Browse Source

kernel-hacking: update document

This document is fairly updated. Yet, some stuff moved to
other kernel headers. So, update to point to the right
places.

While here, adjust some minor ReST markups.

Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Mauro Carvalho Chehab 8 years ago
parent
commit
dca1e58e3f
1 changed files with 98 additions and 81 deletions
  1. 98 81
      Documentation/kernel-hacking/hacking.rst

+ 98 - 81
Documentation/kernel-hacking/hacking.rst

@@ -56,7 +56,7 @@ interrupts. You can sleep, by calling :c:func:`schedule()`.
 
 
 In user context, the ``current`` pointer (indicating the task we are
 In user context, the ``current`` pointer (indicating the task we are
 currently executing) is valid, and :c:func:`in_interrupt()`
 currently executing) is valid, and :c:func:`in_interrupt()`
-(``include/linux/interrupt.h``) is false.
+(``include/linux/preempt.h``) is false.
 
 
 .. warning::
 .. warning::
 
 
@@ -114,12 +114,12 @@ time, although different tasklets can run simultaneously.
     Kuznetsov had at the time.
     Kuznetsov had at the time.
 
 
 You can tell you are in a softirq (or tasklet) using the
 You can tell you are in a softirq (or tasklet) using the
-:c:func:`in_softirq()` macro (``include/linux/interrupt.h``).
+:c:func:`in_softirq()` macro (``include/linux/preempt.h``).
 
 
 .. warning::
 .. warning::
 
 
-    Beware that this will return a false positive if a bh lock (see
-    below) is held.
+    Beware that this will return a false positive if a
+    :ref:`botton half lock <local_bh_disable>` is held.
 
 
 Some Basic Rules
 Some Basic Rules
 ================
 ================
@@ -154,9 +154,7 @@ The Linux kernel is portable
 ioctls: Not writing a new system call
 ioctls: Not writing a new system call
 =====================================
 =====================================
 
 
-A system call generally looks like this
-
-::
+A system call generally looks like this::
 
 
     asmlinkage long sys_mycall(int arg)
     asmlinkage long sys_mycall(int arg)
     {
     {
@@ -175,7 +173,9 @@ If all your routine does is read or write some parameter, consider
 implementing a :c:func:`sysfs()` interface instead.
 implementing a :c:func:`sysfs()` interface instead.
 
 
 Inside the ioctl you're in user context to a process. When a error
 Inside the ioctl you're in user context to a process. When a error
-occurs you return a negated errno (see ``include/linux/errno.h``),
+occurs you return a negated errno (see
+``include/uapi/asm-generic/errno-base.h``,
+``include/uapi/asm-generic/errno.h`` and ``include/linux/errno.h``),
 otherwise you return 0.
 otherwise you return 0.
 
 
 After you slept you should check if a signal occurred: the Unix/Linux
 After you slept you should check if a signal occurred: the Unix/Linux
@@ -195,9 +195,7 @@ some data structure.
 If you're doing longer computations: first think userspace. If you
 If you're doing longer computations: first think userspace. If you
 **really** want to do it in kernel you should regularly check if you need
 **really** want to do it in kernel you should regularly check if you need
 to give up the CPU (remember there is cooperative multitasking per CPU).
 to give up the CPU (remember there is cooperative multitasking per CPU).
-Idiom:
-
-::
+Idiom::
 
 
     cond_resched(); /* Will sleep */
     cond_resched(); /* Will sleep */
 
 
@@ -231,26 +229,24 @@ Really.
 Common Routines
 Common Routines
 ===============
 ===============
 
 
-:c:func:`printk()` ``include/linux/kernel.h``
----------------------------------------------
+:c:func:`printk()`
+------------------
+
+Defined in ``include/linux/printk.h``
 
 
 :c:func:`printk()` feeds kernel messages to the console, dmesg, and
 :c:func:`printk()` feeds kernel messages to the console, dmesg, and
 the syslog daemon. It is useful for debugging and reporting errors, and
 the syslog daemon. It is useful for debugging and reporting errors, and
 can be used inside interrupt context, but use with caution: a machine
 can be used inside interrupt context, but use with caution: a machine
 which has its console flooded with printk messages is unusable. It uses
 which has its console flooded with printk messages is unusable. It uses
 a format string mostly compatible with ANSI C printf, and C string
 a format string mostly compatible with ANSI C printf, and C string
-concatenation to give it a first "priority" argument:
-
-::
+concatenation to give it a first "priority" argument::
 
 
     printk(KERN_INFO "i = %u\n", i);
     printk(KERN_INFO "i = %u\n", i);
 
