|
@@ -347,56 +347,31 @@ subsys_initcall(efisubsys_init);
|
|
|
|
|
|
/*
|
|
|
* Find the efi memory descriptor for a given physical address. Given a
|
|
|
- * physicall address, determine if it exists within an EFI Memory Map entry,
|
|
|
+ * physical address, determine if it exists within an EFI Memory Map entry,
|
|
|
* and if so, populate the supplied memory descriptor with the appropriate
|
|
|
* data.
|
|
|
*/
|
|
|
int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
|
|
|
{
|
|
|
- struct efi_memory_map *map = &efi.memmap;
|
|
|
- phys_addr_t p, e;
|
|
|
+ efi_memory_desc_t *md;
|
|
|
|
|
|
if (!efi_enabled(EFI_MEMMAP)) {
|
|
|
pr_err_once("EFI_MEMMAP is not enabled.\n");
|
|
|
return -EINVAL;
|
|
|
}
|
|
|
|
|
|
- if (!map) {
|
|
|
- pr_err_once("efi.memmap is not set.\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
if (!out_md) {
|
|
|
pr_err_once("out_md is null.\n");
|
|
|
return -EINVAL;
|
|
|
}
|
|
|
- if (WARN_ON_ONCE(!map->phys_map))
|
|
|
- return -EINVAL;
|
|
|
- if (WARN_ON_ONCE(map->nr_map == 0) || WARN_ON_ONCE(map->desc_size == 0))
|
|
|
- return -EINVAL;
|
|
|
|
|
|
- e = map->phys_map + map->nr_map * map->desc_size;
|
|
|
- for (p = map->phys_map; p < e; p += map->desc_size) {
|
|
|
- efi_memory_desc_t *md;
|
|
|
+ for_each_efi_memory_desc(md) {
|
|
|
u64 size;
|
|
|
u64 end;
|
|
|
|
|
|
- /*
|
|
|
- * If a driver calls this after efi_free_boot_services,
|
|
|
- * ->map will be NULL, and the target may also not be mapped.
|
|
|
- * So just always get our own virtual map on the CPU.
|
|
|
- *
|
|
|
- */
|
|
|
- md = early_memremap(p, sizeof (*md));
|
|
|
- if (!md) {
|
|
|
- pr_err_once("early_memremap(%pa, %zu) failed.\n",
|
|
|
- &p, sizeof (*md));
|
|
|
- return -ENOMEM;
|
|
|
- }
|
|
|
-
|
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
|
|
|
md->type != EFI_BOOT_SERVICES_DATA &&
|
|
|
md->type != EFI_RUNTIME_SERVICES_DATA) {
|
|
|
- early_memunmap(md, sizeof (*md));
|
|
|
continue;
|
|
|
}
|
|
|
|
|
@@ -404,11 +379,8 @@ int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
|
|
|
end = md->phys_addr + size;
|
|
|
if (phys_addr >= md->phys_addr && phys_addr < end) {
|
|
|
memcpy(out_md, md, sizeof(*out_md));
|
|
|
- early_memunmap(md, sizeof (*md));
|
|
|
return 0;
|
|
|
}
|
|
|
-
|
|
|
- early_memunmap(md, sizeof (*md));
|
|
|
}
|
|
|
pr_err_once("requested map not found.\n");
|
|
|
return -ENOENT;
|
|
@@ -545,32 +517,49 @@ int __init efi_config_init(efi_config_table_type_t *arch_tables)
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
- * efi_memmap_init_early - Map the EFI memory map data structure
|
|
|
+ * __efi_memmap_init - Common code for mapping the EFI memory map
|
|
|
* @data: EFI memory map data
|
|
|
+ * @late: Use early or late mapping function?
|
|
|
*
|
|
|
- * Use early_memremap() to map the passed in EFI memory map and assign
|
|
|
- * it to efi.memmap.
|
|
|
+ * This function takes care of figuring out which function to use to
|
|
|
+ * map the EFI memory map in efi.memmap based on how far into the boot
|
|
|
+ * we are.
|
|
|
+ *
|
|
|
+ * During bootup @late should be %false since we only have access to
|
|
|
+ * the early_memremap*() functions as the vmalloc space isn't setup.
|
|
|
+ * Once the kernel is fully booted we can fallback to the more robust
|
|
|
+ * memremap*() API.
|
|
|
+ *
|
|
|
+ * Returns zero on success, a negative error code on failure.
