|
@@ -1,6 +1,10 @@
|
|
|
/*
|
|
|
- * Modified to interface to the Linux kernel
|
|
|
+ * VMAC: Message Authentication Code using Universal Hashing
|
|
|
+ *
|
|
|
+ * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
|
|
|
+ *
|
|
|
* Copyright (c) 2009, Intel Corporation.
|
|
|
+ * Copyright (c) 2018, Google Inc.
|
|
|
*
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
* under the terms and conditions of the GNU General Public License,
|
|
@@ -16,14 +20,15 @@
|
|
|
* Place - Suite 330, Boston, MA 02111-1307 USA.
|
|
|
*/
|
|
|
|
|
|
-/* --------------------------------------------------------------------------
|
|
|
- * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
|
|
|
- * This implementation is herby placed in the public domain.
|
|
|
- * The authors offers no warranty. Use at your own risk.
|
|
|
- * Please send bug reports to the authors.
|
|
|
- * Last modified: 17 APR 08, 1700 PDT
|
|
|
- * ----------------------------------------------------------------------- */
|
|
|
+/*
|
|
|
+ * Derived from:
|
|
|
+ * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
|
|
|
+ * This implementation is herby placed in the public domain.
|
|
|
+ * The authors offers no warranty. Use at your own risk.
|
|
|
+ * Last modified: 17 APR 08, 1700 PDT
|
|
|
+ */
|
|
|
|
|
|
+#include <asm/unaligned.h>
|
|
|
#include <linux/init.h>
|
|
|
#include <linux/types.h>
|
|
|
#include <linux/crypto.h>
|
|
@@ -31,9 +36,41 @@
|
|
|
#include <linux/scatterlist.h>
|
|
|
#include <asm/byteorder.h>
|
|
|
#include <crypto/scatterwalk.h>
|
|
|
-#include <crypto/vmac.h>
|
|
|
#include <crypto/internal/hash.h>
|
|
|
|
|
|
+/*
|
|
|
+ * User definable settings.
|
|
|
+ */
|
|
|
+#define VMAC_TAG_LEN 64
|
|
|
+#define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */
|
|
|
+#define VMAC_KEY_LEN (VMAC_KEY_SIZE/8)
|
|
|
+#define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/
|
|
|
+#define VMAC_NONCEBYTES 16
|
|
|
+
|
|
|
+/* per-transform (per-key) context */
|
|
|
+struct vmac_tfm_ctx {
|
|
|
+ struct crypto_cipher *cipher;
|
|
|
+ u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
|
|
|
+ u64 polykey[2*VMAC_TAG_LEN/64];
|
|
|
+ u64 l3key[2*VMAC_TAG_LEN/64];
|
|
|
+};
|
|
|
+
|
|
|
+/* per-request context */
|
|
|
+struct vmac_desc_ctx {
|
|
|
+ union {
|
|
|
+ u8 partial[VMAC_NHBYTES]; /* partial block */
|
|
|
+ __le64 partial_words[VMAC_NHBYTES / 8];
|
|
|
+ };
|
|
|
+ unsigned int partial_size; /* size of the partial block */
|
|
|
+ bool first_block_processed;
|
|
|
+ u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */
|
|
|
+ union {
|
|
|
+ u8 bytes[VMAC_NONCEBYTES];
|
|
|
+ __be64 pads[VMAC_NONCEBYTES / 8];
|
|
|
+ } nonce;
|
|
|
+ unsigned int nonce_size; /* nonce bytes filled so far */
|
|
|
+};
|
|
|
+
|
|
|
/*
|
|
|
* Constants and masks
|
|
|
*/
|
|
@@ -318,13 +355,6 @@ static void poly_step_func(u64 *ahi, u64 *alo,
|
|
|
} while (0)
|
|
|
#endif
|
|
|
|
|
|
-static void vhash_abort(struct vmac_ctx *ctx)
|
|
|
-{
|
|
|
- ctx->polytmp[0] = ctx->polykey[0] ;
|
|
|
- ctx->polytmp[1] = ctx->polykey[1] ;
|
|
|
- ctx->first_block_processed = 0;
|
|
|
-}
|
|
|
-
|
|
|
static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
|
|
|
{
|
|
|
