterator);
|
|
|
+
|
|
|
+#include "sched_stats.h"
|
|
|
+#include "sched_rt.c"
|
|
|
+#include "sched_fair.c"
|
|
|
+#include "sched_idletask.c"
|
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
|
+# include "sched_debug.c"
|
|
|
+#endif
|
|
|
+
|
|
|
+#define sched_class_highest (&rt_sched_class)
|
|
|
+
|
|
|
static void set_load_weight(struct task_struct *p)
|
|
|
{
|
|
|
+ task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
|
|
|
+ p->se.wait_runtime = 0;
|
|
|
+
|
|
|
if (task_has_rt_policy(p)) {
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- if (p == task_rq(p)->migration_thread)
|
|
|
- /*
|
|
|
- * The migration thread does the actual balancing.
|
|
|
- * Giving its load any weight will skew balancing
|
|
|
- * adversely.
|
|
|
- */
|
|
|
- p->load_weight = 0;
|
|
|
- else
|
|
|
-#endif
|
|
|
- p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
|
|
|
- } else
|
|
|
- p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
|
|
|
-}
|
|
|
+ p->se.load.weight = prio_to_weight[0] * 2;
|
|
|
+ p->se.load.inv_weight = prio_to_wmult[0] >> 1;
|
|
|
+ return;
|
|
|
+ }
|
|
|
|
|
|
-/*
|
|
|
- * Adding/removing a task to/from a priority array:
|
|
|
- */
|
|
|
-static void dequeue_task(struct task_struct *p, struct prio_array *array)
|
|
|
-{
|
|
|
- array->nr_active--;
|
|
|
- list_del(&p->run_list);
|
|
|
- if (list_empty(array->queue + p->prio))
|
|
|
- __clear_bit(p->prio, array->bitmap);
|
|
|
-}
|
|
|
+ /*
|
|
|
+ * SCHED_IDLE tasks get minimal weight:
|
|
|
+ */
|
|
|
+ if (p->policy == SCHED_IDLE) {
|
|
|
+ p->se.load.weight = WEIGHT_IDLEPRIO;
|
|
|
+ p->se.load.inv_weight = WMULT_IDLEPRIO;
|
|
|
+ return;
|
|
|
+ }
|
|
|
|
|
|
-static void enqueue_task(struct task_struct *p, struct prio_array *array)
|
|
|
-{
|
|
|
- sched_info_queued(p);
|
|
|
- list_add_tail(&p->run_list, array->queue + p->prio);
|
|
|
- __set_bit(p->prio, array->bitmap);
|
|
|
- array->nr_active++;
|
|
|
- p->array = array;
|
|
|
+ p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
|
|
|
+ p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Put task to the end of the run list without the overhead of dequeue
|
|
|
- * followed by enqueue.
|
|
|
- */
|
|
|
-static void requeue_task(struct task_struct *p, struct prio_array *array)
|
|
|
+static void
|
|
|
+enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
|
|
|
{
|
|
|
- list_move_tail(&p->run_list, array->queue + p->prio);
|
|
|
+ sched_info_queued(p);
|
|
|
+ p->sched_class->enqueue_task(rq, p, wakeup, now);
|
|
|
+ p->se.on_rq = 1;
|
|
|
}
|
|
|
|
|
|
-static inline void
|
|
|
-enqueue_task_head(struct task_struct *p, struct prio_array *array)
|
|
|
+static void
|
|
|
+dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
|
|
|
{
|
|
|
- list_add(&p->run_list, array->queue + p->prio);
|
|
|
- __set_bit(p->prio, array->bitmap);
|
|
|
- array->nr_active++;
|
|
|
- p->array = array;
|
|
|
+ p->sched_class->dequeue_task(rq, p, sleep, now);
|
|
|
+ p->se.on_rq = 0;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * __normal_prio - return the priority that is based on the static
|
|
|
- * priority but is modified by bonuses/penalties.
|
|
|
- *
|
|
|
- * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
|
|
|
- * into the -5 ... 0 ... +5 bonus/penalty range.
|
|
|
- *
|
|
|
- * We use 25% of the full 0...39 priority range so that:
|
|
|
- *
|
|
|
- * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
|
|
|
- * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
|
|
|
- *
|
|
|
- * Both properties are important to certain workloads.
|
|
|
+ * __normal_prio - return the priority that is based on the static prio
|
|
|
*/
|
|
|
-
|
|
|
static inline int __normal_prio(struct task_struct *p)
|
|
|
{
|
|
|
- int bonus, prio;
|
|
|
-
|
|
|
- bonus = 0;
|
|
|
-
|
|
|
- prio = p->static_prio - bonus;
|
|
|
- if (prio < MAX_RT_PRIO)
|
|
|
- prio = MAX_RT_PRIO;
|
|
|
- if (prio > MAX_PRIO-1)
|
|
|
- prio = MAX_PRIO-1;
|
|
|
- return prio;
|
|
|
+ return p->static_prio;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -943,84 +972,45 @@ static int effective_prio(struct task_struct *p)
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * __activate_task - move a task to the runqueue.
|
|
|
+ * activate_task - move a task to the runqueue.
|
|
|
*/
|
|
|
-static void __activate_task(struct task_struct *p, struct rq *rq)
|
|
|
+static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
|
|
|
{
|
|
|
- struct prio_array *target = rq->active;
|
|
|
+ u64 now = rq_clock(rq);
|
|
|
|
|
|
- if (batch_task(p))
|
|
|
- target = rq->expired;
|
|
|
- enqueue_task(p, target);
|
|
|
- inc_nr_running(p, rq);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * __activate_idle_task - move idle task to the _front_ of runqueue.
|
|
|
- */
|
|
|
-static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
|
|
|
-{
|
|
|
- enqueue_task_head(p, rq->active);
|
|
|
- inc_nr_running(p, rq);
|
|
|
-}
|
|
|
+ if (p->state == TASK_UNINTERRUPTIBLE)
|
|
|
+ rq->nr_uninterruptible--;
|
|
|
|
|
|
-/*
|
|
|
- * Recalculate p->normal_prio and p->prio after having slept,
|
|
|
- * updating the sleep-average too:
|
|
|
- */
|
|
|
-static int recalc_task_prio(struct task_struct *p, unsigned long long now)
|
|
|
-{
|
|
|
- return effective_prio(p);
|
|
|
+ enqueue_task(rq, p, wakeup, now);
|
|
|
+ inc_nr_running(p, rq, now);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * activate_task - move a task to the runqueue and do priority recalculation
|
|
|
- *
|
|
|
- * Update all the scheduling statistics stuff. (sleep average
|
|
|
- * calculation, priority modifiers, etc.)
|
|
|
+ * activate_idle_task - move idle task to the _front_ of runqueue.
|
|
|
*/
|
|
|
-static void activate_task(struct task_struct *p, struct rq *rq, int local)
|
|
|
+static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
|
|
|
{
|
|
|
- unsigned long long now;
|
|
|
-
|
|
|
- if (rt_task(p))
|
|
|
- goto out;
|
|
|
-
|
|
|
- now = sched_clock();
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- if (!local) {
|
|
|
- /* Compensate for drifting sched_clock */
|
|
|
- struct rq *this_rq = this_rq();
|
|
|
- now = (now - this_rq->most_recent_timestamp)
|
|
|
- + rq->most_recent_timestamp;
|
|
|
- }
|
|
|
-#endif
|
|
|
+ u64 now = rq_clock(rq);
|
|
|
|
|
|
- /*
|
|
|
- * Sleep time is in units of nanosecs, so shift by 20 to get a
|
|
|
- * milliseconds-range estimation of the amount of time that the task
|
|
|
- * spent sleeping:
|
|
|
- */
|
|
|
- if (unlikely(prof_on == SLEEP_PROFILING)) {
|
|
|
- if (p->state == TASK_UNINTERRUPTIBLE)
|
|
|
- profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
|
|
|
- (now - p->timestamp) >> 20);
|
|
|
- }
|
|
|
+ if (p->state == TASK_UNINTERRUPTIBLE)
|
|
|
+ rq->nr_uninterruptible--;
|
|
|
|
|
|
- p->prio = recalc_task_prio(p, now);
|
|
|
- p->timestamp = now;
|
|
|
-out:
|
|
|
- __activate_task(p, rq);
|
|
|
+ enqueue_task(rq, p, 0, now);
|
|
|
+ inc_nr_running(p, rq, now);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* deactivate_task - remove a task from the runqueue.
|
|
|
*/
|
|
|
-static void deactivate_task(struct task_struct *p, struct rq *rq)
|
|
|
+static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
|
|
|
{
|
|
|
- dec_nr_running(p, rq);
|
|
|
- dequeue_task(p, p->array);
|
|
|
- p->array = NULL;
|
|
|
+ u64 now = rq_clock(rq);
|
|
|
+
|
|
|
+ if (p->state == TASK_UNINTERRUPTIBLE)
|
|
|
+ rq->nr_uninterruptible++;
|
|
|
+
|
|
|
+ dequeue_task(rq, p, sleep, now);
|
|
|
+ dec_nr_running(p, rq, now);
|
|
|
}
|
|
|
|
|
|
/**
|
|
@@ -1035,14 +1025,40 @@ inline int task_curr(const struct task_struct *p)
|
|
|
/* Used instead of source_load when we know the type == 0 */
|
|
|
unsigned long weighted_cpuload(const int cpu)
|
|
|
{
|
|
|
- return cpu_rq(cpu)->raw_weighted_load;
|
|
|
+ return cpu_rq(cpu)->ls.load.weight;
|
|
|
+}
|
|
|
+
|
|
|
+static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
|
|
|
+{
|
|
|
+#ifdef CONFIG_SMP
|
|
|
+ task_thread_info(p)->cpu = cpu;
|
|
|
+ set_task_cfs_rq(p);
|
|
|
+#endif
|
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
|
|
-void set_task_cpu(struct task_struct *p, unsigned int cpu)
|
|
|
+void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
|
|
|
{
|
|
|
- task_thread_info(p)->cpu = cpu;
|
|
|
+ int old_cpu = task_cpu(p);
|
|
|
+ struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
|
|
|
+ u64 clock_offset, fair_clock_offset;
|
|
|
+
|
|
|
+ clock_offset = old_rq->clock - new_rq->clock;
|
|
|
+ fair_clock_offset = old_rq->cfs.fair_clock -
|
|
|
+ new_rq->cfs.fair_clock;
|
|
|
+ if (p->se.wait_start)
|
|
|
+ p->se.wait_start -= clock_offset;
|
|
|
+ if (p->se.wait_start_fair)
|
|
|
+ p->se.wait_start_fair -= fair_clock_offset;
|
|
|
+ if (p->se.sleep_start)
|
|
|
+ p->se.sleep_start -= clock_offset;
|
|
|
+ if (p->se.block_start)
|
|
|
+ p->se.block_start -= clock_offset;
|
|
|
+ if (p->se.sleep_start_fair)
|
|
|
+ p->se.sleep_start_fair -= fair_clock_offset;
|
|
|
+
|
|
|
+ __set_task_cpu(p, new_cpu);
|
|
|
}
|
|
|
|
|
|
struct migration_req {
|
|
@@ -1067,7 +1083,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
|
|
|
* If the task is not on a runqueue (and not running), then
|
|
|
* it is sufficient to simply update the task's cpu field.
|
|
|
*/
|
|
|
- if (!p->array && !task_running(rq, p)) {
|
|
|
+ if (!p->se.on_rq && !task_running(rq, p)) {
|
|
|
set_task_cpu(p, dest_cpu);
|
|
|
return 0;
|
|
|
}
|
|
@@ -1092,9 +1108,8 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
|
|
|
void wait_task_inactive(struct task_struct *p)
|
|
|
{
|
|
|
unsigned long flags;
|
|
|
+ int running, on_rq;
|
|
|
struct rq *rq;
|
|
|
- struct prio_array *array;
|
|
|
- int running;
|
|
|
|
|
|
repeat:
|
|
|
/*
|
|
@@ -1126,7 +1141,7 @@ repeat:
|
|
|
*/
|
|
|
rq = task_rq_lock(p, &flags);
|
|
|
running = task_running(rq, p);
|
|
|
- array = p->array;
|
|
|
+ on_rq = p->se.on_rq;
|
|
|
task_rq_unlock(rq, &flags);
|
|
|
|
|
|
/*
|
|
@@ -1149,7 +1164,7 @@ repeat:
|
|
|
* running right now), it's preempted, and we should
|
|
|
* yield - it could be a while.
