|
@@ -0,0 +1,357 @@
|
|
|
+// SPDX-License-Identifier: GPL-2.0+
|
|
|
+/*
|
|
|
+ * Restartable sequences system call
|
|
|
+ *
|
|
|
+ * Copyright (C) 2015, Google, Inc.,
|
|
|
+ * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
|
|
|
+ * Copyright (C) 2015-2018, EfficiOS Inc.,
|
|
|
+ * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
|
|
|
+ */
|
|
|
+
|
|
|
+#include <linux/sched.h>
|
|
|
+#include <linux/uaccess.h>
|
|
|
+#include <linux/syscalls.h>
|
|
|
+#include <linux/rseq.h>
|
|
|
+#include <linux/types.h>
|
|
|
+#include <asm/ptrace.h>
|
|
|
+
|
|
|
+#define CREATE_TRACE_POINTS
|
|
|
+#include <trace/events/rseq.h>
|
|
|
+
|
|
|
+#define RSEQ_CS_PREEMPT_MIGRATE_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE | \
|
|
|
+ RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT)
|
|
|
+
|
|
|
+/*
|
|
|
+ *
|
|
|
+ * Restartable sequences are a lightweight interface that allows
|
|
|
+ * user-level code to be executed atomically relative to scheduler
|
|
|
+ * preemption and signal delivery. Typically used for implementing
|
|
|
+ * per-cpu operations.
|
|
|
+ *
|
|
|
+ * It allows user-space to perform update operations on per-cpu data
|
|
|
+ * without requiring heavy-weight atomic operations.
|
|
|
+ *
|
|
|
+ * Detailed algorithm of rseq user-space assembly sequences:
|
|
|
+ *
|
|
|
+ * init(rseq_cs)
|
|
|
+ * cpu = TLS->rseq::cpu_id_start
|
|
|
+ * [1] TLS->rseq::rseq_cs = rseq_cs
|
|
|
+ * [start_ip] ----------------------------
|
|
|
+ * [2] if (cpu != TLS->rseq::cpu_id)
|
|
|
+ * goto abort_ip;
|
|
|
+ * [3] <last_instruction_in_cs>
|
|
|
+ * [post_commit_ip] ----------------------------
|
|
|
+ *
|
|
|
+ * The address of jump target abort_ip must be outside the critical
|
|
|
+ * region, i.e.:
|
|
|
+ *
|
|
|
+ * [abort_ip] < [start_ip] || [abort_ip] >= [post_commit_ip]
|
|
|
+ *
|
|
|
+ * Steps [2]-[3] (inclusive) need to be a sequence of instructions in
|
|
|
+ * userspace that can handle being interrupted between any of those
|
|
|
+ * instructions, and then resumed to the abort_ip.
|
|
|
+ *
|
|
|
+ * 1. Userspace stores the address of the struct rseq_cs assembly
|
|
|
+ * block descriptor into the rseq_cs field of the registered
|
|
|
+ * struct rseq TLS area. This update is performed through a single
|
|
|
+ * store within the inline assembly instruction sequence.
|
|
|
+ * [start_ip]
|
|
|
+ *
|
|
|
+ * 2. Userspace tests to check whether the current cpu_id field match
|
|
|
+ * the cpu number loaded before start_ip, branching to abort_ip
|
|
|
+ * in case of a mismatch.
|
|
|
+ *
|
|
|
+ * If the sequence is preempted or interrupted by a signal
|
|
|
+ * at or after start_ip and before post_commit_ip, then the kernel
|
|
|
+ * clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
|
|
|
+ * ip to abort_ip before returning to user-space, so the preempted
|
|
|
+ * execution resumes at abort_ip.
|
|
|
+ *
|
|
|
+ * 3. Userspace critical section final instruction before
|
|
|
+ * post_commit_ip is the commit. The critical section is
|
|
|
+ * self-terminating.
|
|
|
+ * [post_commit_ip]
|
|
|
+ *
|
|
|
+ * 4. <success>
|
|
|
+ *
|
|
|
+ * On failure at [2], or if interrupted by preempt or signal delivery
|
|
|
+ * between [1] and [3]:
|
|
|
+ *
|
|
|
+ * [abort_ip]
|
|
|
+ * F1. <failure>
|
|
|
+ */
|
|
|
+
|
|
|
+static int rseq_update_cpu_id(struct task_struct *t)
|
|
|
+{
|
|
|
+ u32 cpu_id = raw_smp_processor_id();
|
|
|
+
|
|
|
+ if (__put_user(cpu_id, &t->rseq->cpu_id_start))
|
|
|
+ return -EFAULT;
|
|
|
+ if (__put_user(cpu_id, &t->rseq->cpu_id))
|
|
|
+ return -EFAULT;
|
|
|
+ trace_rseq_update(t);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int rseq_reset_rseq_cpu_id(struct task_struct *t)
|
|
|
+{
|
|
|
+ u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Reset cpu_id_start to its initial state (0).