|
|
|
*/
|
|
|
-int __init efi_memmap_init_early(struct efi_memory_map_data *data)
|
|
|
+static int __init
|
|
|
+__efi_memmap_init(struct efi_memory_map_data *data, bool late)
|
|
|
{
|
|
|
struct efi_memory_map map;
|
|
|
+ phys_addr_t phys_map;
|
|
|
|
|
|
if (efi_enabled(EFI_PARAVIRT))
|
|
|
return 0;
|
|
|
|
|
|
- map.phys_map = data->phys_map;
|
|
|
+ phys_map = data->phys_map;
|
|
|
+
|
|
|
+ if (late)
|
|
|
+ map.map = memremap(phys_map, data->size, MEMREMAP_WB);
|
|
|
+ else
|
|
|
+ map.map = early_memremap(phys_map, data->size);
|
|
|
|
|
|
- map.map = early_memremap(data->phys_map, data->size);
|
|
|
if (!map.map) {
|
|
|
pr_err("Could not map the memory map!\n");
|
|
|
return -ENOMEM;
|
|
|
}
|
|
|
|
|
|
+ map.phys_map = data->phys_map;
|
|
|
map.nr_map = data->size / data->desc_size;
|
|
|
map.map_end = map.map + data->size;
|
|
|
|
|
|
map.desc_version = data->desc_version;
|
|
|
map.desc_size = data->desc_size;
|
|
|
+ map.late = late;
|
|
|
|
|
|
set_bit(EFI_MEMMAP, &efi.flags);
|
|
|
|
|
@@ -579,17 +568,83 @@ int __init efi_memmap_init_early(struct efi_memory_map_data *data)
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+/**
|
|
|
+ * efi_memmap_init_early - Map the EFI memory map data structure
|
|
|
+ * @data: EFI memory map data
|
|
|
+ *
|
|
|
+ * Use early_memremap() to map the passed in EFI memory map and assign
|
|
|
+ * it to efi.memmap.
|
|
|
+ */
|
|
|
+int __init efi_memmap_init_early(struct efi_memory_map_data *data)
|
|
|
+{
|
|
|
+ /* Cannot go backwards */
|
|
|
+ WARN_ON(efi.memmap.late);
|
|
|
+
|
|
|
+ return __efi_memmap_init(data, false);
|
|
|
+}
|
|
|
+
|
|
|
void __init efi_memmap_unmap(void)
|
|
|
{
|
|
|
- unsigned long size;
|
|
|
+ if (!efi.memmap.late) {
|
|
|
+ unsigned long size;
|
|
|
|
|
|
- size = efi.memmap.desc_size * efi.memmap.nr_map;
|
|
|
+ size = efi.memmap.desc_size * efi.memmap.nr_map;
|
|
|
+ early_memunmap(efi.memmap.map, size);
|
|
|
+ } else {
|
|
|
+ memunmap(efi.memmap.map);
|
|
|
+ }
|
|
|
|
|
|
- early_memunmap(efi.memmap.map, size);
|
|
|
efi.memmap.map = NULL;
|
|
|
clear_bit(EFI_MEMMAP, &efi.flags);
|
|
|
}
|
|
|
|
|
|
+/**
|
|
|
+ * efi_memmap_init_late - Map efi.memmap with memremap()
|
|
|
+ * @phys_addr: Physical address of the new EFI memory map
|
|
|
+ * @size: Size in bytes of the new EFI memory map
|
|
|
+ *
|
|
|
+ * Setup a mapping of the EFI memory map using ioremap_cache(). This
|
|
|
+ * function should only be called once the vmalloc space has been
|
|
|
+ * setup and is therefore not suitable for calling during early EFI
|
|
|
+ * initialise, e.g. in efi_init(). Additionally, it expects
|
|
|
+ * efi_memmap_init_early() to have already been called.
|
|
|
+ *
|
|
|
+ * The reason there are two EFI memmap initialisation
|
|
|
+ * (efi_memmap_init_early() and this late version) is because the
|
|
|
+ * early EFI memmap should be explicitly unmapped once EFI
|
|
|
+ * initialisation is complete as the fixmap space used to map the EFI
|
|
|
+ * memmap (via early_memremap()) is a scarce resource.
|
|
|
+ *
|
|
|
+ * This late mapping is intended to persist for the duration of
|
|
|
+ * runtime so that things like efi_mem_desc_lookup() and
|
|
|
+ * efi_mem_attributes() always work.
|
|
|
+ *
|
|
|
+ * Returns zero on success, a negative error code on failure.
|
|
|
+ */
|
|
|
+int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
|
|
|
+{
|
|
|
+ struct efi_memory_map_data data = {
|
|
|
+ .phys_map = addr,
|
|
|
+ .size = size,
|
|
|
+ };
|
|
|
+
|
|
|
+ /* Did we forget to unmap the early EFI memmap? */
|
|
|
+ WARN_ON(efi.memmap.map);
|
|
|
+
|
|
|
+ /* Were we already called? */
|
|
|
+ WARN_ON(efi.memmap.late);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * It makes no sense to allow callers to register different
|
|
|
+ * values for the following fields. Copy them out of the
|
|
|
+ * existing early EFI memmap.
|
|
|
+ */
|
|
|
+ data.desc_version = efi.memmap.desc_version;
|
|
|
+ data.desc_size = efi.memmap.desc_size;
|
|
|
+
|
|
|
+ return __efi_memmap_init(&data, true);
|
|
|
+}
|
|
|
+
|
|
|
#ifdef CONFIG_EFI_VARS_MODULE
|
|
|
static int __init efi_load_efivars(void)
|
|
|
{
|