|
|
|
*/
|
|
|
- if (unlikely(array)) {
|
|
|
+ if (unlikely(on_rq)) {
|
|
|
yield();
|
|
|
goto repeat;
|
|
|
}
|
|
@@ -1195,11 +1210,12 @@ void kick_process(struct task_struct *p)
|
|
|
static inline unsigned long source_load(int cpu, int type)
|
|
|
{
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
+ unsigned long total = weighted_cpuload(cpu);
|
|
|
|
|
|
if (type == 0)
|
|
|
- return rq->raw_weighted_load;
|
|
|
+ return total;
|
|
|
|
|
|
- return min(rq->cpu_load[type-1], rq->raw_weighted_load);
|
|
|
+ return min(rq->cpu_load[type-1], total);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -1209,11 +1225,12 @@ static inline unsigned long source_load(int cpu, int type)
|
|
|
static inline unsigned long target_load(int cpu, int type)
|
|
|
{
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
+ unsigned long total = weighted_cpuload(cpu);
|
|
|
|
|
|
if (type == 0)
|
|
|
- return rq->raw_weighted_load;
|
|
|
+ return total;
|
|
|
|
|
|
- return max(rq->cpu_load[type-1], rq->raw_weighted_load);
|
|
|
+ return max(rq->cpu_load[type-1], total);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -1222,9 +1239,10 @@ static inline unsigned long target_load(int cpu, int type)
|
|
|
static inline unsigned long cpu_avg_load_per_task(int cpu)
|
|
|
{
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
+ unsigned long total = weighted_cpuload(cpu);
|
|
|
unsigned long n = rq->nr_running;
|
|
|
|
|
|
- return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
|
|
|
+ return n ? total / n : SCHED_LOAD_SCALE;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -1455,7 +1473,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
|
|
|
if (!(old_state & state))
|
|
|
goto out;
|
|
|
|
|
|
- if (p->array)
|
|
|
+ if (p->se.on_rq)
|
|
|
goto out_running;
|
|
|
|
|
|
cpu = task_cpu(p);
|
|
@@ -1510,11 +1528,11 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
|
|
|
* of the current CPU:
|
|
|
*/
|
|
|
if (sync)
|
|
|
- tl -= current->load_weight;
|
|
|
+ tl -= current->se.load.weight;
|
|
|
|
|
|
if ((tl <= load &&
|
|
|
tl + target_load(cpu, idx) <= tl_per_task) ||
|
|
|
- 100*(tl + p->load_weight) <= imbalance*load) {
|
|
|
+ 100*(tl + p->se.load.weight) <= imbalance*load) {
|
|
|
/*
|
|
|
* This domain has SD_WAKE_AFFINE and
|
|
|
* p is cache cold in this domain, and
|
|
@@ -1548,7 +1566,7 @@ out_set_cpu:
|
|
|
old_state = p->state;
|
|
|
if (!(old_state & state))
|
|
|
goto out;
|
|
|
- if (p->array)
|
|
|
+ if (p->se.on_rq)
|
|
|
goto out_running;
|
|
|
|
|
|
this_cpu = smp_processor_id();
|
|
@@ -1557,10 +1575,7 @@ out_set_cpu:
|
|
|
|
|
|
out_activate:
|
|
|
#endif /* CONFIG_SMP */
|
|
|
- if (old_state == TASK_UNINTERRUPTIBLE)
|
|
|
- rq->nr_uninterruptible--;
|
|
|
-
|
|
|
- activate_task(p, rq, cpu == this_cpu);
|
|
|
+ activate_task(rq, p, 1);
|
|
|
/*
|
|
|
* Sync wakeups (i.e. those types of wakeups where the waker
|
|
|
* has indicated that it will leave the CPU in short order)
|
|
@@ -1569,10 +1584,8 @@ out_activate:
|
|
|
* the waker guarantees that the freshly woken up task is going
|
|
|
* to be considered on this CPU.)
|
|
|
*/
|
|
|
- if (!sync || cpu != this_cpu) {
|
|
|
- if (TASK_PREEMPTS_CURR(p, rq))
|
|
|
- resched_task(rq->curr);
|
|
|
- }
|
|
|
+ if (!sync || cpu != this_cpu)
|
|
|
+ check_preempt_curr(rq, p);
|
|
|
success = 1;
|
|
|
|
|
|
out_running:
|
|
@@ -1595,19 +1608,36 @@ int fastcall wake_up_state(struct task_struct *p, unsigned int state)
|
|
|
return try_to_wake_up(p, state, 0);
|
|
|
}
|
|
|
|
|
|
-static void task_running_tick(struct rq *rq, struct task_struct *p);
|
|
|
/*
|
|
|
* Perform scheduler related setup for a newly forked process p.
|
|
|
* p is forked by current.
|
|
|
- */
|
|
|
-void fastcall sched_fork(struct task_struct *p, int clone_flags)
|
|
|
-{
|
|
|
- int cpu = get_cpu();
|
|
|
+ *
|
|
|
+ * __sched_fork() is basic setup used by init_idle() too:
|
|
|
+ */
|
|
|
+static void __sched_fork(struct task_struct *p)
|
|
|
+{
|
|
|
+ p->se.wait_start_fair = 0;
|
|
|
+ p->se.wait_start = 0;
|
|
|
+ p->se.exec_start = 0;
|
|
|
+ p->se.sum_exec_runtime = 0;
|
|
|
+ p->se.delta_exec = 0;
|
|
|
+ p->se.delta_fair_run = 0;
|
|
|
+ p->se.delta_fair_sleep = 0;
|
|
|
+ p->se.wait_runtime = 0;
|
|
|
+ p->se.sum_wait_runtime = 0;
|
|
|
+ p->se.sum_sleep_runtime = 0;
|
|
|
+ p->se.sleep_start = 0;
|
|
|
+ p->se.sleep_start_fair = 0;
|
|
|
+ p->se.block_start = 0;
|
|
|
+ p->se.sleep_max = 0;
|
|
|
+ p->se.block_max = 0;
|
|
|
+ p->se.exec_max = 0;
|
|
|
+ p->se.wait_max = 0;
|
|
|
+ p->se.wait_runtime_overruns = 0;
|
|
|
+ p->se.wait_runtime_underruns = 0;
|
|
|
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
|
|
|
-#endif
|
|
|
- set_task_cpu(p, cpu);
|
|
|
+ INIT_LIST_HEAD(&p->run_list);
|
|
|
+ p->se.on_rq = 0;
|
|
|
|
|
|
/*
|
|
|
* We mark the process as running here, but have not actually
|
|
@@ -1616,16 +1646,29 @@ void fastcall sched_fork(struct task_struct *p, int clone_flags)
|
|
|
* event cannot wake it up and insert it on the runqueue either.
|
|
|
*/
|
|
|
p->state = TASK_RUNNING;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * fork()/clone()-time setup:
|
|
|
+ */
|
|
|
+void sched_fork(struct task_struct *p, int clone_flags)
|
|
|
+{
|
|
|
+ int cpu = get_cpu();
|
|
|
+
|
|
|
+ __sched_fork(p);
|
|
|
+
|
|
|
+#ifdef CONFIG_SMP
|
|
|
+ cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
|
|
|
+#endif
|
|
|
+ __set_task_cpu(p, cpu);
|
|
|
|
|
|
/*
|
|
|
* Make sure we do not leak PI boosting priority to the child:
|
|
|
*/
|
|
|
p->prio = current->normal_prio;
|
|
|
|
|
|
- INIT_LIST_HEAD(&p->run_list);
|
|
|
- p->array = NULL;
|
|
|
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
|
|
|
- if (unlikely(sched_info_on()))
|
|
|
+ if (likely(sched_info_on()))
|
|
|
memset(&p->sched_info, 0, sizeof(p->sched_info));
|
|
|
#endif
|
|
|
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
|
|
@@ -1635,33 +1678,15 @@ void fastcall sched_fork(struct task_struct *p, int clone_flags)
|
|
|
/* Want to start with kernel preemption disabled. */
|
|
|
task_thread_info(p)->preempt_count = 1;
|
|
|
#endif
|
|
|
- /*
|
|
|
- * Share the timeslice between parent and child, thus the
|
|
|
- * total amount of pending timeslices in the system doesn't change,
|
|
|
- * resulting in more scheduling fairness.
|
|
|
- */
|
|
|
- local_irq_disable();
|
|
|
- p->time_slice = (current->time_slice + 1) >> 1;
|
|
|
- /*
|
|
|
- * The remainder of the first timeslice might be recovered by
|
|
|
- * the parent if the child exits early enough.
|
|
|
- */
|
|
|
- p->first_time_slice = 1;
|
|
|
- current->time_slice >>= 1;
|
|
|
- p->timestamp = sched_clock();
|
|
|
- if (unlikely(!current->time_slice)) {
|
|
|
- /*
|
|
|
- * This case is rare, it happens when the parent has only
|
|
|
- * a single jiffy left from its timeslice. Taking the
|
|
|
- * runqueue lock is not a problem.
|
|
|
- */
|
|
|
- current->time_slice = 1;
|
|
|
- task_running_tick(cpu_rq(cpu), current);
|
|
|
- }
|
|
|
- local_irq_enable();
|
|
|
put_cpu();
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * After fork, child runs first. (default) If set to 0 then
|
|
|
+ * parent will (try to) run first.
|
|
|
+ */
|
|
|
+unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
|
|
|
+
|
|
|
/*
|
|
|
* wake_up_new_task - wake up a newly created task for the first time.
|
|
|
*
|
|
@@ -1671,77 +1696,28 @@ void fastcall sched_fork(struct task_struct *p, int clone_flags)
|
|
|
*/
|
|
|
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
|
|
|
{
|
|
|
- struct rq *rq, *this_rq;
|
|
|
unsigned long flags;
|
|
|
- int this_cpu, cpu;
|
|
|
+ struct rq *rq;
|
|
|
+ int this_cpu;
|
|
|
|
|
|
rq = task_rq_lock(p, &flags);
|
|
|
BUG_ON(p->state != TASK_RUNNING);
|
|
|
- this_cpu = smp_processor_id();
|
|
|
- cpu = task_cpu(p);
|
|
|
-
|
|
|
- /*
|
|
|
- * We decrease the sleep average of forking parents
|
|
|
- * and children as well, to keep max-interactive tasks
|
|
|
- * from forking tasks that are max-interactive. The parent
|
|
|
- * (current) is done further down, under its lock.
|
|
|
- */
|
|
|
- p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
|
|
|
- CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
|
|
|
+ this_cpu = smp_processor_id(); /* parent's CPU */
|
|
|
|
|
|
p->prio = effective_prio(p);
|
|
|
|
|
|
- if (likely(cpu == this_cpu)) {
|
|
|
- if (!(clone_flags & CLONE_VM)) {
|
|
|
- /*
|
|
|
- * The VM isn't cloned, so we're in a good position to
|
|
|
- * do child-runs-first in anticipation of an exec. This
|
|
|
- * usually avoids a lot of COW overhead.
|
|
|
- */
|
|
|
- if (unlikely(!current->array))
|
|
|
- __activate_task(p, rq);
|
|
|
- else {
|
|
|
- p->prio = current->prio;
|
|
|
- p->normal_prio = current->normal_prio;
|
|
|
- list_add_tail(&p->run_list, ¤t->run_list);
|
|
|
- p->array = current->array;
|
|
|
- p->array->nr_active++;
|
|
|
- inc_nr_running(p, rq);
|
|
|
- }
|
|
|
- set_need_resched();
|
|
|
- } else
|
|
|
- /* Run child last */
|
|
|
- __activate_task(p, rq);
|
|
|
- /*
|
|
|
- * We skip the following code due to cpu == this_cpu
|
|
|
- *
|
|
|
- * task_rq_unlock(rq, &flags);
|
|
|
- * this_rq = task_rq_lock(current, &flags);
|
|
|
- */
|
|
|
- this_rq = rq;
|
|
|
+ if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
|
|
|
+ task_cpu(p) != this_cpu || !current->se.on_rq) {
|
|
|
+ activate_task(rq, p, 0);
|
|
|
} else {
|
|
|
- this_rq = cpu_rq(this_cpu);
|
|
|
-
|
|
|
/*
|
|
|
- * Not the local CPU - must adjust timestamp. This should
|
|
|
- * get optimised away in the !CONFIG_SMP case.
|
|
|
+ * Let the scheduling class do new task startup
|
|
|
+ * management (if any):
|
|
|
*/
|
|
|
- p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
|
|
|
- + rq->most_recent_timestamp;
|
|
|
- __activate_task(p, rq);
|
|
|
- if (TASK_PREEMPTS_CURR(p, rq))
|
|
|
- resched_task(rq->curr);
|
|
|
-
|
|
|
- /*
|
|
|
- * Parent and child are on different CPUs, now get the
|
|
|
- * parent runqueue to update the parent's ->sleep_avg:
|
|
|
- */
|
|
|
- task_rq_unlock(rq, &flags);
|
|
|
- this_rq = task_rq_lock(current, &flags);
|
|
|
+ p->sched_class->task_new(rq, p);
|
|
|
}
|
|
|
- current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
|
|
|
- PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
|
|
|
- task_rq_unlock(this_rq, &flags);
|
|
|
+ check_preempt_curr(rq, p);
|
|
|
+ task_rq_unlock(rq, &flags);
|
|
|
}
|
|
|
|
|
|
/**
|
|
@@ -1833,13 +1809,15 @@ asmlinkage void schedule_tail(struct task_struct *prev)
|
|
|
* context_switch - switch to the new MM and the new
|
|
|
* thread's register state.