 
 
 
-See ``include/linux/kernel.h``; for other ``KERN_`` values; these are
+See ``include/linux/kern_levels.h``; for other ``KERN_`` values; these are
 interpreted by syslog as the level. Special case: for printing an IP
 interpreted by syslog as the level. Special case: for printing an IP
-address use
-
-::
+address use::
 
 
     __be32 ipaddress;
     __be32 ipaddress;
     printk(KERN_INFO "my ip: %pI4\n", &ipaddress);
     printk(KERN_INFO "my ip: %pI4\n", &ipaddress);
@@ -270,8 +266,10 @@ overruns. Make sure that will be enough.
     on top of its printf function: "Printf should not be used for
     on top of its printf function: "Printf should not be used for
     chit-chat". You should follow that advice.
     chit-chat". You should follow that advice.
 
 
-:c:func:`copy_[to/from]_user()` / :c:func:`get_user()` / :c:func:`put_user()` ``include/linux/uaccess.h``
----------------------------------------------------------------------------------------------------------
+:c:func:`copy_to_user()` / :c:func:`copy_from_user()` / :c:func:`get_user()` / :c:func:`put_user()`
+---------------------------------------------------------------------------------------------------
+
+Defined in ``include/linux/uaccess.h`` / ``asm/uaccess.h``
 
 
 **[SLEEPS]**
 **[SLEEPS]**
 
 
@@ -297,8 +295,10 @@ The functions may sleep implicitly. This should never be called outside
 user context (it makes no sense), with interrupts disabled, or a
 user context (it makes no sense), with interrupts disabled, or a
 spinlock held.
 spinlock held.
 
 
-:c:func:`kmalloc()`/:c:func:`kfree()` ``include/linux/slab.h``
---------------------------------------------------------------
+:c:func:`kmalloc()`/:c:func:`kfree()`
+-------------------------------------
+
+Defined in ``include/linux/slab.h``
 
 
 **[MAY SLEEP: SEE BELOW]**
 **[MAY SLEEP: SEE BELOW]**
 
 
@@ -324,9 +324,9 @@ message, then maybe you called a sleeping allocation function from
 interrupt context without ``GFP_ATOMIC``. You should really fix that.
 interrupt context without ``GFP_ATOMIC``. You should really fix that.
 Run, don't walk.
 Run, don't walk.
 
 
-If you are allocating at least ``PAGE_SIZE`` (``include/asm/page.h``)
-bytes, consider using :c:func:`__get_free_pages()`
-(``include/linux/mm.h``). It takes an order argument (0 for page sized,
+If you are allocating at least ``PAGE_SIZE`` (``asm/page.h`` or
+``asm/page_types.h``) bytes, consider using :c:func:`__get_free_pages()`
+(``include/linux/gfp.h``). It takes an order argument (0 for page sized,
 1 for double page, 2 for four pages etc.) and the same memory priority
 1 for double page, 2 for four pages etc.) and the same memory priority
 flag word as above.
 flag word as above.
 
 
@@ -344,24 +344,30 @@ routine.
 Before inventing your own cache of often-used objects consider using a
 Before inventing your own cache of often-used objects consider using a
 slab cache in ``include/linux/slab.h``
 slab cache in ``include/linux/slab.h``
 
 
-:c:func:`current()` ``include/asm/current.h``
----------------------------------------------
+:c:func:`current()`
+-------------------
+
+Defined in ``include/asm/current.h``
 
 
 This global variable (really a macro) contains a pointer to the current
 This global variable (really a macro) contains a pointer to the current
 task structure, so is only valid in user context. For example, when a
 task structure, so is only valid in user context. For example, when a
 process makes a system call, this will point to the task structure of
 process makes a system call, this will point to the task structure of
 the calling process. It is **not NULL** in interrupt context.
 the calling process. It is **not NULL** in interrupt context.
 