|
|
|
+ */
|
|
|
+ if (__put_user(cpu_id_start, &t->rseq->cpu_id_start))
|
|
|
+ return -EFAULT;
|
|
|
+ /*
|
|
|
+ * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming
|
|
|
+ * in after unregistration can figure out that rseq needs to be
|
|
|
+ * registered again.
|
|
|
+ */
|
|
|
+ if (__put_user(cpu_id, &t->rseq->cpu_id))
|
|
|
+ return -EFAULT;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
|
|
|
+{
|
|
|
+ struct rseq_cs __user *urseq_cs;
|
|
|
+ unsigned long ptr;
|
|
|
+ u32 __user *usig;
|
|
|
+ u32 sig;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ ret = __get_user(ptr, &t->rseq->rseq_cs);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+ if (!ptr) {
|
|
|
+ memset(rseq_cs, 0, sizeof(*rseq_cs));
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ urseq_cs = (struct rseq_cs __user *)ptr;
|
|
|
+ if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
|
|
|
+ return -EFAULT;
|
|
|
+ if (rseq_cs->version > 0)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ /* Ensure that abort_ip is not in the critical section. */
|
|
|
+ if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ usig = (u32 __user *)(rseq_cs->abort_ip - sizeof(u32));
|
|
|
+ ret = get_user(sig, usig);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ if (current->rseq_sig != sig) {
|
|
|
+ printk_ratelimited(KERN_WARNING
|
|
|
+ "Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
|
|
|
+ sig, current->rseq_sig, current->pid, usig);
|
|
|
+ return -EPERM;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
|
|
|
+{
|
|
|
+ u32 flags, event_mask;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ /* Get thread flags. */
|
|
|
+ ret = __get_user(flags, &t->rseq->flags);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ /* Take critical section flags into account. */
|
|
|
+ flags |= cs_flags;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Restart on signal can only be inhibited when restart on
|
|
|
+ * preempt and restart on migrate are inhibited too. Otherwise,
|
|
|
+ * a preempted signal handler could fail to restart the prior
|
|
|
+ * execution context on sigreturn.
|
|
|
+ */
|
|
|
+ if (unlikely((flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL) &&
|
|
|
+ (flags & RSEQ_CS_PREEMPT_MIGRATE_FLAGS) !=
|
|
|
+ RSEQ_CS_PREEMPT_MIGRATE_FLAGS))
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Load and clear event mask atomically with respect to
|
|
|
+ * scheduler preemption.
|
|
|
+ */
|
|
|
+ preempt_disable();
|
|
|
+ event_mask = t->rseq_event_mask;
|
|
|
+ t->rseq_event_mask = 0;
|
|
|
+ preempt_enable();
|
|
|
+
|
|
|
+ return !!(event_mask & ~flags);
|
|
|
+}
|
|
|
+
|
|
|
+static int clear_rseq_cs(struct task_struct *t)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * The rseq_cs field is set to NULL on preemption or signal
|
|
|
+ * delivery on top of rseq assembly block, as well as on top
|
|
|
+ * of code outside of the rseq assembly block. This performs
|
|
|
+ * a lazy clear of the rseq_cs field.
|
|
|
+ *
|
|
|
+ * Set rseq_cs to NULL with single-copy atomicity.
|
|
|
+ */
|
|
|
+ return __put_user(0UL, &t->rseq->rseq_cs);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Unsigned comparison will be true when ip >= start_ip, and when
|
|
|
+ * ip < start_ip + post_commit_offset.
|
|
|
+ */
|
|
|
+static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
|
|
|
+{
|
|
|
+ return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
|
|
|
+}
|
|
|
+
|
|
|
+static int rseq_ip_fixup(struct pt_regs *regs)
|
|
|
+{
|
|
|
+ unsigned long ip = instruction_pointer(regs);
|
|
|
+ struct task_struct *t = current;
|
|
|
+ struct rseq_cs rseq_cs;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ ret = rseq_get_rseq_cs(t, &rseq_cs);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Handle potentially not being within a critical section.
|
|
|
+ * If not nested over a rseq critical section, restart is useless.
|
|
|
+ * Clear the rseq_cs pointer and return.