|
|
|
*/
|
|
|
-static inline struct task_struct *
|
|
|
+static inline void
|
|
|
context_switch(struct rq *rq, struct task_struct *prev,
|
|
|
struct task_struct *next)
|
|
|
{
|
|
|
- struct mm_struct *mm = next->mm;
|
|
|
- struct mm_struct *oldmm = prev->active_mm;
|
|
|
+ struct mm_struct *mm, *oldmm;
|
|
|
|
|
|
+ prepare_task_switch(rq, next);
|
|
|
+ mm = next->mm;
|
|
|
+ oldmm = prev->active_mm;
|
|
|
/*
|
|
|
* For paravirt, this is coupled with an exit in switch_to to
|
|
|
* combine the page table reload and the switch backend into
|
|
@@ -1847,16 +1825,15 @@ context_switch(struct rq *rq, struct task_struct *prev,
|
|
|
*/
|
|
|
arch_enter_lazy_cpu_mode();
|
|
|
|
|
|
- if (!mm) {
|
|
|
+ if (unlikely(!mm)) {
|
|
|
next->active_mm = oldmm;
|
|
|
atomic_inc(&oldmm->mm_count);
|
|
|
enter_lazy_tlb(oldmm, next);
|
|
|
} else
|
|
|
switch_mm(oldmm, mm, next);
|
|
|
|
|
|
- if (!prev->mm) {
|
|
|
+ if (unlikely(!prev->mm)) {
|
|
|
prev->active_mm = NULL;
|
|
|
- WARN_ON(rq->prev_mm);
|
|
|
rq->prev_mm = oldmm;
|
|
|
}
|
|
|
/*
|
|
@@ -1872,7 +1849,13 @@ context_switch(struct rq *rq, struct task_struct *prev,
|
|
|
/* Here we just switch the register state and the stack. */
|
|
|
switch_to(prev, next, prev);
|
|
|
|
|
|
- return prev;
|
|
|
+ barrier();
|
|
|
+ /*
|
|
|
+ * this_rq must be evaluated again because prev may have moved
|
|
|
+ * CPUs since it called schedule(), thus the 'rq' on its stack
|
|
|
+ * frame will be invalid.
|
|
|
+ */
|
|
|
+ finish_task_switch(this_rq(), prev);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -1945,17 +1928,65 @@ unsigned long nr_active(void)
|
|
|
return running + uninterruptible;
|
|
|
}
|
|
|
|
|
|
-#ifdef CONFIG_SMP
|
|
|
-
|
|
|
/*
|
|
|
- * Is this task likely cache-hot:
|
|
|
+ * Update rq->cpu_load[] statistics. This function is usually called every
|
|
|
+ * scheduler tick (TICK_NSEC).
|
|
|
*/
|
|
|
-static inline int
|
|
|
-task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
|
|
|
+static void update_cpu_load(struct rq *this_rq)
|
|
|
{
|
|
|
- return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
|
|
|
+ u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
|
|
|
+ unsigned long total_load = this_rq->ls.load.weight;
|
|
|
+ unsigned long this_load = total_load;
|
|
|
+ struct load_stat *ls = &this_rq->ls;
|
|
|
+ u64 now = __rq_clock(this_rq);
|
|
|
+ int i, scale;
|
|
|
+
|
|
|
+ this_rq->nr_load_updates++;
|
|
|
+ if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
|
|
|
+ goto do_avg;
|
|
|
+
|
|
|
+ /* Update delta_fair/delta_exec fields first */
|
|
|
+ update_curr_load(this_rq, now);
|
|
|
+
|
|
|
+ fair_delta64 = ls->delta_fair + 1;
|
|
|
+ ls->delta_fair = 0;
|
|
|
+
|
|
|
+ exec_delta64 = ls->delta_exec + 1;
|
|
|
+ ls->delta_exec = 0;
|
|
|
+
|
|
|
+ sample_interval64 = now - ls->load_update_last;
|
|
|
+ ls->load_update_last = now;
|
|
|
+
|
|
|
+ if ((s64)sample_interval64 < (s64)TICK_NSEC)
|
|
|
+ sample_interval64 = TICK_NSEC;
|
|
|
+
|
|
|
+ if (exec_delta64 > sample_interval64)
|
|
|
+ exec_delta64 = sample_interval64;
|
|
|
+
|
|
|
+ idle_delta64 = sample_interval64 - exec_delta64;
|
|
|
+
|
|
|
+ tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
|
|
|
+ tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
|
|
|
+
|
|
|
+ this_load = (unsigned long)tmp64;
|
|
|
+
|
|
|
+do_avg:
|
|
|
+
|
|
|
+ /* Update our load: */
|
|
|
+ for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
|
|
|
+ unsigned long old_load, new_load;
|
|
|
+
|
|
|
+ /* scale is effectively 1 << i now, and >> i divides by scale */
|
|
|
+
|
|
|
+ old_load = this_rq->cpu_load[i];
|
|
|
+ new_load = this_load;
|
|
|
+
|
|
|
+ this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
+#ifdef CONFIG_SMP
|
|
|
+
|
|
|
/*
|
|
|
* double_rq_lock - safely lock two runqueues
|
|
|
*
|
|
@@ -2072,23 +2103,17 @@ void sched_exec(void)
|
|
|
* pull_task - move a task from a remote runqueue to the local runqueue.
|
|
|
* Both runqueues must be locked.
|
|
|
*/
|
|
|
-static void pull_task(struct rq *src_rq, struct prio_array *src_array,
|
|
|
- struct task_struct *p, struct rq *this_rq,
|
|
|
- struct prio_array *this_array, int this_cpu)
|
|
|
+static void pull_task(struct rq *src_rq, struct task_struct *p,
|
|
|
+ struct rq *this_rq, int this_cpu)
|
|
|
{
|
|
|
- dequeue_task(p, src_array);
|
|
|
- dec_nr_running(p, src_rq);
|
|
|
+ deactivate_task(src_rq, p, 0);
|
|
|
set_task_cpu(p, this_cpu);
|
|
|
- inc_nr_running(p, this_rq);
|
|
|
- enqueue_task(p, this_array);
|
|
|
- p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
|
|
|
- + this_rq->most_recent_timestamp;
|
|
|
+ activate_task(this_rq, p, 0);
|
|
|
/*
|
|
|
* Note that idle threads have a prio of MAX_PRIO, for this test
|
|
|
* to be always true for them.
|
|
|
*/
|
|
|
- if (TASK_PREEMPTS_CURR(p, this_rq))
|
|
|
- resched_task(this_rq->curr);
|
|
|
+ check_preempt_curr(this_rq, p);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -2113,132 +2138,67 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
|
|
|
return 0;
|
|
|
|
|
|
/*
|
|
|
- * Aggressive migration if:
|
|
|
- * 1) task is cache cold, or
|
|
|
- * 2) too many balance attempts have failed.
|
|
|
+ * Aggressive migration if too many balance attempts have failed:
|
|
|
*/
|
|
|
-
|
|
|
- if (sd->nr_balance_failed > sd->cache_nice_tries) {
|
|
|
-#ifdef CONFIG_SCHEDSTATS
|
|
|
- if (task_hot(p, rq->most_recent_timestamp, sd))
|
|
|
- schedstat_inc(sd, lb_hot_gained[idle]);
|
|
|
-#endif
|
|
|
+ if (sd->nr_balance_failed > sd->cache_nice_tries)
|
|
|
return 1;
|
|
|
- }
|
|
|
|
|
|
- if (task_hot(p, rq->most_recent_timestamp, sd))
|
|
|
- return 0;
|
|
|
return 1;
|
|
|
}
|
|
|
|
|
|
-#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
|
|
|
-
|
|
|
-/*
|
|
|
- * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
|
|
|
- * load from busiest to this_rq, as part of a balancing operation within
|
|
|
- * "domain". Returns the number of tasks moved.
|
|
|
- *
|
|
|
- * Called with both runqueues locked.
|
|
|
- */
|
|
|
-static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
|
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
|
unsigned long max_nr_move, unsigned long max_load_move,
|
|
|
struct sched_domain *sd, enum cpu_idle_type idle,
|
|
|
- int *all_pinned)
|
|
|
+ int *all_pinned, unsigned long *load_moved,
|
|
|
+ int this_best_prio, int best_prio, int best_prio_seen,
|
|
|
+ struct rq_iterator *iterator)
|
|
|
{
|
|
|
- int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
|
|
|
- best_prio_seen, skip_for_load;
|
|
|
- struct prio_array *array, *dst_array;
|
|
|
- struct list_head *head, *curr;
|
|
|
- struct task_struct *tmp;
|
|
|
- long rem_load_move;
|
|
|
+ int pulled = 0, pinned = 0, skip_for_load;
|
|
|
+ struct task_struct *p;
|
|
|
+ long rem_load_move = max_load_move;
|
|
|
|
|
|
if (max_nr_move == 0 || max_load_move == 0)
|
|
|
goto out;
|
|
|
|
|
|
- rem_load_move = max_load_move;
|
|
|
pinned = 1;
|
|
|
- this_best_prio = rq_best_prio(this_rq);
|
|
|
- best_prio = rq_best_prio(busiest);
|
|
|
- /*
|
|
|
- * Enable handling of the case where there is more than one task
|
|
|
- * with the best priority. If the current running task is one
|
|
|
- * of those with prio==best_prio we know it won't be moved
|
|
|
- * and therefore it's safe to override the skip (based on load) of
|
|
|
- * any task we find with that prio.
|
|
|
- */
|
|
|
- best_prio_seen = best_prio == busiest->curr->prio;
|
|
|
|
|
|
/*
|
|
|
- * We first consider expired tasks. Those will likely not be
|
|
|
- * executed in the near future, and they are most likely to
|
|
|
- * be cache-cold, thus switching CPUs has the least effect
|
|
|
- * on them.
|
|
|
+ * Start the load-balancing iterator:
|
|
|
*/
|
|
|
- if (busiest->expired->nr_active) {
|
|
|
- array = busiest->expired;
|
|
|
- dst_array = this_rq->expired;
|
|
|
- } else {
|
|
|
- array = busiest->active;
|
|
|
- dst_array = this_rq->active;
|
|
|
- }
|
|
|
-
|
|
|
-new_array:
|
|
|
- /* Start searching at priority 0: */
|
|
|
- idx = 0;
|
|
|
-skip_bitmap:
|
|
|
- if (!idx)
|
|
|
- idx = sched_find_first_bit(array->bitmap);
|
|
|
- else
|
|
|
- idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
|
|
|
- if (idx >= MAX_PRIO) {
|
|
|
- if (array == busiest->expired && busiest->active->nr_active) {
|
|
|
- array = busiest->active;
|
|
|
- dst_array = this_rq->active;
|
|
|
- goto new_array;
|
|
|
- }
|
|
|
+ p = iterator->start(iterator->arg);
|
|
|
+next:
|
|
|
+ if (!p)
|
|
|
goto out;
|
|
|
- }
|
|
|
-
|
|
|
- head = array->queue + idx;
|
|
|
- curr = head->prev;
|
|
|
-skip_queue:
|
|
|
- tmp = list_entry(curr, struct task_struct, run_list);
|
|
|
-
|
|
|
- curr = curr->prev;
|
|
|
-
|
|
|
/*
|
|
|
* To help distribute high priority tasks accross CPUs we don't
|
|
|
* skip a task if it will be the highest priority task (i.e. smallest
|
|
|
* prio value) on its new queue regardless of its load weight
|
|
|
*/
|
|
|
- skip_for_load = tmp->load_weight > rem_load_move;
|
|
|
- if (skip_for_load && idx < this_best_prio)
|
|
|
- skip_for_load = !best_prio_seen && idx == best_prio;
|
|
|
+ skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
|
|
|
+ SCHED_LOAD_SCALE_FUZZ;
|
|
|
+ if (skip_for_load && p->prio < this_best_prio)
|
|
|
+ skip_for_load = !best_prio_seen && p->prio == best_prio;
|
|
|
if (skip_for_load ||
|
|
|
- !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
|
|
|
+ !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
|
|
|
|
|
|
- best_prio_seen |= idx == best_prio;
|
|
|
- if (curr != head)
|
|
|
- goto skip_queue;
|
|
|
- idx++;
|
|
|
- goto skip_bitmap;
|
|
|
+ best_prio_seen |= p->prio == best_prio;
|
|
|
+ p = iterator->next(iterator->arg);
|
|
|
+ goto next;
|
|
|
}
|
|
|
|
|
|
- pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
|
|
|
+ pull_task(busiest, p, this_rq, this_cpu);
|
|
|
pulled++;
|
|
|
- rem_load_move -= tmp->load_weight;
|
|
|
+ rem_load_move -= p->se.load.weight;
|
|
|
|
|
|
/*
|
|
|
* We only want to steal up to the prescribed number of tasks
|
|
|
* and the prescribed amount of weighted load.