u64 rh, rl, t, z = 0;
|
|
@@ -364,280 +394,227 @@ static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
|
|
|
return rl;
|
|
|
}
|
|
|
|
|
|
-static void vhash_update(const unsigned char *m,
|
|
|
- unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
|
|
|
- struct vmac_ctx *ctx)
|
|
|
+/* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
|
|
|
+static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
|
|
|
+ struct vmac_desc_ctx *dctx,
|
|
|
+ const __le64 *mptr, unsigned int blocks)
|
|
|
{
|
|
|
- u64 rh, rl, *mptr;
|
|
|
- const u64 *kptr = (u64 *)ctx->nhkey;
|
|
|
- int i;
|
|
|
- u64 ch, cl;
|
|
|
- u64 pkh = ctx->polykey[0];
|
|
|
- u64 pkl = ctx->polykey[1];
|
|
|
-
|
|
|
- if (!mbytes)
|
|
|
- return;
|
|
|
-
|
|
|
- BUG_ON(mbytes % VMAC_NHBYTES);
|
|
|
-
|
|
|
- mptr = (u64 *)m;
|
|
|
- i = mbytes / VMAC_NHBYTES; /* Must be non-zero */
|
|
|
-
|
|
|
- ch = ctx->polytmp[0];
|
|
|
- cl = ctx->polytmp[1];
|
|
|
-
|
|
|
- if (!ctx->first_block_processed) {
|
|
|
- ctx->first_block_processed = 1;
|
|
|
+ const u64 *kptr = tctx->nhkey;
|
|
|
+ const u64 pkh = tctx->polykey[0];
|
|
|
+ const u64 pkl = tctx->polykey[1];
|
|
|
+ u64 ch = dctx->polytmp[0];
|
|
|
+ u64 cl = dctx->polytmp[1];
|
|
|
+ u64 rh, rl;
|
|
|
+
|
|
|
+ if (!dctx->first_block_processed) {
|
|
|
+ dctx->first_block_processed = true;
|
|
|
nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
|
|
|
rh &= m62;
|
|
|
ADD128(ch, cl, rh, rl);
|
|
|
mptr += (VMAC_NHBYTES/sizeof(u64));
|
|
|
- i--;
|
|
|
+ blocks--;
|
|
|
}
|
|
|
|
|
|
- while (i--) {
|
|
|
+ while (blocks--) {
|
|
|
nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
|
|
|
rh &= m62;
|
|
|
poly_step(ch, cl, pkh, pkl, rh, rl);
|
|
|
mptr += (VMAC_NHBYTES/sizeof(u64));
|
|
|
}
|
|
|
|
|
|
- ctx->polytmp[0] = ch;
|
|
|
- ctx->polytmp[1] = cl;
|
|
|
+ dctx->polytmp[0] = ch;
|
|
|
+ dctx->polytmp[1] = cl;
|
|
|
}
|
|
|
|
|
|
-static u64 vhash(unsigned char m[], unsigned int mbytes,
|
|
|
- u64 *tagl, struct vmac_ctx *ctx)
|
|
|
+static int vmac_setkey(struct crypto_shash *tfm,
|
|
|
+ const u8 *key, unsigned int keylen)
|
|
|
{
|
|
|
- u64 rh, rl, *mptr;
|
|
|
- const u64 *kptr = (u64 *)ctx->nhkey;
|
|
|
- int i, remaining;
|
|
|
- u64 ch, cl;
|
|
|
- u64 pkh = ctx->polykey[0];
|
|
|
- u64 pkl = ctx->polykey[1];
|
|
|
-
|
|
|
- mptr = (u64 *)m;
|
|
|
- i = mbytes / VMAC_NHBYTES;
|
|
|
- remaining = mbytes % VMAC_NHBYTES;
|
|
|
-
|
|
|
- if (ctx->first_block_processed) {
|
|
|
- ch = ctx->polytmp[0];
|
|
|
- cl = ctx->polytmp[1];
|
|
|
- } else if (i) {
|
|
|
- nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
|
|
|
- ch &= m62;
|
|
|
- ADD128(ch, cl, pkh, pkl);
|
|
|
- mptr += (VMAC_NHBYTES/sizeof(u64));
|
|
|
- i--;
|
|
|
- } else if (remaining) {
|
|
|
- nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
|
|
|
- ch &= m62;
|
|
|
- ADD128(ch, cl, pkh, pkl);
|
|
|
- mptr += (VMAC_NHBYTES/sizeof(u64));
|
|
|
- goto do_l3;
|
|
|
- } else {/* Empty String */
|
|
|
- ch = pkh; cl = pkl;
|
|
|
- goto do_l3;
|
|
|
- }
|
|
|
-
|
|
|
- while (i--) {
|
|
|
- nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
|
|
|
- rh &= m62;
|
|
|
- poly_step(ch, cl, pkh, pkl, rh, rl);
|
|
|
- mptr += (VMAC_NHBYTES/sizeof(u64));