 
-:c:func:`mdelay()`/:c:func:`udelay()` ``include/asm/delay.h`` ``include/linux/delay.h``
----------------------------------------------------------------------------------------
+:c:func:`mdelay()`/:c:func:`udelay()`
+-------------------------------------
+
+Defined in ``include/asm/delay.h`` / ``include/linux/delay.h``
 
 
 The :c:func:`udelay()` and :c:func:`ndelay()` functions can be
 The :c:func:`udelay()` and :c:func:`ndelay()` functions can be
 used for small pauses. Do not use large values with them as you risk
 used for small pauses. Do not use large values with them as you risk
 overflow - the helper function :c:func:`mdelay()` is useful here, or
 overflow - the helper function :c:func:`mdelay()` is useful here, or
 consider :c:func:`msleep()`.
 consider :c:func:`msleep()`.
 
 
-:c:func:`cpu_to_be32()`/:c:func:`be32_to_cpu()`/:c:func:`cpu_to_le32()`/:c:func:`le32_to_cpu()` ``include/asm/byteorder.h``
----------------------------------------------------------------------------------------------------------------------------
+:c:func:`cpu_to_be32()`/:c:func:`be32_to_cpu()`/:c:func:`cpu_to_le32()`/:c:func:`le32_to_cpu()`
+-----------------------------------------------------------------------------------------------
+
+Defined in ``include/asm/byteorder.h``
 
 
 The :c:func:`cpu_to_be32()` family (where the "32" can be replaced
 The :c:func:`cpu_to_be32()` family (where the "32" can be replaced
 by 64 or 16, and the "be" can be replaced by "le") are the general way
 by 64 or 16, and the "be" can be replaced by "le") are the general way
@@ -375,8 +381,10 @@ to the given type, and return the converted value. The other variation
 is the "in-situ" family, such as :c:func:`cpu_to_be32s()`, which
 is the "in-situ" family, such as :c:func:`cpu_to_be32s()`, which
 convert value referred to by the pointer, and return void.
 convert value referred to by the pointer, and return void.
 
 
-:c:func:`local_irq_save()`/:c:func:`local_irq_restore()` ``include/linux/irqflags.h``
--------------------------------------------------------------------------------------
+:c:func:`local_irq_save()`/:c:func:`local_irq_restore()`
+--------------------------------------------------------
+
+Defined in ``include/linux/irqflags.h``
 
 
 These routines disable hard interrupts on the local CPU, and restore
 These routines disable hard interrupts on the local CPU, and restore
 them. They are reentrant; saving the previous state in their one
 them. They are reentrant; saving the previous state in their one
@@ -384,16 +392,23 @@ them. They are reentrant; saving the previous state in their one
 enabled, you can simply use :c:func:`local_irq_disable()` and
 enabled, you can simply use :c:func:`local_irq_disable()` and
 :c:func:`local_irq_enable()`.
 :c:func:`local_irq_enable()`.
 
 
-:c:func:`local_bh_disable()`/:c:func:`local_bh_enable()` ``include/linux/interrupt.h``
---------------------------------------------------------------------------------------
+.. _local_bh_disable:
+
+:c:func:`local_bh_disable()`/:c:func:`local_bh_enable()`
+--------------------------------------------------------
+
+Defined in ``include/linux/bottom_half.h``
+
 
 
 These routines disable soft interrupts on the local CPU, and restore
 These routines disable soft interrupts on the local CPU, and restore
 them. They are reentrant; if soft interrupts were disabled before, they
 them. They are reentrant; if soft interrupts were disabled before, they
 will still be disabled after this pair of functions has been called.
 will still be disabled after this pair of functions has been called.
 They prevent softirqs and tasklets from running on the current CPU.
 They prevent softirqs and tasklets from running on the current CPU.
 
 
-:c:func:`smp_processor_id()`() ``include/asm/smp.h``
-----------------------------------------------------
+:c:func:`smp_processor_id()`
+----------------------------
+
+Defined in ``include/linux/smp.h``
 
 
 :c:func:`get_cpu()` disables preemption (so you won't suddenly get
 :c:func:`get_cpu()` disables preemption (so you won't suddenly get
 moved to another CPU) and returns the current processor number, between
 moved to another CPU) and returns the current processor number, between
@@ -405,8 +420,10 @@ If you know you cannot be preempted by another task (ie. you are in
 interrupt context, or have preemption disabled) you can use
 interrupt context, or have preemption disabled) you can use
 smp_processor_id().
 smp_processor_id().
 