|
|
|
*/
|
|
|
if (pulled < max_nr_move && rem_load_move > 0) {
|
|
|
- if (idx < this_best_prio)
|
|
|
- this_best_prio = idx;
|
|
|
- if (curr != head)
|
|
|
- goto skip_queue;
|
|
|
- idx++;
|
|
|
- goto skip_bitmap;
|
|
|
+ if (p->prio < this_best_prio)
|
|
|
+ this_best_prio = p->prio;
|
|
|
+ p = iterator->next(iterator->arg);
|
|
|
+ goto next;
|
|
|
}
|
|
|
out:
|
|
|
/*
|
|
@@ -2250,9 +2210,39 @@ out:
|
|
|
|
|
|
if (all_pinned)
|
|
|
*all_pinned = pinned;
|
|
|
+ *load_moved = max_load_move - rem_load_move;
|
|
|
return pulled;
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
|
|
|
+ * load from busiest to this_rq, as part of a balancing operation within
|
|
|
+ * "domain". Returns the number of tasks moved.
|
|
|
+ *
|
|
|
+ * Called with both runqueues locked.
|
|
|
+ */
|
|
|
+static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
|
+ unsigned long max_nr_move, unsigned long max_load_move,
|
|
|
+ struct sched_domain *sd, enum cpu_idle_type idle,
|
|
|
+ int *all_pinned)
|
|
|
+{
|
|
|
+ struct sched_class *class = sched_class_highest;
|
|
|
+ unsigned long load_moved, total_nr_moved = 0, nr_moved;
|
|
|
+ long rem_load_move = max_load_move;
|
|
|
+
|
|
|
+ do {
|
|
|
+ nr_moved = class->load_balance(this_rq, this_cpu, busiest,
|
|
|
+ max_nr_move, (unsigned long)rem_load_move,
|
|
|
+ sd, idle, all_pinned, &load_moved);
|
|
|
+ total_nr_moved += nr_moved;
|
|
|
+ max_nr_move -= nr_moved;
|
|
|
+ rem_load_move -= load_moved;
|
|
|
+ class = class->next;
|
|
|
+ } while (class && max_nr_move && rem_load_move > 0);
|
|
|
+
|
|
|
+ return total_nr_moved;
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
* find_busiest_group finds and returns the busiest CPU group within the
|
|
|
* domain. It calculates and returns the amount of weighted load which
|
|
@@ -2260,8 +2250,8 @@ out:
|
|
|
*/
|
|
|
static struct sched_group *
|
|
|
find_busiest_group(struct sched_domain *sd, int this_cpu,
|
|
|
- unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle,
|
|
|
- cpumask_t *cpus, int *balance)
|
|
|
+ unsigned long *imbalance, enum cpu_idle_type idle,
|
|
|
+ int *sd_idle, cpumask_t *cpus, int *balance)
|
|
|
{
|
|
|
struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
|
|
|
unsigned long max_load, avg_load, total_load, this_load, total_pwr;
|
|
@@ -2325,7 +2315,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
|
|
|
|
|
|
avg_load += load;
|
|
|
sum_nr_running += rq->nr_running;
|
|
|
- sum_weighted_load += rq->raw_weighted_load;
|
|
|
+ sum_weighted_load += weighted_cpuload(i);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -2365,8 +2355,9 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
|
|
|
* Busy processors will not participate in power savings
|
|
|
* balance.
|
|
|
*/
|
|
|
- if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
|
|
|
- goto group_next;
|
|
|
+ if (idle == CPU_NOT_IDLE ||
|
|
|
+ !(sd->flags & SD_POWERSAVINGS_BALANCE))
|
|
|
+ goto group_next;
|
|
|
|
|
|
/*
|
|
|
* If the local group is idle or completely loaded
|
|
@@ -2376,42 +2367,42 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
|
|
|
!this_nr_running))
|
|
|
power_savings_balance = 0;
|
|
|
|
|
|
- /*
|
|
|
+ /*
|
|
|
* If a group is already running at full capacity or idle,
|
|
|
* don't include that group in power savings calculations
|
|
|
- */
|
|
|
- if (!power_savings_balance || sum_nr_running >= group_capacity
|
|
|
+ */
|
|
|
+ if (!power_savings_balance || sum_nr_running >= group_capacity
|
|
|
|| !sum_nr_running)
|
|
|
- goto group_next;
|
|
|
+ goto group_next;
|
|
|
|
|
|
- /*
|
|
|
+ /*
|
|
|
* Calculate the group which has the least non-idle load.
|
|
|
- * This is the group from where we need to pick up the load
|
|
|
- * for saving power
|
|
|
- */
|
|
|
- if ((sum_nr_running < min_nr_running) ||
|
|
|
- (sum_nr_running == min_nr_running &&
|
|
|
+ * This is the group from where we need to pick up the load
|
|
|
+ * for saving power
|
|
|
+ */
|
|
|
+ if ((sum_nr_running < min_nr_running) ||
|
|
|
+ (sum_nr_running == min_nr_running &&
|
|
|
first_cpu(group->cpumask) <
|
|
|
first_cpu(group_min->cpumask))) {
|
|
|
- group_min = group;
|
|
|
- min_nr_running = sum_nr_running;
|
|
|
+ group_min = group;
|
|
|
+ min_nr_running = sum_nr_running;
|
|
|
min_load_per_task = sum_weighted_load /
|
|
|
sum_nr_running;
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
- /*
|
|
|
+ /*
|
|
|
* Calculate the group which is almost near its
|
|
|
- * capacity but still has some space to pick up some load
|
|
|
- * from other group and save more power
|
|
|
- */
|
|
|
- if (sum_nr_running <= group_capacity - 1) {
|
|
|
- if (sum_nr_running > leader_nr_running ||
|
|
|
- (sum_nr_running == leader_nr_running &&
|
|
|
- first_cpu(group->cpumask) >
|
|
|
- first_cpu(group_leader->cpumask))) {
|
|
|
- group_leader = group;
|
|
|
- leader_nr_running = sum_nr_running;
|
|
|
- }
|
|
|
+ * capacity but still has some space to pick up some load
|
|
|
+ * from other group and save more power
|
|
|
+ */
|
|
|
+ if (sum_nr_running <= group_capacity - 1) {
|
|
|
+ if (sum_nr_running > leader_nr_running ||
|
|
|
+ (sum_nr_running == leader_nr_running &&
|
|
|
+ first_cpu(group->cpumask) >
|
|
|
+ first_cpu(group_leader->cpumask))) {
|
|
|
+ group_leader = group;
|
|
|
+ leader_nr_running = sum_nr_running;
|
|
|
+ }
|
|
|
}
|
|
|
group_next:
|
|
|
#endif
|
|
@@ -2466,7 +2457,7 @@ group_next:
|
|
|
* a think about bumping its value to force at least one task to be
|
|
|
* moved
|
|
|
*/
|
|
|
- if (*imbalance < busiest_load_per_task) {
|
|
|
+ if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
|
|
|
unsigned long tmp, pwr_now, pwr_move;
|
|
|
unsigned int imbn;
|
|
|
|
|
@@ -2480,7 +2471,8 @@ small_imbalance:
|
|
|
} else
|
|
|
this_load_per_task = SCHED_LOAD_SCALE;
|
|
|
|
|
|
- if (max_load - this_load >= busiest_load_per_task * imbn) {
|
|
|
+ if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
|
|
|
+ busiest_load_per_task * imbn) {
|
|
|
*imbalance = busiest_load_per_task;
|
|
|
return busiest;
|
|
|
}
|
|
@@ -2552,17 +2544,19 @@ find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
|
|
|
int i;
|
|
|
|
|
|
for_each_cpu_mask(i, group->cpumask) {
|
|
|
+ unsigned long wl;
|
|
|
|
|
|
if (!cpu_isset(i, *cpus))
|
|
|
continue;
|
|
|
|
|
|
rq = cpu_rq(i);
|
|
|
+ wl = weighted_cpuload(i);
|
|
|
|
|
|
- if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
|
|
|
+ if (rq->nr_running == 1 && wl > imbalance)
|
|
|
continue;
|
|
|
|
|
|
- if (rq->raw_weighted_load > max_load) {
|
|
|
- max_load = rq->raw_weighted_load;
|
|
|
+ if (wl > max_load) {
|
|
|
+ max_load = wl;
|
|
|
busiest = rq;
|
|
|
}
|
|
|
}
|
|
@@ -2599,7 +2593,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
|
|
|
/*
|
|
|
* When power savings policy is enabled for the parent domain, idle
|
|
|
* sibling can pick up load irrespective of busy siblings. In this case,
|
|
|
- * let the state of idle sibling percolate up as IDLE, instead of
|
|
|
+ * let the state of idle sibling percolate up as CPU_IDLE, instead of
|
|
|
* portraying it as CPU_NOT_IDLE.
|
|
|
*/
|
|
|
if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
|
|
@@ -2822,8 +2816,8 @@ out_balanced:
|
|
|
static void idle_balance(int this_cpu, struct rq *this_rq)
|
|
|
{
|
|
|
struct sched_domain *sd;
|
|
|
- int pulled_task = 0;
|
|
|
- unsigned long next_balance = jiffies + 60 * HZ;
|
|
|
+ int pulled_task = -1;
|
|
|
+ unsigned long next_balance = jiffies + HZ;
|
|
|
|
|
|
for_each_domain(this_cpu, sd) {
|
|
|
unsigned long interval;
|
|
@@ -2842,12 +2836,13 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
|
|
|
if (pulled_task)
|
|
|
break;
|
|
|
}
|
|
|
- if (!pulled_task)
|
|
|
+ if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
|
|
|
/*
|
|
|
* We are going idle. next_balance may be set based on
|
|
|
* a busy processor. So reset next_balance.
|
|
|
*/
|
|
|
this_rq->next_balance = next_balance;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -2900,32 +2895,6 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
|
|
|
spin_unlock(&target_rq->lock);
|
|
|
}
|
|
|
|
|
|
-static void update_load(struct rq *this_rq)
|
|
|
-{
|
|
|
- unsigned long this_load;
|
|
|
- unsigned int i, scale;
|
|
|
-
|
|
|
- this_load = this_rq->raw_weighted_load;
|
|
|
-
|
|
|
- /* Update our load: */
|
|
|
- for (i = 0, scale = 1; i < 3; i++, scale += scale) {
|
|
|
- unsigned long old_load, new_load;
|
|
|
-
|
|
|
- /* scale is effectively 1 << i now, and >> i divides by scale */
|
|
|
-
|
|
|
- old_load = this_rq->cpu_load[i];
|
|
|
- new_load = this_load;
|
|
|
- /*
|
|
|
- * Round up the averaging division if load is increasing. This
|
|
|
- * prevents us from getting stuck on 9 if the load is 10, for
|
|
|
- * example.
|
|
|
- */
|
|
|
- if (new_load > old_load)
|
|
|
- new_load += scale-1;
|
|
|
- this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
#ifdef CONFIG_NO_HZ
|
|
|
static struct {
|
|
|
atomic_t load_balancer;
|
|
@@ -3029,6 +2998,9 @@ static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
|
|
|
interval = msecs_to_jiffies(interval);
|
|
|
if (unlikely(!interval))
|
|
|
interval = 1;
|
|
|
+ if (interval > HZ*NR_CPUS/10)
|
|
|
+ interval = HZ*NR_CPUS/10;
|
|
|
+
|
|
|
|
|
|
if (sd->flags & SD_SERIALIZE) {
|
|
|
if (!spin_trylock(&balancing))
|
|
@@ -3070,11 +3042,12 @@ out:
|
|
|
*/
|
|
|
static void run_rebalance_domains(struct softirq_action *h)
|
|
|
{
|
|
|
- int local_cpu = smp_processor_id();
|
|
|
- struct rq *local_rq = cpu_rq(local_cpu);
|
|
|
- enum cpu_idle_type idle = local_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE;
|
|
|
+ int this_cpu = smp_processor_id();
|
|
|
+ struct rq *this_rq = cpu_rq(this_cpu);
|
|
|
+ enum cpu_idle_type idle = this_rq->idle_at_tick ?