|
|
|
- }
|
|
|
- if (remaining) {
|
|
|
- nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
|
|
|
- rh &= m62;
|
|
|
- poly_step(ch, cl, pkh, pkl, rh, rl);
|
|
|
- }
|
|
|
-
|
|
|
-do_l3:
|
|
|
- vhash_abort(ctx);
|
|
|
- remaining *= 8;
|
|
|
- return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
|
|
|
-}
|
|
|
+ struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
|
|
|
+ __be64 out[2];
|
|
|
+ u8 in[16] = { 0 };
|
|
|
+ unsigned int i;
|
|
|
+ int err;
|
|
|
|
|
|
-static u64 vmac(unsigned char m[], unsigned int mbytes,
|
|
|
- const unsigned char n[16], u64 *tagl,
|
|
|
- struct vmac_ctx_t *ctx)
|
|
|
-{
|
|
|
- u64 *in_n, *out_p;
|
|
|
- u64 p, h;
|
|
|
- int i;
|
|
|
-
|
|
|
- in_n = ctx->__vmac_ctx.cached_nonce;
|
|
|
- out_p = ctx->__vmac_ctx.cached_aes;
|
|
|
-
|
|
|
- i = n[15] & 1;
|
|
|
- if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
|
|
|
- in_n[0] = *(u64 *)(n);
|
|
|
- in_n[1] = *(u64 *)(n+8);
|
|
|
- ((unsigned char *)in_n)[15] &= 0xFE;
|
|
|
- crypto_cipher_encrypt_one(ctx->child,
|
|
|
- (unsigned char *)out_p, (unsigned char *)in_n);
|
|
|
-
|
|
|
- ((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
|
|
|
+ if (keylen != VMAC_KEY_LEN) {
|
|
|
+ crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
|
+ return -EINVAL;
|
|
|
}
|
|
|
- p = be64_to_cpup(out_p + i);
|
|
|
- h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
|
|
|
- return le64_to_cpu(p + h);
|
|
|
-}
|
|
|
|
|
|
-static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
|
|
|
-{
|
|
|
- u64 in[2] = {0}, out[2];
|
|
|
- unsigned i;
|
|
|
- int err = 0;
|
|
|
-
|
|
|
- err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
|
|
|
+ err = crypto_cipher_setkey(tctx->cipher, key, keylen);
|
|
|
if (err)
|
|
|
return err;
|
|
|
|
|
|
/* Fill nh key */
|
|
|
- ((unsigned char *)in)[0] = 0x80;
|
|
|
- for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
|
|
|
- crypto_cipher_encrypt_one(ctx->child,
|
|
|
- (unsigned char *)out, (unsigned char *)in);
|
|
|
- ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
|
|
|
- ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
|
|
|
- ((unsigned char *)in)[15] += 1;
|
|
|
+ in[0] = 0x80;
|
|
|
+ for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
|
|
|
+ crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
|
|
|
+ tctx->nhkey[i] = be64_to_cpu(out[0]);
|
|
|
+ tctx->nhkey[i+1] = be64_to_cpu(out[1]);
|
|
|
+ in[15]++;
|
|
|
}
|
|
|
|
|
|
/* Fill poly key */
|
|
|
- ((unsigned char *)in)[0] = 0xC0;
|
|
|
- in[1] = 0;
|
|
|
- for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
|
|
|
- crypto_cipher_encrypt_one(ctx->child,
|
|
|
- (unsigned char *)out, (unsigned char *)in);
|
|
|
- ctx->__vmac_ctx.polytmp[i] =
|
|
|
- ctx->__vmac_ctx.polykey[i] =
|
|
|
- be64_to_cpup(out) & mpoly;
|
|
|
- ctx->__vmac_ctx.polytmp[i+1] =
|
|
|
- ctx->__vmac_ctx.polykey[i+1] =
|
|
|
- be64_to_cpup(out+1) & mpoly;
|
|
|
- ((unsigned char *)in)[15] += 1;
|
|
|
+ in[0] = 0xC0;
|
|
|
+ in[15] = 0;
|
|
|
+ for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
|
|
|
+ crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
|
|
|
+ tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
|
|
|
+ tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
|
|
|
+ in[15]++;
|
|
|
}
|
|
|
|
|
|
/* Fill ip key */
|
|
|
- ((unsigned char *)in)[0] = 0xE0;
|
|
|
- in[1] = 0;
|
|
|
- for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
|
|
|
+ in[0] = 0xE0;
|
|
|
+ in[15] = 0;
|
|
|
+ for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
|
|
|
do {
|
|
|
- crypto_cipher_encrypt_one(ctx->child,
|
|
|
- (unsigned char *)out, (unsigned char *)in);
|
|
|
- ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
|
|
|
- ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
|
|
|
- ((unsigned char *)in)[15] += 1;
|
|
|
- } while (ctx->__vmac_ctx.l3key[i] >= p64
|
|
|
- || ctx->__vmac_ctx.l3key[i+1] >= p64);
|
|
|
+ crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
|
|
|
+ tctx->l3key[i] = be64_to_cpu(out[0]);
|
|
|
+ tctx->l3key[i+1] = be64_to_cpu(out[1]);
|
|
|
+ in[15]++;
|
|
|
+ } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
|
|
|
}
|
|
|
|
|
|
- /* Invalidate nonce/aes cache and reset other elements */
|
|
|
- ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
|
|
|
- ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */
|
|
|
- ctx->__vmac_ctx.first_block_processed = 0;
|
|
|
-
|
|
|
- return err;
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
-static int vmac_setkey(struct crypto_shash *parent,
|
|
|
- const u8 *key, unsigned int keylen)
|
|
|
+static int vmac_init(struct shash_desc *desc)
|
|
|
{
|
|
|
- struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
|
|
|
+ const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
|
+ struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
|
|
|
|
|
|
- if (keylen != VMAC_KEY_LEN) {
|
|
|
- crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
-
|
|
|
- return vmac_set_key((u8 *)key, ctx);
|
|
|
-}
|
|
|
-
|
|
|
-static int vmac_init(struct shash_desc *pdesc)
|
|
|
-{
|
|
|
+ dctx->partial_size = 0;
|
|
|
+ dctx->first_block_processed = false;
|
|
|
+ memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
|
|
|
+ dctx->nonce_size = 0;
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-static int vmac_update(struct shash_desc *pdesc, const u8 *p,
|
|
|
- unsigned int len)
|
|
|
+static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
|
|
|
{
|
|
|
- struct crypto_shash *parent = pdesc->tfm;
|
|
|
- struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
|
|
|
- int expand;
|
|
|
- int min;
|
|
|
-
|
|
|
- expand = VMAC_NHBYTES - ctx->partial_size > 0 ?
|
|
|
- VMAC_NHBYTES - ctx->partial_size : 0;
|
|
|
-
|
|
|
- min = len < expand ? len : expand;
|
|
|
+ const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
|
+ struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
|
|
|
+ unsigned int n;
|
|
|
+
|
|
|
+ /* Nonce is passed as first VMAC_NONCEBYTES bytes of data */
|
|
|
+ if (dctx->nonce_size < VMAC_NONCEBYTES) {
|
|
|
+ n = min(len, VMAC_NONCEBYTES - dctx->nonce_size);
|
|
|
+ memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n);
|
|
|
+ dctx->nonce_size += n;
|
|
|
+ p += n;
|
|
|
+ len -= n;
|
|
|
+ }
|
|
|
|
|
|
- memcpy(ctx->partial + ctx->partial_size, p, min);
|
|
|
- ctx->partial_size += min;
|
|
|
+ if (dctx->partial_size) {
|
|
|