|
|
|
+ */
|
|
|
+ if (!in_rseq_cs(ip, &rseq_cs))
|
|
|
+ return clear_rseq_cs(t);
|
|
|
+ ret = rseq_need_restart(t, rseq_cs.flags);
|
|
|
+ if (ret <= 0)
|
|
|
+ return ret;
|
|
|
+ ret = clear_rseq_cs(t);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+ trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
|
|
|
+ rseq_cs.abort_ip);
|
|
|
+ instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * This resume handler must always be executed between any of:
|
|
|
+ * - preemption,
|
|
|
+ * - signal delivery,
|
|
|
+ * and return to user-space.
|
|
|
+ *
|
|
|
+ * This is how we can ensure that the entire rseq critical section,
|
|
|
+ * consisting of both the C part and the assembly instruction sequence,
|
|
|
+ * will issue the commit instruction only if executed atomically with
|
|
|
+ * respect to other threads scheduled on the same CPU, and with respect
|
|
|
+ * to signal handlers.
|
|
|
+ */
|
|
|
+void __rseq_handle_notify_resume(struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct task_struct *t = current;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ if (unlikely(t->flags & PF_EXITING))
|
|
|
+ return;
|
|
|
+ if (unlikely(!access_ok(VERIFY_WRITE, t->rseq, sizeof(*t->rseq))))
|
|
|
+ goto error;
|
|
|
+ ret = rseq_ip_fixup(regs);
|
|
|
+ if (unlikely(ret < 0))
|
|
|
+ goto error;
|
|
|
+ if (unlikely(rseq_update_cpu_id(t)))
|
|
|
+ goto error;
|
|
|
+ return;
|
|
|
+
|
|
|
+error:
|
|
|
+ force_sig(SIGSEGV, t);
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef CONFIG_DEBUG_RSEQ
|
|
|
+
|
|
|
+/*
|
|
|
+ * Terminate the process if a syscall is issued within a restartable
|
|
|
+ * sequence.
|
|
|
+ */
|
|
|
+void rseq_syscall(struct pt_regs *regs)
|
|
|
+{
|
|
|
+ unsigned long ip = instruction_pointer(regs);
|
|
|
+ struct task_struct *t = current;
|
|
|
+ struct rseq_cs rseq_cs;
|
|
|
+
|
|
|
+ if (!t->rseq)
|
|
|
+ return;
|
|
|
+ if (!access_ok(VERIFY_READ, t->rseq, sizeof(*t->rseq)) ||
|
|
|
+ rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
|
|
|
+ force_sig(SIGSEGV, t);
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * sys_rseq - setup restartable sequences for caller thread.
|
|
|
+ */
|
|
|
+SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
|
|
|
+ int, flags, u32, sig)
|
|
|
+{
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ if (flags & RSEQ_FLAG_UNREGISTER) {
|
|
|
+ /* Unregister rseq for current thread. */
|
|
|
+ if (current->rseq != rseq || !current->rseq)
|
|
|
+ return -EINVAL;
|
|
|
+ if (current->rseq_len != rseq_len)
|
|
|
+ return -EINVAL;
|
|
|
+ if (current->rseq_sig != sig)
|
|
|
+ return -EPERM;
|
|
|
+ ret = rseq_reset_rseq_cpu_id(current);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+ current->rseq = NULL;
|
|
|
+ current->rseq_len = 0;
|
|
|
+ current->rseq_sig = 0;
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (unlikely(flags))
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ if (current->rseq) {
|
|
|
+ /*
|
|
|
+ * If rseq is already registered, check whether
|
|
|
+ * the provided address differs from the prior
|
|
|
+ * one.
|
|
|
+ */
|
|
|
+ if (current->rseq != rseq || current->rseq_len != rseq_len)
|
|
|
+ return -EINVAL;
|
|
|
+ if (current->rseq_sig != sig)
|
|
|
+ return -EPERM;
|
|
|
+ /* Already registered. */
|
|
|
+ return -EBUSY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If there was no rseq previously registered,
|
|
|
+ * ensure the provided rseq is properly aligned and valid.
|
|
|
+ */
|
|
|
+ if (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
|
|
|
+ rseq_len != sizeof(*rseq))
|
|
|
+ return -EINVAL;
|
|
|
+ if (!access_ok(VERIFY_WRITE, rseq, rseq_len))
|
|
|
+ return -EFAULT;
|
|
|
+ current->rseq = rseq;
|
|
|
+ current->rseq_len = rseq_len;
|
|
|
+ current->rseq_sig = sig;
|
|
|
+ /*
|
|
|
+ * If rseq was previously inactive, and has just been
|
|
|
+ * registered, ensure the cpu_id_start and cpu_id fields
|
|
|
+ * are updated before returning to user-space.
|
|
|
+ */
|
|
|
+ rseq_set_notify_resume(current);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|