|
|
|
+ CPU_IDLE : CPU_NOT_IDLE;
|
|
|
|
|
|
- rebalance_domains(local_cpu, idle);
|
|
|
+ rebalance_domains(this_cpu, idle);
|
|
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
|
/*
|
|
@@ -3082,13 +3055,13 @@ static void run_rebalance_domains(struct softirq_action *h)
|
|
|
* balancing on behalf of the other idle cpus whose ticks are
|
|
|
* stopped.
|
|
|
*/
|
|
|
- if (local_rq->idle_at_tick &&
|
|
|
- atomic_read(&nohz.load_balancer) == local_cpu) {
|
|
|
+ if (this_rq->idle_at_tick &&
|
|
|
+ atomic_read(&nohz.load_balancer) == this_cpu) {
|
|
|
cpumask_t cpus = nohz.cpu_mask;
|
|
|
struct rq *rq;
|
|
|
int balance_cpu;
|
|
|
|
|
|
- cpu_clear(local_cpu, cpus);
|
|
|
+ cpu_clear(this_cpu, cpus);
|
|
|
for_each_cpu_mask(balance_cpu, cpus) {
|
|
|
/*
|
|
|
* If this cpu gets work to do, stop the load balancing
|
|
@@ -3098,11 +3071,11 @@ static void run_rebalance_domains(struct softirq_action *h)
|
|
|
if (need_resched())
|
|
|
break;
|
|
|
|
|
|
- rebalance_domains(balance_cpu, CPU_IDLE);
|
|
|
+ rebalance_domains(balance_cpu, SCHED_IDLE);
|
|
|
|
|
|
rq = cpu_rq(balance_cpu);
|
|
|
- if (time_after(local_rq->next_balance, rq->next_balance))
|
|
|
- local_rq->next_balance = rq->next_balance;
|
|
|
+ if (time_after(this_rq->next_balance, rq->next_balance))
|
|
|
+ this_rq->next_balance = rq->next_balance;
|
|
|
}
|
|
|
}
|
|
|
#endif
|
|
@@ -3115,9 +3088,8 @@ static void run_rebalance_domains(struct softirq_action *h)
|
|
|
* idle load balancing owner or decide to stop the periodic load balancing,
|
|
|
* if the whole system is idle.
|
|
|
*/
|
|
|
-static inline void trigger_load_balance(int cpu)
|
|
|
+static inline void trigger_load_balance(struct rq *rq, int cpu)
|
|
|
{
|
|
|
- struct rq *rq = cpu_rq(cpu);
|
|
|
#ifdef CONFIG_NO_HZ
|
|
|
/*
|
|
|
* If we were in the nohz mode recently and busy at the current
|
|
@@ -3169,13 +3141,29 @@ static inline void trigger_load_balance(int cpu)
|
|
|
if (time_after_eq(jiffies, rq->next_balance))
|
|
|
raise_softirq(SCHED_SOFTIRQ);
|
|
|
}
|
|
|
-#else
|
|
|
+
|
|
|
+#else /* CONFIG_SMP */
|
|
|
+
|
|
|
/*
|
|
|
* on UP we do not need to balance between CPUs:
|
|
|
*/
|
|
|
static inline void idle_balance(int cpu, struct rq *rq)
|
|
|
{
|
|
|
}
|
|
|
+
|
|
|
+/* Avoid "used but not defined" warning on UP */
|
|
|
+static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
|
+ unsigned long max_nr_move, unsigned long max_load_move,
|
|
|
+ struct sched_domain *sd, enum cpu_idle_type idle,
|
|
|
+ int *all_pinned, unsigned long *load_moved,
|
|
|
+ int this_best_prio, int best_prio, int best_prio_seen,
|
|
|
+ struct rq_iterator *iterator)
|
|
|
+{
|
|
|
+ *load_moved = 0;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
#endif
|
|
|
|
|
|
DEFINE_PER_CPU(struct kernel_stat, kstat);
|
|
@@ -3277,81 +3265,6 @@ void account_steal_time(struct task_struct *p, cputime_t steal)
|
|
|
cpustat->steal = cputime64_add(cpustat->steal, tmp);
|
|
|
}
|
|
|
|
|
|
-static void task_running_tick(struct rq *rq, struct task_struct *p)
|
|
|
-{
|
|
|
- if (p->array != rq->active) {
|
|
|
- /* Task has expired but was not scheduled yet */
|
|
|
- set_tsk_need_resched(p);
|
|
|
- return;
|
|
|
- }
|
|
|
- spin_lock(&rq->lock);
|
|
|
- /*
|
|
|
- * The task was running during this tick - update the
|
|
|
- * time slice counter. Note: we do not update a thread's
|
|
|
- * priority until it either goes to sleep or uses up its
|
|
|
- * timeslice. This makes it possible for interactive tasks
|
|
|
- * to use up their timeslices at their highest priority levels.
|
|
|
- */
|
|
|
- if (rt_task(p)) {
|
|
|
- /*
|
|
|
- * RR tasks need a special form of timeslice management.
|
|
|
- * FIFO tasks have no timeslices.
|
|
|
- */
|
|
|
- if ((p->policy == SCHED_RR) && !--p->time_slice) {
|
|
|
- p->time_slice = task_timeslice(p);
|
|
|
- p->first_time_slice = 0;
|
|
|
- set_tsk_need_resched(p);
|
|
|
-
|
|
|
- /* put it at the end of the queue: */
|
|
|
- requeue_task(p, rq->active);
|
|
|
- }
|
|
|
- goto out_unlock;
|
|
|
- }
|
|
|
- if (!--p->time_slice) {
|
|
|
- dequeue_task(p, rq->active);
|
|
|
- set_tsk_need_resched(p);
|
|
|
- p->prio = effective_prio(p);
|
|
|
- p->time_slice = task_timeslice(p);
|
|
|
- p->first_time_slice = 0;
|
|
|
-
|
|
|
- if (!rq->expired_timestamp)
|
|
|
- rq->expired_timestamp = jiffies;
|
|
|
- if (!TASK_INTERACTIVE(p)) {
|
|
|
- enqueue_task(p, rq->expired);
|
|
|
- if (p->static_prio < rq->best_expired_prio)
|
|
|
- rq->best_expired_prio = p->static_prio;
|
|
|
- } else
|
|
|
- enqueue_task(p, rq->active);
|
|
|
- } else {
|
|
|
- /*
|
|
|
- * Prevent a too long timeslice allowing a task to monopolize
|
|
|
- * the CPU. We do this by splitting up the timeslice into
|
|
|
- * smaller pieces.
|
|
|
- *
|
|
|
- * Note: this does not mean the task's timeslices expire or
|
|
|
- * get lost in any way, they just might be preempted by
|
|
|
- * another task of equal priority. (one with higher
|
|
|
- * priority would have preempted this task already.) We
|
|
|
- * requeue this task to the end of the list on this priority
|
|
|
- * level, which is in essence a round-robin of tasks with
|
|
|
- * equal priority.
|
|
|
- *
|
|
|
- * This only applies to tasks in the interactive
|
|
|
- * delta range with at least TIMESLICE_GRANULARITY to requeue.
|
|
|
- */
|
|
|
- if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
|
|
|
- p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
|
|
|
- (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
|
|
|
- (p->array == rq->active)) {
|
|
|
-
|
|
|
- requeue_task(p, rq->active);
|
|
|
- set_tsk_need_resched(p);
|
|
|
- }
|
|
|
- }
|
|
|
-out_unlock:
|
|
|
- spin_unlock(&rq->lock);
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* This function gets called by the timer code, with HZ frequency.
|
|
|
* We call it with interrupts disabled.
|
|
@@ -3361,17 +3274,19 @@ out_unlock:
|
|
|
*/
|
|
|
void scheduler_tick(void)
|
|
|
{
|
|
|
- struct task_struct *p = current;
|
|
|
int cpu = smp_processor_id();
|
|
|
- int idle_at_tick = idle_cpu(cpu);
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
+ struct task_struct *curr = rq->curr;
|
|
|
+
|
|
|
+ spin_lock(&rq->lock);
|
|
|
+ if (curr != rq->idle) /* FIXME: needed? */
|
|
|
+ curr->sched_class->task_tick(rq, curr);
|
|
|
+ update_cpu_load(rq);
|
|
|
+ spin_unlock(&rq->lock);
|
|
|
|
|
|
- if (!idle_at_tick)
|
|
|
- task_running_tick(rq, p);
|
|
|
#ifdef CONFIG_SMP
|
|
|
- update_load(rq);
|
|
|
- rq->idle_at_tick = idle_at_tick;
|
|
|
- trigger_load_balance(cpu);
|
|
|
+ rq->idle_at_tick = idle_cpu(cpu);
|
|
|
+ trigger_load_balance(rq, cpu);
|
|
|
#endif
|
|
|
}
|
|
|
|
|
@@ -3414,140 +3329,128 @@ EXPORT_SYMBOL(sub_preempt_count);
|
|
|
#endif
|
|
|
|
|
|
/*
|
|
|
- * schedule() is the main scheduler function.
|
|
|
+ * Print scheduling while atomic bug:
|
|
|
*/
|
|
|
-asmlinkage void __sched schedule(void)
|
|
|
+static noinline void __schedule_bug(struct task_struct *prev)
|
|
|
{
|
|
|
- struct task_struct *prev, *next;
|
|
|
- struct prio_array *array;
|
|
|
- struct list_head *queue;
|
|
|
- unsigned long long now;
|
|
|
- unsigned long run_time;
|
|
|
- int cpu, idx;
|
|
|
- long *switch_count;
|
|
|
- struct rq *rq;
|
|
|
+ printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
|
|
|
+ prev->comm, preempt_count(), prev->pid);
|
|
|
+ debug_show_held_locks(prev);
|
|
|
+ if (irqs_disabled())
|
|
|
+ print_irqtrace_events(prev);
|
|
|
+ dump_stack();
|
|
|
+}
|
|
|
|
|
|
+/*
|
|
|
+ * Various schedule()-time debugging checks and statistics:
|
|
|
+ */
|
|
|
+static inline void schedule_debug(struct task_struct *prev)
|
|
|
+{
|
|
|
/*
|
|
|
* Test if we are atomic. Since do_exit() needs to call into
|
|
|
* schedule() atomically, we ignore that path for now.
|
|
|
* Otherwise, whine if we are scheduling when we should not be.
|
|
|
*/
|
|
|
- if (unlikely(in_atomic() && !current->exit_state)) {
|
|
|
- printk(KERN_ERR "BUG: scheduling while atomic: "
|
|
|
- "%s/0x%08x/%d\n",
|
|
|
- current->comm, preempt_count(), current->pid);
|
|
|
- debug_show_held_locks(current);
|
|
|
- if (irqs_disabled())
|
|
|
- print_irqtrace_events(current);
|
|
|
- dump_stack();
|
|
|
- }
|
|
|
+ if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
|
|
|
+ __schedule_bug(prev);
|
|
|
+
|
|
|
profile_hit(SCHED_PROFILING, __builtin_return_address(0));
|
|
|
|
|
|
-need_resched:
|
|
|
- preempt_disable();
|
|
|
- prev = current;
|
|
|
- release_kernel_lock(prev);
|
|
|
-need_resched_nonpreemptible:
|
|
|
- rq = this_rq();
|
|
|
+ schedstat_inc(this_rq(), sched_cnt);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Pick up the highest-prio task:
|
|
|
+ */
|
|
|
+static inline struct task_struct *
|
|
|
+pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
|
|
|
+{
|
|
|
+ struct sched_class *class;
|
|
|
+ struct task_struct *p;
|
|
|
|
|
|
/*
|
|
|
- * The idle thread is not allowed to schedule!
|
|
|
- * Remove this check after it has been exercised a bit.
|
|
|
+ * Optimization: we know that if all tasks are in
|
|
|
+ * the fair class we can call that function directly:
|
|
|
*/
|
|
|
- if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
|
|
|
- printk(KERN_ERR "bad: scheduling from the idle thread!\n");
|
|
|
- dump_stack();
|
|
|
+ if (likely(rq->nr_running == rq->cfs.nr_running)) {
|
|
|
+ p = fair_sched_class.pick_next_task(rq, now);
|
|
|
+ if (likely(p))
|
|
|
+ return p;
|
|
|
}
|
|
|
|
|
|
- schedstat_inc(rq, sched_cnt);
|
|
|
- now = sched_clock();
|
|
|
- if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
|
|
|
- run_time = now - prev->timestamp;
|
|
|
- if (unlikely((long long)(now - prev->timestamp) < 0))
|
|
|
- run_time = 0;
|
|
|
- } else
|
|
|
- run_time = NS_MAX_SLEEP_AVG;
|
|
|
+ class = sched_class_highest;
|
|
|
+ for ( ; ; ) {
|
|
|
+ p = class->pick_next_task(rq, now);
|
|
|
+ if (p)
|
|
|
+ return p;
|
|
|
+ /*
|
|
|
+ * Will never be NULL as the idle class always
|
|
|
+ * returns a non-NULL p:
|
|
|
+ */
|
|
|
+ class = class->next;
|
|
|
+ }
|
|
|
+}
|
|
|
|
|
|
- /*
|
|
|
- * Tasks charged proportionately less run_time at high sleep_avg to
|
|
|
- * delay them losing their interactive status
|
|
|
- */
|
|
|
- run_time /= (CURRENT_BONUS(prev) ? : 1);
|
|
|
+/*
|
|
|
+ * schedule() is the main scheduler function.