+ n = min(len, VMAC_NHBYTES - dctx->partial_size);
|
|
|
+ memcpy(&dctx->partial[dctx->partial_size], p, n);
|
|
|
+ dctx->partial_size += n;
|
|
|
+ p += n;
|
|
|
+ len -= n;
|
|
|
+ if (dctx->partial_size == VMAC_NHBYTES) {
|
|
|
+ vhash_blocks(tctx, dctx, dctx->partial_words, 1);
|
|
|
+ dctx->partial_size = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- if (len < expand)
|
|
|
- return 0;
|
|
|
+ if (len >= VMAC_NHBYTES) {
|
|
|
+ n = round_down(len, VMAC_NHBYTES);
|
|
|
+ /* TODO: 'p' may be misaligned here */
|
|
|
+ vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
|
|
|
+ p += n;
|
|
|
+ len -= n;
|
|
|
+ }
|
|
|
|
|
|
- vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx);
|
|
|
- ctx->partial_size = 0;
|
|
|
+ if (len) {
|
|
|
+ memcpy(dctx->partial, p, len);
|
|
|
+ dctx->partial_size = len;
|
|
|
+ }
|
|
|
|
|
|
- len -= expand;
|
|
|
- p += expand;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
|
|
|
- if (len % VMAC_NHBYTES) {
|
|
|
- memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES),
|
|
|
- len % VMAC_NHBYTES);
|
|
|
- ctx->partial_size = len % VMAC_NHBYTES;
|
|
|
+static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
|
|
|
+ struct vmac_desc_ctx *dctx)
|
|
|
+{
|
|
|
+ unsigned int partial = dctx->partial_size;
|
|
|
+ u64 ch = dctx->polytmp[0];
|
|
|
+ u64 cl = dctx->polytmp[1];
|
|
|
+
|
|
|
+ /* L1 and L2-hash the final block if needed */
|
|
|
+ if (partial) {
|
|
|
+ /* Zero-pad to next 128-bit boundary */
|
|
|
+ unsigned int n = round_up(partial, 16);
|
|
|
+ u64 rh, rl;
|
|
|
+
|
|
|
+ memset(&dctx->partial[partial], 0, n - partial);
|
|
|
+ nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
|
|
|
+ rh &= m62;
|
|
|
+ if (dctx->first_block_processed)
|
|
|
+ poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
|
|
|
+ rh, rl);
|
|
|
+ else
|
|
|
+ ADD128(ch, cl, rh, rl);
|
|
|
}
|
|
|
|
|
|
- vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx);
|
|
|
-
|
|
|
- return 0;
|
|
|
+ /* L3-hash the 128-bit output of L2-hash */
|
|
|
+ return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
|
|
|
}
|
|
|
|
|
|
-static int vmac_final(struct shash_desc *pdesc, u8 *out)
|
|
|
+static int vmac_final(struct shash_desc *desc, u8 *out)
|
|
|
{
|
|
|
- struct crypto_shash *parent = pdesc->tfm;
|
|
|
- struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
|
|
|
- vmac_t mac;
|
|
|
- u8 nonce[16] = {};
|
|
|
-
|
|
|
- /* vmac() ends up accessing outside the array bounds that
|
|
|
- * we specify. In appears to access up to the next 2-word
|
|
|
- * boundary. We'll just be uber cautious and zero the
|
|
|
- * unwritten bytes in the buffer.
|
|
|
+ const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
|
+ struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
|
|
|
+ int index;
|
|
|
+ u64 hash, pad;
|
|
|
+
|
|
|
+ if (dctx->nonce_size != VMAC_NONCEBYTES)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The VMAC specification requires a nonce at least 1 bit shorter than
|
|
|
+ * the block cipher's block length, so we actually only accept a 127-bit
|
|
|
+ * nonce. We define the unused bit to be the first one and require that
|
|
|
+ * it be 0, so the needed prepending of a 0 bit is implicit.