 
-``__init``/``__exit``/``__initdata`` ``include/linux/init.h``
--------------------------------------------------------------
+``__init``/``__exit``/``__initdata``
+------------------------------------
+
+Defined in  ``include/linux/init.h``
 
 
 After boot, the kernel frees up a special section; functions marked with
 After boot, the kernel frees up a special section; functions marked with
 ``__init`` and data structures marked with ``__initdata`` are dropped
 ``__init`` and data structures marked with ``__initdata`` are dropped
@@ -415,10 +432,13 @@ initialization. ``__exit`` is used to declare a function which is only
 required on exit: the function will be dropped if this file is not
 required on exit: the function will be dropped if this file is not
 compiled as a module. See the header file for use. Note that it makes no
 compiled as a module. See the header file for use. Note that it makes no
 sense for a function marked with ``__init`` to be exported to modules
 sense for a function marked with ``__init`` to be exported to modules
-with :c:func:`EXPORT_SYMBOL()` - this will break.
+with :c:func:`EXPORT_SYMBOL()` or :c:func:`EXPORT_SYMBOL_GPL()`- this
+will break.
+
+:c:func:`__initcall()`/:c:func:`module_init()`
+----------------------------------------------
 
 
-:c:func:`__initcall()`/:c:func:`module_init()` ``include/linux/init.h``
------------------------------------------------------------------------
+Defined in  ``include/linux/init.h`` / ``include/linux/module.h``
 
 
 Many parts of the kernel are well served as a module
 Many parts of the kernel are well served as a module
 (dynamically-loadable parts of the kernel). Using the
 (dynamically-loadable parts of the kernel). Using the
@@ -438,8 +458,11 @@ to fail (unfortunately, this has no effect if the module is compiled
 into the kernel). This function is called in user context with
 into the kernel). This function is called in user context with
 interrupts enabled, so it can sleep.
 interrupts enabled, so it can sleep.
 
 
-:c:func:`module_exit()` ``include/linux/init.h``
-------------------------------------------------
+:c:func:`module_exit()`
+-----------------------
+
+
+Defined in  ``include/linux/module.h``
 
 
 This macro defines the function to be called at module removal time (or
 This macro defines the function to be called at module removal time (or
 never, in the case of the file compiled into the kernel). It will only
 never, in the case of the file compiled into the kernel). It will only
@@ -450,8 +473,10 @@ it returns.
 Note that this macro is optional: if it is not present, your module will
 Note that this macro is optional: if it is not present, your module will
 not be removable (except for 'rmmod -f').
 not be removable (except for 'rmmod -f').
 
 
-:c:func:`try_module_get()`/:c:func:`module_put()` ``include/linux/module.h``
-----------------------------------------------------------------------------
+:c:func:`try_module_get()`/:c:func:`module_put()`
+-------------------------------------------------
+
+Defined in ``include/linux/module.h``
 
 
 These manipulate the module usage count, to protect against removal (a
 These manipulate the module usage count, to protect against removal (a
 module also can't be removed if another module uses one of its exported
 module also can't be removed if another module uses one of its exported
@@ -472,8 +497,8 @@ Wait Queues ``include/linux/wait.h``
 
 
 A wait queue is used to wait for someone to wake you up when a certain
 A wait queue is used to wait for someone to wake you up when a certain
 condition is true. They must be used carefully to ensure there is no
 condition is true. They must be used carefully to ensure there is no
-race condition. You declare a ``wait_queue_head_t``, and then processes
-which want to wait for that condition declare a ``wait_queue_t``
+race condition. You declare a :c:type:`wait_queue_head_t`, and then processes
+which want to wait for that condition declare a :c:type:`wait_queue_t`
 referring to themselves, and place that in the queue.
 referring to themselves, and place that in the queue.
 