|
|
|
+ */
|
|
|
+asmlinkage void __sched schedule(void)
|
|
|
+{
|
|
|
+ struct task_struct *prev, *next;
|
|
|
+ long *switch_count;
|
|
|
+ struct rq *rq;
|
|
|
+ u64 now;
|
|
|
+ int cpu;
|
|
|
+
|
|
|
+need_resched:
|
|
|
+ preempt_disable();
|
|
|
+ cpu = smp_processor_id();
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
+ rcu_qsctr_inc(cpu);
|
|
|
+ prev = rq->curr;
|
|
|
+ switch_count = &prev->nivcsw;
|
|
|
+
|
|
|
+ release_kernel_lock(prev);
|
|
|
+need_resched_nonpreemptible:
|
|
|
+
|
|
|
+ schedule_debug(prev);
|
|
|
|
|
|
spin_lock_irq(&rq->lock);
|
|
|
+ clear_tsk_need_resched(prev);
|
|
|
|
|
|
- switch_count = &prev->nivcsw;
|
|
|
if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
|
|
|
- switch_count = &prev->nvcsw;
|
|
|
if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
|
|
|
- unlikely(signal_pending(prev))))
|
|
|
+ unlikely(signal_pending(prev)))) {
|
|
|
prev->state = TASK_RUNNING;
|
|
|
- else {
|
|
|
- if (prev->state == TASK_UNINTERRUPTIBLE)
|
|
|
- rq->nr_uninterruptible++;
|
|
|
- deactivate_task(prev, rq);
|
|
|
+ } else {
|
|
|
+ deactivate_task(rq, prev, 1);
|
|
|
}
|
|
|
+ switch_count = &prev->nvcsw;
|
|
|
}
|
|
|
|
|
|
- cpu = smp_processor_id();
|
|
|
- if (unlikely(!rq->nr_running)) {
|
|
|
+ if (unlikely(!rq->nr_running))
|
|
|
idle_balance(cpu, rq);
|
|
|
- if (!rq->nr_running) {
|
|
|
- next = rq->idle;
|
|
|
- rq->expired_timestamp = 0;
|
|
|
- goto switch_tasks;
|
|
|
- }
|
|
|
- }
|
|
|
|
|
|
- array = rq->active;
|
|
|
- if (unlikely(!array->nr_active)) {
|
|
|
- /*
|
|
|
- * Switch the active and expired arrays.
|
|
|
- */
|
|
|
- schedstat_inc(rq, sched_switch);
|
|
|
- rq->active = rq->expired;
|
|
|
- rq->expired = array;
|
|
|
- array = rq->active;
|
|
|
- rq->expired_timestamp = 0;
|
|
|
- rq->best_expired_prio = MAX_PRIO;
|
|
|
- }
|
|
|
-
|
|
|
- idx = sched_find_first_bit(array->bitmap);
|
|
|
- queue = array->queue + idx;
|
|
|
- next = list_entry(queue->next, struct task_struct, run_list);
|
|
|
-
|
|
|
-switch_tasks:
|
|
|
- if (next == rq->idle)
|
|
|
- schedstat_inc(rq, sched_goidle);
|
|
|
- prefetch(next);
|
|
|
- prefetch_stack(next);
|
|
|
- clear_tsk_need_resched(prev);
|
|
|
- rcu_qsctr_inc(task_cpu(prev));
|
|
|
-
|
|
|
- prev->timestamp = prev->last_ran = now;
|
|
|
+ now = __rq_clock(rq);
|
|
|
+ prev->sched_class->put_prev_task(rq, prev, now);
|
|
|
+ next = pick_next_task(rq, prev, now);
|
|
|
|
|
|
sched_info_switch(prev, next);
|
|
|
+
|
|
|
if (likely(prev != next)) {
|
|
|
- next->timestamp = next->last_ran = now;
|
|
|
rq->nr_switches++;
|
|
|
rq->curr = next;
|
|
|
++*switch_count;
|
|
|
|
|
|
- prepare_task_switch(rq, next);
|
|
|
- prev = context_switch(rq, prev, next);
|
|
|
- barrier();
|
|
|
- /*
|
|
|
- * this_rq must be evaluated again because prev may have moved
|
|
|
- * CPUs since it called schedule(), thus the 'rq' on its stack
|
|
|
- * frame will be invalid.
|
|
|
- */
|
|
|
- finish_task_switch(this_rq(), prev);
|
|
|
+ context_switch(rq, prev, next); /* unlocks the rq */
|
|
|
} else
|
|
|
spin_unlock_irq(&rq->lock);
|
|
|
|
|
|
- prev = current;
|
|
|
- if (unlikely(reacquire_kernel_lock(prev) < 0))
|
|
|
+ if (unlikely(reacquire_kernel_lock(current) < 0)) {
|
|
|
+ cpu = smp_processor_id();
|
|
|
+ rq = cpu_rq(cpu);
|
|
|
goto need_resched_nonpreemptible;
|
|
|
+ }
|
|
|
preempt_enable_no_resched();
|
|
|
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
|
|
|
goto need_resched;
|
|
@@ -3959,29 +3862,30 @@ EXPORT_SYMBOL(sleep_on_timeout);
|
|
|
*/
|
|
|
void rt_mutex_setprio(struct task_struct *p, int prio)
|
|
|
{
|
|
|
- struct prio_array *array;
|
|
|
unsigned long flags;
|
|
|
+ int oldprio, on_rq;
|
|
|
struct rq *rq;
|
|
|
- int oldprio;
|
|
|
+ u64 now;
|
|
|
|
|
|
BUG_ON(prio < 0 || prio > MAX_PRIO);
|
|
|
|
|
|
rq = task_rq_lock(p, &flags);
|
|
|
+ now = rq_clock(rq);
|
|
|
|
|
|
oldprio = p->prio;
|
|
|
- array = p->array;
|
|
|
- if (array)
|
|
|
- dequeue_task(p, array);
|
|
|
+ on_rq = p->se.on_rq;
|
|
|
+ if (on_rq)
|
|
|
+ dequeue_task(rq, p, 0, now);
|
|
|
+
|
|
|
+ if (rt_prio(prio))
|
|
|
+ p->sched_class = &rt_sched_class;
|
|
|
+ else
|
|
|
+ p->sched_class = &fair_sched_class;
|
|
|
+
|
|
|
p->prio = prio;
|
|
|
|
|
|
- if (array) {
|
|
|
- /*
|
|
|
- * If changing to an RT priority then queue it
|
|
|
- * in the active array!
|
|
|
- */
|
|
|
- if (rt_task(p))
|
|
|
- array = rq->active;
|
|
|
- enqueue_task(p, array);
|
|
|
+ if (on_rq) {
|
|
|
+ enqueue_task(rq, p, 0, now);
|
|
|
/*
|
|
|
* Reschedule if we are currently running on this runqueue and
|
|
|
* our priority decreased, or if we are not currently running on
|
|
@@ -3990,8 +3894,9 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
|
|
|
if (task_running(rq, p)) {
|
|
|
if (p->prio > oldprio)
|
|
|
resched_task(rq->curr);
|
|
|
- } else if (TASK_PREEMPTS_CURR(p, rq))
|
|
|
- resched_task(rq->curr);
|
|
|
+ } else {
|
|
|
+ check_preempt_curr(rq, p);
|
|
|
+ }
|
|
|
}
|
|
|
task_rq_unlock(rq, &flags);
|
|
|
}
|
|
@@ -4000,10 +3905,10 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
|
|
|
|
|
|
void set_user_nice(struct task_struct *p, long nice)
|
|
|
{
|
|
|
- struct prio_array *array;
|
|
|
- int old_prio, delta;
|
|
|
+ int old_prio, delta, on_rq;
|
|
|
unsigned long flags;
|
|
|
struct rq *rq;
|
|
|
+ u64 now;
|
|
|
|
|
|
if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
|
|
|
return;
|
|
@@ -4012,20 +3917,21 @@ void set_user_nice(struct task_struct *p, long nice)
|
|
|
* the task might be in the middle of scheduling on another CPU.
|
|
|
*/
|
|
|
rq = task_rq_lock(p, &flags);
|
|
|
+ now = rq_clock(rq);
|
|
|
/*
|
|
|
* The RT priorities are set via sched_setscheduler(), but we still
|
|
|
* allow the 'normal' nice value to be set - but as expected
|
|
|
* it wont have any effect on scheduling until the task is
|
|
|
- * not SCHED_NORMAL/SCHED_BATCH:
|
|
|
+ * SCHED_FIFO/SCHED_RR:
|
|
|
*/
|
|
|
if (task_has_rt_policy(p)) {
|
|
|
p->static_prio = NICE_TO_PRIO(nice);
|
|
|
goto out_unlock;
|
|
|
}
|
|
|
- array = p->array;
|
|
|
- if (array) {
|
|
|
- dequeue_task(p, array);
|
|
|
- dec_raw_weighted_load(rq, p);
|
|
|
+ on_rq = p->se.on_rq;
|
|
|
+ if (on_rq) {
|
|
|
+ dequeue_task(rq, p, 0, now);
|
|
|
+ dec_load(rq, p, now);
|
|
|
}
|
|
|
|
|
|
p->static_prio = NICE_TO_PRIO(nice);
|
|
@@ -4034,9 +3940,9 @@ void set_user_nice(struct task_struct *p, long nice)
|
|
|
p->prio = effective_prio(p);
|
|
|
delta = p->prio - old_prio;
|
|
|
|
|
|
- if (array) {
|
|
|
- enqueue_task(p, array);
|
|
|
- inc_raw_weighted_load(rq, p);
|
|
|
+ if (on_rq) {
|
|
|
+ enqueue_task(rq, p, 0, now);
|
|
|
+ inc_load(rq, p, now);
|
|
|
/*
|
|
|
* If the task increased its priority or is running and
|
|
|
* lowered its priority, then reschedule its CPU:
|
|
@@ -4156,11 +4062,24 @@ static inline struct task_struct *find_process_by_pid(pid_t pid)
|
|
|
}
|
|
|
|
|
|
/* Actually do priority change: must hold rq lock. */
|
|
|
-static void __setscheduler(struct task_struct *p, int policy, int prio)
|
|
|
+static void
|
|
|
+__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
|
|
|
{
|
|
|
- BUG_ON(p->array);
|
|
|
+ BUG_ON(p->se.on_rq);
|
|
|
|
|
|
p->policy = policy;
|
|
|
+ switch (p->policy) {
|
|
|
+ case SCHED_NORMAL:
|
|
|
+ case SCHED_BATCH:
|
|
|
+ case SCHED_IDLE:
|
|
|
+ p->sched_class = &fair_sched_class;
|
|
|
+ break;
|
|
|
+ case SCHED_FIFO:
|
|
|
+ case SCHED_RR:
|
|
|
+ p->sched_class = &rt_sched_class;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
p->rt_priority = prio;
|
|
|
p->normal_prio = normal_prio(p);
|
|
|
/* we are holding p->pi_lock already */
|
|
@@ -4179,8 +4098,7 @@ static void __setscheduler(struct task_struct *p, int policy, int prio)
|
|
|
int sched_setscheduler(struct task_struct *p, int policy,
|
|
|
struct sched_param *param)
|
|
|
{
|
|
|
- int retval, oldprio, oldpolicy = -1;
|
|
|
- struct prio_array *array;
|
|
|
+ int retval, oldprio, oldpolicy = -1, on_rq;
|
|
|
unsigned long flags;
|
|
|
struct rq *rq;
|
|
|
|
|
@@ -4191,12 +4109,13 @@ recheck:
|
|
|
if (policy < 0)
|
|
|
policy = oldpolicy = p->policy;
|
|
|
else if (policy != SCHED_FIFO && policy != SCHED_RR &&
|
|
|
- policy != SCHED_NORMAL && policy != SCHED_BATCH)
|
|
|
+ policy != SCHED_NORMAL && policy != SCHED_BATCH &&
|
|
|
+ policy != SCHED_IDLE)
|
|
|
return -EINVAL;
|
|
|
/*
|
|
|
* Valid priorities for SCHED_FIFO and SCHED_RR are
|
|
|
- * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
|
|
|
- * SCHED_BATCH is 0.