|
|
|
*/
|
|
|
- if (ctx->partial_size) {
|
|
|
- memset(ctx->partial + ctx->partial_size, 0,
|
|
|
- VMAC_NHBYTES - ctx->partial_size);
|
|
|
- }
|
|
|
- mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx);
|
|
|
- memcpy(out, &mac, sizeof(vmac_t));
|
|
|
- memzero_explicit(&mac, sizeof(vmac_t));
|
|
|
- memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
|
|
|
- ctx->partial_size = 0;
|
|
|
+ if (dctx->nonce.bytes[0] & 0x80)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ /* Finish calculating the VHASH of the message */
|
|
|
+ hash = vhash_final(tctx, dctx);
|
|
|
+
|
|
|
+ /* Generate pseudorandom pad by encrypting the nonce */
|
|
|
+ BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8));
|
|
|
+ index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1;
|
|
|
+ dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1;
|
|
|
+ crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes,
|
|
|
+ dctx->nonce.bytes);
|
|
|
+ pad = be64_to_cpu(dctx->nonce.pads[index]);
|
|
|
+
|
|
|
+ /* The VMAC is the sum of VHASH and the pseudorandom pad */
|
|
|
+ put_unaligned_be64(hash + pad, out);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
static int vmac_init_tfm(struct crypto_tfm *tfm)
|
|
|
{
|
|
|
- struct crypto_cipher *cipher;
|
|
|
- struct crypto_instance *inst = (void *)tfm->__crt_alg;
|
|
|
+ struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
|
|
|
struct crypto_spawn *spawn = crypto_instance_ctx(inst);
|
|
|
- struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
|
|
|
+ struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
|
|
|
+ struct crypto_cipher *cipher;
|
|
|
|
|
|
cipher = crypto_spawn_cipher(spawn);
|
|
|
if (IS_ERR(cipher))
|
|
|
return PTR_ERR(cipher);
|
|
|
|
|
|
- ctx->child = cipher;
|
|
|
+ tctx->cipher = cipher;
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
static void vmac_exit_tfm(struct crypto_tfm *tfm)
|
|
|
{
|
|
|
- struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
|
|
|
- crypto_free_cipher(ctx->child);
|
|
|
+ struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
|
|
|
+
|
|
|
+ crypto_free_cipher(tctx->cipher);
|
|
|
}
|
|
|
|
|
|
static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
@@ -655,7 +632,11 @@ static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
|
if (IS_ERR(alg))
|
|
|
return PTR_ERR(alg);
|
|
|
|
|
|
- inst = shash_alloc_instance("vmac", alg);
|
|
|
+ err = -EINVAL;
|
|
|
+ if (alg->cra_blocksize != VMAC_NONCEBYTES)
|
|
|
+ goto out_put_alg;
|
|
|
+
|
|
|
+ inst = shash_alloc_instance(tmpl->name, alg);
|
|
|
err = PTR_ERR(inst);
|
|
|
if (IS_ERR(inst))
|
|
|
goto out_put_alg;
|
|
@@ -670,11 +651,12 @@ static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
|
|
|
inst->alg.base.cra_blocksize = alg->cra_blocksize;
|
|
|
inst->alg.base.cra_alignmask = alg->cra_alignmask;
|
|
|
|
|
|
- inst->alg.digestsize = sizeof(vmac_t);
|
|
|
- inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
|
|
|
+ inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
|
|
|
inst->alg.base.cra_init = vmac_init_tfm;
|
|
|
inst->alg.base.cra_exit = vmac_exit_tfm;
|
|
|
|
|
|
+ inst->alg.descsize = sizeof(struct vmac_desc_ctx);
|
|
|
+ inst->alg.digestsize = VMAC_TAG_LEN / 8;
|
|
|
inst->alg.init = vmac_init;
|
|
|
inst->alg.update = vmac_update;
|
|
|
inst->alg.final = vmac_final;
|
|
@@ -691,8 +673,8 @@ out_put_alg:
|
|
|
return err;
|
|
|
}
|
|
|
|
|
|
-static struct crypto_template vmac_tmpl = {
|
|
|
- .name = "vmac",
|
|
|
+static struct crypto_template vmac64_tmpl = {
|
|
|
+ .name = "vmac64",
|
|
|
.create = vmac_create,
|
|
|
.free = shash_free_instance,
|
|
|
.module = THIS_MODULE,
|
|
@@ -700,12 +682,12 @@ static struct crypto_template vmac_tmpl = {
|
|
|
|
|
|
static int __init vmac_module_init(void)
|
|
|
{
|
|
|
- return crypto_register_template(&vmac_tmpl);
|
|
|
+ return crypto_register_template(&vmac64_tmpl);
|
|
|
}
|
|
|
|
|
|
static void __exit vmac_module_exit(void)
|
|
|
{
|
|
|
- crypto_unregister_template(&vmac_tmpl);
|
|
|
+ crypto_unregister_template(&vmac64_tmpl);
|
|
|
}
|
|
|
|
|
|
module_init(vmac_module_init);
|
|
@@ -713,4 +695,4 @@ module_exit(vmac_module_exit);
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
MODULE_DESCRIPTION("VMAC hash algorithm");
|
|
|
-MODULE_ALIAS_CRYPTO("vmac");
|
|
|
+MODULE_ALIAS_CRYPTO("vmac64");
|