 
 Declaring
 Declaring
@@ -490,15 +515,15 @@ Queuing
 Placing yourself in the waitqueue is fairly complex, because you must
 Placing yourself in the waitqueue is fairly complex, because you must
 put yourself in the queue before checking the condition. There is a
 put yourself in the queue before checking the condition. There is a
 macro to do this: :c:func:`wait_event_interruptible()`
 macro to do this: :c:func:`wait_event_interruptible()`
-``include/linux/wait.h`` The first argument is the wait queue head, and
+(``include/linux/wait.h``) The first argument is the wait queue head, and
 the second is an expression which is evaluated; the macro returns 0 when
 the second is an expression which is evaluated; the macro returns 0 when
-this expression is true, or -ERESTARTSYS if a signal is received. The
+this expression is true, or ``-ERESTARTSYS`` if a signal is received. The
 :c:func:`wait_event()` version ignores signals.
 :c:func:`wait_event()` version ignores signals.
 
 
 Waking Up Queued Tasks
 Waking Up Queued Tasks
 ----------------------
 ----------------------
 
 
-Call :c:func:`wake_up()` ``include/linux/wait.h``;, which will wake
+Call :c:func:`wake_up()` (``include/linux/wait.h``);, which will wake
 up every process in the queue. The exception is if one has
 up every process in the queue. The exception is if one has
 ``TASK_EXCLUSIVE`` set, in which case the remainder of the queue will
 ``TASK_EXCLUSIVE`` set, in which case the remainder of the queue will
 not be woken. There are other variants of this basic function available
 not be woken. There are other variants of this basic function available
@@ -508,9 +533,9 @@ Atomic Operations
 =================
 =================
 
 
 Certain operations are guaranteed atomic on all platforms. The first
 Certain operations are guaranteed atomic on all platforms. The first
-class of operations work on ``atomic_t`` ``include/asm/atomic.h``; this
-contains a signed integer (at least 32 bits long), and you must use
-these functions to manipulate or read atomic_t variables.
+class of operations work on :c:type:`atomic_t` (``include/asm/atomic.h``);
+this contains a signed integer (at least 32 bits long), and you must use
+these functions to manipulate or read :c:type:`atomic_t` variables.
 :c:func:`atomic_read()` and :c:func:`atomic_set()` get and set
 :c:func:`atomic_read()` and :c:func:`atomic_set()` get and set
 the counter, :c:func:`atomic_add()`, :c:func:`atomic_sub()`,
 the counter, :c:func:`atomic_add()`, :c:func:`atomic_sub()`,
 :c:func:`atomic_inc()`, :c:func:`atomic_dec()`, and
 :c:func:`atomic_inc()`, :c:func:`atomic_dec()`, and
@@ -534,7 +559,7 @@ true if the bit was previously set; these are particularly useful for
 atomically setting flags.
 atomically setting flags.
 
 
 It is possible to call these operations with bit indices greater than
 It is possible to call these operations with bit indices greater than
-BITS_PER_LONG. The resulting behavior is strange on big-endian
+``BITS_PER_LONG``. The resulting behavior is strange on big-endian
 platforms though so it is a good idea not to do this.
 platforms though so it is a good idea not to do this.
 
 
 Symbols
 Symbols
@@ -546,14 +571,18 @@ be used anywhere in the kernel). However, for modules, a special
 exported symbol table is kept which limits the entry points to the
 exported symbol table is kept which limits the entry points to the
 kernel proper. Modules can also export symbols.
 kernel proper. Modules can also export symbols.
 
 
-:c:func:`EXPORT_SYMBOL()` ``include/linux/export.h``
-----------------------------------------------------
+:c:func:`EXPORT_SYMBOL()`
+-------------------------
+
+Defined in ``include/linux/export.h``
 
 
 This is the classic method of exporting a symbol: dynamically loaded
 This is the classic method of exporting a symbol: dynamically loaded
 modules will be able to use the symbol as normal.
 modules will be able to use the symbol as normal.
 
 
-:c:func:`EXPORT_SYMBOL_GPL()` ``include/linux/export.h``
---------------------------------------------------------
+:c:func:`EXPORT_SYMBOL_GPL()`
+-----------------------------
+
+Defined in ``include/linux/export.h``
 
 
 Similar to :c:func:`EXPORT_SYMBOL()` except that the symbols
 Similar to :c:func:`EXPORT_SYMBOL()` except that the symbols
 exported by :c:func:`EXPORT_SYMBOL_GPL()` can only be seen by
 exported by :c:func:`EXPORT_SYMBOL_GPL()` can only be seen by
@@ -579,11 +608,11 @@ Return Conventions
 ------------------
 ------------------
 
 
 For code called in user context, it's very common to defy C convention,
 For code called in user context, it's very common to defy C convention,
-and return 0 for success, and a negative error number (eg. -EFAULT) for
+and return 0 for success, and a negative error number (eg. ``-EFAULT``) for
 failure. This can be unintuitive at first, but it's fairly widespread in
 failure. This can be unintuitive at first, but it's fairly widespread in
 the kernel.
 the kernel.
 