|
|
|
+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
|
|
|
+ * SCHED_BATCH and SCHED_IDLE is 0.
|
|
|
*/
|
|
|
if (param->sched_priority < 0 ||
|
|
|
(p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
|
|
@@ -4211,7 +4130,6 @@ recheck:
|
|
|
if (!capable(CAP_SYS_NICE)) {
|
|
|
if (rt_policy(policy)) {
|
|
|
unsigned long rlim_rtprio;
|
|
|
- unsigned long flags;
|
|
|
|
|
|
if (!lock_task_sighand(p, &flags))
|
|
|
return -ESRCH;
|
|
@@ -4227,6 +4145,12 @@ recheck:
|
|
|
param->sched_priority > rlim_rtprio)
|
|
|
return -EPERM;
|
|
|
}
|
|
|
+ /*
|
|
|
+ * Like positive nice levels, dont allow tasks to
|
|
|
+ * move out of SCHED_IDLE either:
|
|
|
+ */
|
|
|
+ if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
|
|
|
+ return -EPERM;
|
|
|
|
|
|
/* can't change other user's priorities */
|
|
|
if ((current->euid != p->euid) &&
|
|
@@ -4254,13 +4178,13 @@ recheck:
|
|
|
spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
goto recheck;
|
|
|
}
|
|
|
- array = p->array;
|
|
|
- if (array)
|
|
|
- deactivate_task(p, rq);
|
|
|
+ on_rq = p->se.on_rq;
|
|
|
+ if (on_rq)
|
|
|
+ deactivate_task(rq, p, 0);
|
|
|
oldprio = p->prio;
|
|
|
- __setscheduler(p, policy, param->sched_priority);
|
|
|
- if (array) {
|
|
|
- __activate_task(p, rq);
|
|
|
+ __setscheduler(rq, p, policy, param->sched_priority);
|
|
|
+ if (on_rq) {
|
|
|
+ activate_task(rq, p, 0);
|
|
|
/*
|
|
|
* Reschedule if we are currently running on this runqueue and
|
|
|
* our priority decreased, or if we are not currently running on
|
|
@@ -4269,8 +4193,9 @@ recheck:
|
|
|
if (task_running(rq, p)) {
|
|
|
if (p->prio > oldprio)
|
|
|
resched_task(rq->curr);
|
|
|
- } else if (TASK_PREEMPTS_CURR(p, rq))
|
|
|
- resched_task(rq->curr);
|
|
|
+ } else {
|
|
|
+ check_preempt_curr(rq, p);
|
|
|
+ }
|
|
|
}
|
|
|
__task_rq_unlock(rq);
|
|
|
spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
@@ -4542,41 +4467,18 @@ asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
|
|
|
/**
|
|
|
* sys_sched_yield - yield the current processor to other threads.
|
|
|
*
|
|
|
- * This function yields the current CPU by moving the calling thread
|
|
|
- * to the expired array. If there are no other threads running on this
|
|
|
- * CPU then this function will return.
|
|
|
+ * This function yields the current CPU to other tasks. If there are no
|
|
|
+ * other threads running on this CPU then this function will return.
|
|
|
*/
|
|
|
asmlinkage long sys_sched_yield(void)
|
|
|
{
|
|
|
struct rq *rq = this_rq_lock();
|
|
|
- struct prio_array *array = current->array, *target = rq->expired;
|
|
|
|
|
|
schedstat_inc(rq, yld_cnt);
|
|
|
- /*
|
|
|
- * We implement yielding by moving the task into the expired
|
|
|
- * queue.
|
|
|
- *
|
|
|
- * (special rule: RT tasks will just roundrobin in the active
|
|
|
- * array.)
|
|
|
- */
|
|
|
- if (rt_task(current))
|
|
|
- target = rq->active;
|
|
|
-
|
|
|
- if (array->nr_active == 1) {
|
|
|
+ if (unlikely(rq->nr_running == 1))
|
|
|
schedstat_inc(rq, yld_act_empty);
|
|
|
- if (!rq->expired->nr_active)
|
|
|
- schedstat_inc(rq, yld_both_empty);
|
|
|
- } else if (!rq->expired->nr_active)
|
|
|
- schedstat_inc(rq, yld_exp_empty);
|
|
|
-
|
|
|
- if (array != target) {
|
|
|
- dequeue_task(current, array);
|
|
|
- enqueue_task(current, target);
|
|
|
- } else
|
|
|
- /*
|
|
|
- * requeue_task is cheaper so perform that if possible.
|
|
|
- */
|
|
|
- requeue_task(current, array);
|
|
|
+ else
|
|
|
+ current->sched_class->yield_task(rq, current);
|
|
|
|
|
|
/*
|
|
|
* Since we are going to call schedule() anyway, there's
|
|
@@ -4727,6 +4629,7 @@ asmlinkage long sys_sched_get_priority_max(int policy)
|
|
|
break;
|
|
|
case SCHED_NORMAL:
|
|
|
case SCHED_BATCH:
|
|
|
+ case SCHED_IDLE:
|
|
|
ret = 0;
|
|
|
break;
|
|
|
}
|
|
@@ -4751,6 +4654,7 @@ asmlinkage long sys_sched_get_priority_min(int policy)
|
|
|
break;
|
|
|
case SCHED_NORMAL:
|
|
|
case SCHED_BATCH:
|
|
|
+ case SCHED_IDLE:
|
|
|
ret = 0;
|
|
|
}
|
|
|
return ret;
|
|
@@ -4785,7 +4689,7 @@ long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
|
|
|
goto out_unlock;
|
|
|
|
|
|
jiffies_to_timespec(p->policy == SCHED_FIFO ?
|
|
|
- 0 : task_timeslice(p), &t);
|
|
|
+ 0 : static_prio_timeslice(p->static_prio), &t);
|
|
|
read_unlock(&tasklist_lock);
|
|
|
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
|
|
|
out_nounlock:
|
|
@@ -4860,6 +4764,9 @@ void show_state_filter(unsigned long state_filter)
|
|
|
|
|
|
touch_all_softlockup_watchdogs();
|
|
|
|
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
|
+ sysrq_sched_debug_show();
|
|
|
+#endif
|
|
|
read_unlock(&tasklist_lock);
|
|
|
/*
|
|
|
* Only show locks if all tasks are dumped:
|
|
@@ -4870,7 +4777,7 @@ void show_state_filter(unsigned long state_filter)
|
|
|
|
|
|
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
|
|
|
{
|
|
|
- /* nothing yet */
|
|
|
+ idle->sched_class = &idle_sched_class;
|
|
|
}
|
|
|
|
|
|
/**
|
|
@@ -4886,12 +4793,12 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
unsigned long flags;
|
|
|
|
|
|
- idle->timestamp = sched_clock();
|
|
|
- idle->array = NULL;
|
|
|
+ __sched_fork(idle);
|
|
|
+ idle->se.exec_start = sched_clock();
|
|
|
+
|
|
|
idle->prio = idle->normal_prio = MAX_PRIO;
|
|
|
- idle->state = TASK_RUNNING;
|
|
|
idle->cpus_allowed = cpumask_of_cpu(cpu);
|
|
|
- set_task_cpu(idle, cpu);
|
|
|
+ __set_task_cpu(idle, cpu);
|
|
|
|
|
|
spin_lock_irqsave(&rq->lock, flags);
|
|
|
rq->curr = rq->idle = idle;
|
|
@@ -4906,6 +4813,10 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
|
|
|
#else
|
|
|
task_thread_info(idle)->preempt_count = 0;
|
|
|
#endif
|
|
|
+ /*
|
|
|
+ * The idle tasks have their own, simple scheduling class:
|
|
|
+ */
|
|
|
+ idle->sched_class = &idle_sched_class;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -4917,6 +4828,28 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
|
|
|
*/
|
|
|
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
|
|
|
|
|
|
+/*
|
|
|
+ * Increase the granularity value when there are more CPUs,
|
|
|
+ * because with more CPUs the 'effective latency' as visible
|
|
|
+ * to users decreases. But the relationship is not linear,
|
|
|
+ * so pick a second-best guess by going with the log2 of the
|
|
|
+ * number of CPUs.
|
|
|
+ *
|
|
|
+ * This idea comes from the SD scheduler of Con Kolivas:
|
|
|
+ */
|
|
|
+static inline void sched_init_granularity(void)
|
|
|
+{
|
|
|
+ unsigned int factor = 1 + ilog2(num_online_cpus());
|
|
|
+ const unsigned long gran_limit = 10000000;
|
|
|
+
|
|
|
+ sysctl_sched_granularity *= factor;
|
|
|
+ if (sysctl_sched_granularity > gran_limit)
|
|
|
+ sysctl_sched_granularity = gran_limit;
|
|
|
+
|
|
|
+ sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
|
|
|
+ sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
|
|
|
+}
|
|
|
+
|
|
|
#ifdef CONFIG_SMP
|
|
|
/*
|
|
|
* This is how migration works:
|
|
@@ -4990,7 +4923,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed);
|
|
|
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
|
|
|
{
|
|
|
struct rq *rq_dest, *rq_src;
|
|
|
- int ret = 0;
|
|
|
+ int ret = 0, on_rq;
|
|
|
|
|
|
if (unlikely(cpu_is_offline(dest_cpu)))
|
|
|
return ret;
|
|
@@ -5006,20 +4939,13 @@ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
|
|
|
if (!cpu_isset(dest_cpu, p->cpus_allowed))
|
|
|
goto out;
|
|
|
|
|
|
+ on_rq = p->se.on_rq;
|
|
|
+ if (on_rq)
|
|
|
+ deactivate_task(rq_src, p, 0);
|
|
|
set_task_cpu(p, dest_cpu);
|
|
|
- if (p->array) {
|
|
|
- /*
|
|
|
- * Sync timestamp with rq_dest's before activating.
|
|
|
- * The same thing could be achieved by doing this step
|
|
|
- * afterwards, and pretending it was a local activate.
|
|
|
- * This way is cleaner and logically correct.
|
|
|
- */
|
|
|
- p->timestamp = p->timestamp - rq_src->most_recent_timestamp
|
|
|
- + rq_dest->most_recent_timestamp;
|
|
|
- deactivate_task(p, rq_src);
|
|
|
- __activate_task(p, rq_dest);
|
|
|
- if (TASK_PREEMPTS_CURR(p, rq_dest))
|
|
|
- resched_task(rq_dest->curr);
|
|
|
+ if (on_rq) {
|
|
|
+ activate_task(rq_dest, p, 0);
|
|
|
+ check_preempt_curr(rq_dest, p);
|
|
|
}
|
|
|
ret = 1;
|
|
|
out:
|
|
@@ -5171,7 +5097,8 @@ static void migrate_live_tasks(int src_cpu)
|
|
|
write_unlock_irq(&tasklist_lock);
|
|
|
}
|
|
|
|
|
|
-/* Schedules idle task to be the next runnable task on current CPU.
|
|
|
+/*
|
|
|
+ * Schedules idle task to be the next runnable task on current CPU.
|
|
|
* It does so by boosting its priority to highest possible and adding it to
|
|
|
* the _front_ of the runqueue. Used by CPU offline code.
|
|
|
*/
|
|
@@ -5191,10 +5118,10 @@ void sched_idle_next(void)
|
|
|
*/
|
|
|
spin_lock_irqsave(&rq->lock, flags);
|
|
|
|
|
|
- __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
|
|
|
+ __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
|
|
|
|
|
|
/* Add idle task to the _front_ of its priority queue: */
|
|
|
- __activate_idle_task(p, rq);
|
|
|
+ activate_idle_task(p, rq);
|
|
|
|
|
|
spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
}
|
|
@@ -5244,16 +5171,15 @@ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
|
|
|
static void migrate_dead_tasks(unsigned int dead_cpu)
|
|
|
{
|
|
|
struct rq *rq = cpu_rq(dead_cpu);
|
|
|
- unsigned int arr, i;
|
|
|
-
|
|
|
- for (arr = 0; arr < 2; arr++) {
|
|
|
- for (i = 0; i < MAX_PRIO; i++) {
|
|
|
- struct list_head *list = &rq->arrays[arr].queue[i];
|
|
|
+ struct task_struct *next;
|
|
|
|
|
|
- while (!list_empty(list))
|
|
|
- migrate_dead(dead_cpu, list_entry(list->next,
|
|
|
- struct task_struct, run_list));
|
|
|
- }
|
|
|
+ for ( ; ; ) {
|
|
|
+ if (!rq->nr_running)
|
|
|
+ break;
|
|
|
+ next = pick_next_task(rq, rq->curr, rq_clock(rq));
|
|
|
+ if (!next)
|
|
|
+ break;
|
|
|
+ migrate_dead(dead_cpu, next);
|
|
|
}
|
|
|
}
|
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
@@ -5277,14 +5203,14 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
|
|
|
|
|
|
case CPU_UP_PREPARE:
|
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
|
- p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
|
|
|
+ p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
|
|
|
if (IS_ERR(p))
|
|
|
return NOTIFY_BAD;
|
|
|
p->flags |= PF_NOFREEZE;
|
|
|
kthread_bind(p, cpu);
|
|
|
/* Must be high prio: stop_machine expects to yield to it. */
|
|
|
rq = task_rq_lock(p, &flags);
|
|
|
- __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
|
|
|
+ __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
|
|
|
task_rq_unlock(rq, &flags);
|
|
|
cpu_rq(cpu)->migration_thread = p;
|
|
|
break;
|
|
@@ -5315,9 +5241,10 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
|
|
|
rq->migration_thread = NULL;
|
|
|
/* Idle task back to normal (off runqueue, low prio) */
|
|
|
rq = task_rq_lock(rq->idle, &flags);
|
|
|
- deactivate_task(rq->idle, rq);
|
|
|
+ deactivate_task(rq, rq->idle, 0);
|
|
|
rq->idle->static_prio = MAX_PRIO;
|
|
|
- __setscheduler(rq->idle, SCHED_NORMAL, 0);
|
|
|
+ __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
|
|
|
+ rq->idle->sched_class = &idle_sched_class;
|
|
|
migrate_dead_tasks(cpu);
|
|
|
task_rq_unlock(rq, &flags);
|
|
|
migrate_nr_uninterruptible(rq);
|
|
@@ -5926,7 +5853,6 @@ static void init_sched_groups_power(int cpu, struct sched_domain *sd)
|
|
|
static int build_sched_domains(const cpumask_t *cpu_map)
|
|
|
{
|
|
|
int i;
|
|
|
- struct sched_domain *sd;
|
|
|
#ifdef CONFIG_NUMA
|
|
|
struct sched_group **sched_group_nodes = NULL;
|
|
|
int sd_allnodes = 0;
|
|
@@ -5934,7 +5860,7 @@ static int build_sched_domains(const cpumask_t *cpu_map)
|
|
|
/*
|
|
|
* Allocate the per-node list of sched groups
|
|
|
*/
|
|
|
- sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
|
|
|
+ sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
|
|
|
GFP_KERNEL);
|
|
|
if (!sched_group_nodes) {
|
|
|
printk(KERN_WARNING "Can not alloc sched group node list\n");
|
|
@@ -5953,8 +5879,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
|
|
|
cpus_and(nodemask, nodemask, *cpu_map);
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
- if (cpus_weight(*cpu_map)
|
|
|
- > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
|
|
|
+ if (cpus_weight(*cpu_map) >
|
|
|
+ SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
|
|
|
sd = &per_cpu(allnodes_domains, i);
|
|
|
*sd = SD_ALLNODES_INIT;
|
|
|
sd->span = *cpu_map;
|
|
@@ -6013,7 +5939,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
|
|
|
if (i != first_cpu(this_sibling_map))
|
|
|
continue;
|
|
|
|
|
|
- init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
|
|
|
+ init_sched_build_groups(this_sibling_map, cpu_map,
|
|
|
+ &cpu_to_cpu_group);
|
|
|
}
|
|
|
#endif
|
|
|
|
|
@@ -6024,11 +5951,11 @@ static int build_sched_domains(const cpumask_t *cpu_map)
|
|
|
cpus_and(this_core_map, this_core_map, *cpu_map);
|
|
|
if (i != first_cpu(this_core_map))
|
|
|
continue;
|
|
|
- init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
|
|
|
+ init_sched_build_groups(this_core_map, cpu_map,
|
|
|
+ &cpu_to_core_group);
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
-
|
|
|
/* Set up physical groups */
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
|
cpumask_t nodemask = node_to_cpumask(i);
|
|
@@ -6043,7 +5970,8 @@ static int build_sched_domains(const cpumask_t *cpu_map)
|
|
|
#ifdef CONFIG_NUMA
|
|
|
/* Set up node groups */
|
|
|
if (sd_allnodes)
|
|
|
- init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
|
|
|
+ init_sched_build_groups(*cpu_map, cpu_map,
|
|
|
+ &cpu_to_allnodes_group);
|
|
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
|
/* Set up node groups */
|
|
@@ -6115,19 +6043,22 @@ static int build_sched_domains(const cpumask_t *cpu_map)
|
|
|
/* Calculate CPU power for physical packages and nodes */
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
|
for_each_cpu_mask(i, *cpu_map) {
|
|
|
- sd = &per_cpu(cpu_domains, i);
|
|
|
+ struct sched_domain *sd = &per_cpu(cpu_domains, i);
|
|
|
+
|
|
|
init_sched_groups_power(i, sd);
|
|
|
}
|
|
|
#endif
|
|
|
#ifdef CONFIG_SCHED_MC
|
|
|
for_each_cpu_mask(i, *cpu_map) {
|
|
|
- sd = &per_cpu(core_domains, i);
|
|
|
+ struct sched_domain *sd = &per_cpu(core_domains, i);
|
|
|
+
|
|
|
init_sched_groups_power(i, sd);
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
for_each_cpu_mask(i, *cpu_map) {
|
|
|
- sd = &per_cpu(phys_domains, i);
|
|
|
+ struct sched_domain *sd = &per_cpu(phys_domains, i);
|
|
|
+
|
|
|
init_sched_groups_power(i, sd);
|
|
|
}
|
|
|
|
|
@@ -6361,10 +6292,12 @@ void __init sched_init_smp(void)
|
|
|
/* Move init over to a non-isolated CPU */
|
|
|
if (set_cpus_allowed(current, non_isolated_cpus) < 0)
|
|
|
BUG();
|
|
|
+ sched_init_granularity();
|
|
|
}
|
|
|
#else
|
|
|
void __init sched_init_smp(void)
|
|
|
{
|
|
|
+ sched_init_granularity();
|
|
|
}
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
|
@@ -6378,28 +6311,51 @@ int in_sched_functions(unsigned long addr)
|
|
|
&& addr < (unsigned long)__sched_text_end);
|
|
|
}
|
|
|
|
|
|
+static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
|
|
|
+{
|
|
|
+ cfs_rq->tasks_timeline = RB_ROOT;
|
|
|
+ cfs_rq->fair_clock = 1;
|
|
|
+#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
+ cfs_rq->rq = rq;
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
void __init sched_init(void)
|
|
|
{
|
|
|
- int i, j, k;
|
|
|
+ u64 now = sched_clock();
|
|
|
int highest_cpu = 0;
|
|
|
+ int i, j;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Link up the scheduling class hierarchy:
|
|
|
+ */
|
|
|
+ rt_sched_class.next = &fair_sched_class;
|
|
|
+ fair_sched_class.next = &idle_sched_class;
|
|
|
+ idle_sched_class.next = NULL;
|
|
|
|
|
|
for_each_possible_cpu(i) {
|
|
|
- struct prio_array *array;
|
|
|
+ struct rt_prio_array *array;
|
|
|
struct rq *rq;
|
|
|
|
|
|
rq = cpu_rq(i);
|
|
|
spin_lock_init(&rq->lock);
|
|
|
lockdep_set_class(&rq->lock, &rq->rq_lock_key);
|
|
|
rq->nr_running = 0;
|
|
|
- rq->active = rq->arrays;
|
|
|
- rq->expired = rq->arrays + 1;
|
|
|
- rq->best_expired_prio = MAX_PRIO;
|
|
|
+ rq->clock = 1;
|
|
|
+ init_cfs_rq(&rq->cfs, rq);
|
|
|
+#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
+ INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
|
|
|
+ list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
|
|
|
+#endif
|
|
|
+ rq->ls.load_update_last = now;
|
|
|
+ rq->ls.load_update_start = now;
|
|
|
|
|
|
+ for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
|
|
|
+ rq->cpu_load[j] = 0;
|
|
|
#ifdef CONFIG_SMP
|
|
|
rq->sd = NULL;
|
|
|
- for (j = 1; j < 3; j++)
|
|
|
- rq->cpu_load[j] = 0;
|
|
|
rq->active_balance = 0;
|
|
|
+ rq->next_balance = jiffies;
|
|
|
rq->push_cpu = 0;
|
|
|
rq->cpu = i;
|
|
|
rq->migration_thread = NULL;
|
|
@@ -6407,16 +6363,14 @@ void __init sched_init(void)
|
|
|
#endif
|
|
|
atomic_set(&rq->nr_iowait, 0);
|
|
|
|
|
|
- for (j = 0; j < 2; j++) {
|
|
|
- array = rq->arrays + j;
|
|
|
- for (k = 0; k < MAX_PRIO; k++) {
|
|
|
- INIT_LIST_HEAD(array->queue + k);
|
|
|
- __clear_bit(k, array->bitmap);
|
|
|
- }
|
|
|
- // delimiter for bitsearch
|
|
|
- __set_bit(MAX_PRIO, array->bitmap);
|
|
|
+ array = &rq->rt.active;
|
|
|
+ for (j = 0; j < MAX_RT_PRIO; j++) {
|
|
|
+ INIT_LIST_HEAD(array->queue + j);
|
|
|
+ __clear_bit(j, array->bitmap);
|
|
|
}
|
|
|
highest_cpu = i;
|
|
|
+ /* delimiter for bitsearch: */
|
|
|
+ __set_bit(MAX_RT_PRIO, array->bitmap);
|
|
|
}
|
|
|
|
|
|
set_load_weight(&init_task);
|
|
@@ -6443,6 +6397,10 @@ void __init sched_init(void)
|
|
|
* when this runqueue becomes "idle".
|
|
|
*/
|
|
|
init_idle(current, smp_processor_id());
|
|
|
+ /*
|
|
|
+ * During early bootup we pretend to be a normal task:
|
|
|
+ */
|
|
|
+ current->sched_class = &fair_sched_class;
|
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
|
|
@@ -6473,29 +6431,55 @@ EXPORT_SYMBOL(__might_sleep);
|
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
|
void normalize_rt_tasks(void)
|
|
|
{
|
|
|
- struct prio_array *array;
|
|
|
struct task_struct *g, *p;
|
|
|
unsigned long flags;
|
|
|
struct rq *rq;
|
|
|
+ int on_rq;
|
|
|
|
|
|
read_lock_irq(&tasklist_lock);
|
|
|
-
|
|
|
do_each_thread(g, p) {
|
|
|
- if (!rt_task(p))
|
|
|
+ p->se.fair_key = 0;
|
|
|
+ p->se.wait_runtime = 0;
|
|
|
+ p->se.wait_start_fair = 0;
|
|
|
+ p->se.wait_start = 0;
|
|
|
+ p->se.exec_start = 0;
|
|
|
+ p->se.sleep_start = 0;
|
|
|
+ p->se.sleep_start_fair = 0;
|
|
|
+ p->se.block_start = 0;
|
|
|
+ task_rq(p)->cfs.fair_clock = 0;
|
|
|
+ task_rq(p)->clock = 0;
|
|
|
+
|
|
|
+ if (!rt_task(p)) {
|
|
|
+ /*
|
|
|
+ * Renice negative nice level userspace
|
|
|
+ * tasks back to 0:
|
|
|
+ */
|
|
|
+ if (TASK_NICE(p) < 0 && p->mm)
|
|
|
+ set_user_nice(p, 0);
|
|
|
continue;
|
|
|
+ }
|
|
|
|
|
|
spin_lock_irqsave(&p->pi_lock, flags);
|
|
|
rq = __task_rq_lock(p);
|
|
|
+#ifdef CONFIG_SMP
|
|
|
+ /*
|
|
|
+ * Do not touch the migration thread:
|
|
|
+ */
|
|
|
+ if (p == rq->migration_thread)
|
|
|
+ goto out_unlock;
|
|
|
+#endif
|
|
|
|
|
|
- array = p->array;
|
|
|
- if (array)
|
|
|
- deactivate_task(p, task_rq(p));
|
|
|
- __setscheduler(p, SCHED_NORMAL, 0);
|
|
|
- if (array) {
|
|
|
- __activate_task(p, task_rq(p));
|
|
|
+ on_rq = p->se.on_rq;
|
|
|
+ if (on_rq)
|
|
|
+ deactivate_task(task_rq(p), p, 0);
|
|
|
+ __setscheduler(rq, p, SCHED_NORMAL, 0);
|
|
|
+ if (on_rq) {
|
|
|
+ activate_task(task_rq(p), p, 0);
|
|
|
resched_task(rq->curr);
|
|
|
}
|
|
|
-
|
|
|
+#ifdef CONFIG_SMP
|
|
|
+ out_unlock:
|
|
|
+#endif
|
|
|
__task_rq_unlock(rq);
|
|
|
spin_unlock_irqrestore(&p->pi_lock, flags);
|
|
|
} while_each_thread(g, p);
|