 
-Using :c:func:`ERR_PTR()` ``include/linux/err.h``; to encode a
+Using :c:func:`ERR_PTR()` (``include/linux/err.h``) to encode a
 negative error number into a pointer, and :c:func:`IS_ERR()` and
 negative error number into a pointer, and :c:func:`IS_ERR()` and
 :c:func:`PTR_ERR()` to get it back out again: avoids a separate
 :c:func:`PTR_ERR()` to get it back out again: avoids a separate
 pointer parameter for the error number. Icky, but in a good way.
 pointer parameter for the error number. Icky, but in a good way.
@@ -603,9 +632,7 @@ Initializing structure members
 ------------------------------
 ------------------------------
 
 
 The preferred method of initializing structures is to use designated
 The preferred method of initializing structures is to use designated
-initialisers, as defined by ISO C99, eg:
-
-::
+initialisers, as defined by ISO C99, eg::
 
 
     static struct block_device_operations opt_fops = {
     static struct block_device_operations opt_fops = {
             .open               = opt_open,
             .open               = opt_open,
@@ -716,18 +743,14 @@ Kernel Cantrips
 
 
 Some favorites from browsing the source. Feel free to add to this list.
 Some favorites from browsing the source. Feel free to add to this list.
 
 
-``arch/x86/include/asm/delay.h:``
-
-::
+``arch/x86/include/asm/delay.h``::
 
 
     #define ndelay(n) (__builtin_constant_p(n) ? \
     #define ndelay(n) (__builtin_constant_p(n) ? \
             ((n) > 20000 ? __bad_ndelay() : __const_udelay((n) * 5ul)) : \
             ((n) > 20000 ? __bad_ndelay() : __const_udelay((n) * 5ul)) : \
             __ndelay(n))
             __ndelay(n))
 
 
 
 
-``include/linux/fs.h``:
-
-::
+``include/linux/fs.h``::
 
 
     /*
     /*
      * Kernel pointers have redundant information, so we can use a
      * Kernel pointers have redundant information, so we can use a
@@ -741,9 +764,7 @@ Some favorites from browsing the source. Feel free to add to this list.
      #define PTR_ERR(ptr)    ((long)(ptr))
      #define PTR_ERR(ptr)    ((long)(ptr))
      #define IS_ERR(ptr)     ((unsigned long)(ptr) > (unsigned long)(-1000))
      #define IS_ERR(ptr)     ((unsigned long)(ptr) > (unsigned long)(-1000))
 
 
-``arch/x86/include/asm/uaccess_32.h:``
-
-::
+``arch/x86/include/asm/uaccess_32.h:``::
 
 
     #define copy_to_user(to,from,n)                         \
     #define copy_to_user(to,from,n)                         \
             (__builtin_constant_p(n) ?                      \
             (__builtin_constant_p(n) ?                      \
@@ -751,9 +772,7 @@ Some favorites from browsing the source. Feel free to add to this list.
              __generic_copy_to_user((to),(from),(n)))
              __generic_copy_to_user((to),(from),(n)))
 
 
 
 
-``arch/sparc/kernel/head.S:``
-
-::
+``arch/sparc/kernel/head.S:``::
 
 
     /*
     /*
      * Sun people can't spell worth damn. "compatability" indeed.
      * Sun people can't spell worth damn. "compatability" indeed.
@@ -772,9 +791,7 @@ Some favorites from browsing the source. Feel free to add to this list.
             .asciz "compatible"
             .asciz "compatible"
 
 
 
 
-``arch/sparc/lib/checksum.S:``
-
-::
+``arch/sparc/lib/checksum.S:``::
 
 
             /* Sun, you just can't beat me, you just can't.  Stop trying,
             /* Sun, you just can't beat me, you just can't.  Stop trying,
              * give up.  I'm serious, I am going to kick the living shit
              * give up.  I'm serious, I am going to kick the living shit