|
@@ -0,0 +1,511 @@
|
|
|
+/*
|
|
|
+ * NUMA support for s390
|
|
|
+ *
|
|
|
+ * NUMA emulation (aka fake NUMA) distributes the available memory to nodes
|
|
|
+ * without using real topology information about the physical memory of the
|
|
|
+ * machine.
|
|
|
+ *
|
|
|
+ * It distributes the available CPUs to nodes while respecting the original
|
|
|
+ * machine topology information. This is done by trying to avoid to separate
|
|
|
+ * CPUs which reside on the same book or even on the same MC.
|
|
|
+ *
|
|
|
+ * Because the current Linux scheduler code requires a stable cpu to node
|
|
|
+ * mapping, cores are pinned to nodes when the first CPU thread is set online.
|
|
|
+ *
|
|
|
+ * Copyright IBM Corp. 2015
|
|
|
+ */
|
|
|
+
|
|
|
+#define KMSG_COMPONENT "numa_emu"
|
|
|
+#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
+
|
|
|
+#include <linux/kernel.h>
|
|
|
+#include <linux/cpumask.h>
|
|
|
+#include <linux/memblock.h>
|
|
|
+#include <linux/node.h>
|
|
|
+#include <linux/memory.h>
|
|
|
+#include <asm/smp.h>
|
|
|
+#include <asm/topology.h>
|
|
|
+#include "numa_mode.h"
|
|
|
+#include "toptree.h"
|
|
|
+
|
|
|
+/* Distances between the different system components */
|
|
|
+#define DIST_EMPTY 0
|
|
|
+#define DIST_CORE 1
|
|
|
+#define DIST_MC 2
|
|
|
+#define DIST_BOOK 3
|
|
|
+#define DIST_MAX 4
|
|
|
+
|
|
|
+/* Node distance reported to common code */
|
|
|
+#define EMU_NODE_DIST 10
|
|
|
+
|
|
|
+/* Node ID for free (not yet pinned) cores */
|
|
|
+#define NODE_ID_FREE -1
|
|
|
+
|
|
|
+/* Different levels of toptree */
|
|
|
+enum toptree_level {CORE, MC, BOOK, NODE, TOPOLOGY};
|
|
|
+
|
|
|
+/* The two toptree IDs */
|
|
|
+enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA};
|
|
|
+
|
|
|
+/* Number of NUMA nodes */
|
|
|
+static int emu_nodes = 1;
|
|
|
+/* NUMA stripe size */
|
|
|
+static unsigned long emu_size;
|
|
|
+/* Pinned core to node mapping */
|
|
|
+static int cores_to_node_id[CONFIG_NR_CPUS];
|
|
|
+/* Total number of pinned cores */
|
|
|
+static int cores_total;
|
|
|
+/* Number of cores per node without extra cores */
|
|
|
+static int cores_per_node_target;
|
|
|
+/* Number of cores pinned to node */
|
|
|
+static int cores_per_node[MAX_NUMNODES];
|
|
|
+
|
|
|
+/*
|
|
|
+ * Pin a core to a node
|
|
|
+ */
|
|
|
+static void pin_core_to_node(int core_id, int node_id)
|
|
|
+{
|
|
|
+ if (cores_to_node_id[core_id] == NODE_ID_FREE) {
|
|
|
+ cores_per_node[node_id]++;
|
|
|
+ cores_to_node_id[core_id] = node_id;
|
|
|
+ cores_total++;
|
|
|
+ } else {
|
|
|
+ WARN_ON(cores_to_node_id[core_id] != node_id);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Number of pinned cores of a node
|
|
|
+ */
|
|
|
+static int cores_pinned(struct toptree *node)
|
|
|
+{
|
|
|
+ return cores_per_node[node->id];
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * ID of the node where the core is pinned (or NODE_ID_FREE)
|
|
|
+ */
|
|
|
+static int core_pinned_to_node_id(struct toptree *core)
|
|
|
+{
|
|
|
+ return cores_to_node_id[core->id];
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Number of cores in the tree that are not yet pinned
|
|
|
+ */
|
|
|
+static int cores_free(struct toptree *tree)
|
|
|
+{
|
|
|
+ struct toptree *core;
|
|
|
+ int count = 0;
|
|
|
+
|
|
|
+ toptree_for_each(core, tree, CORE) {
|
|
|
+ if (core_pinned_to_node_id(core) == NODE_ID_FREE)
|
|
|
+ count++;
|
|
|
+ }
|
|
|
+ return count;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return node of core
|
|
|
+ */
|
|
|
+static struct toptree *core_node(struct toptree *core)
|
|
|
+{
|
|
|
+ return core->parent->parent->parent;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return book of core
|
|
|
+ */
|
|
|
+static struct toptree *core_book(struct toptree *core)
|
|
|
+{
|
|
|
+ return core->parent->parent;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return mc of core
|
|
|
+ */
|
|
|
+static struct toptree *core_mc(struct toptree *core)
|
|
|
+{
|
|
|
+ return core->parent;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Distance between two cores
|
|
|
+ */
|
|
|
+static int dist_core_to_core(struct toptree *core1, struct toptree *core2)
|
|
|
+{
|
|
|
+ if (core_book(core1)->id != core_book(core2)->id)
|
|
|
+ return DIST_BOOK;
|
|
|
+ if (core_mc(core1)->id != core_mc(core2)->id)
|
|
|
+ return DIST_MC;
|
|
|
+ /* Same core or sibling on same MC */
|
|
|
+ return DIST_CORE;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Distance of a node to a core
|
|
|
+ */
|
|
|
+static int dist_node_to_core(struct toptree *node, struct toptree *core)
|
|
|
+{
|
|
|
+ struct toptree *core_node;
|
|
|
+ int dist_min = DIST_MAX;
|
|
|
+
|
|
|
+ toptree_for_each(core_node, node, CORE)
|
|
|
+ dist_min = min(dist_min, dist_core_to_core(core_node, core));
|
|
|
+ return dist_min == DIST_MAX ? DIST_EMPTY : dist_min;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Unify will delete empty nodes, therefore recreate nodes.
|
|
|
+ */
|
|
|
+static void toptree_unify_tree(struct toptree *tree)
|
|
|
+{
|
|
|
+ int nid;
|
|
|
+
|
|
|
+ toptree_unify(tree);
|
|
|
+ for (nid = 0; nid < emu_nodes; nid++)
|
|
|
+ toptree_get_child(tree, nid);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Find the best/nearest node for a given core and ensure that no node
|
|
|
+ * gets more than "cores_per_node_target + extra" cores.
|
|
|
+ */
|
|
|
+static struct toptree *node_for_core(struct toptree *numa, struct toptree *core,
|
|
|
+ int extra)
|
|
|
+{
|
|
|
+ struct toptree *node, *node_best = NULL;
|
|
|
+ int dist_cur, dist_best;
|
|
|
+
|
|
|
+ dist_best = DIST_MAX;
|
|
|
+ node_best = NULL;
|
|
|
+ toptree_for_each(node, numa, NODE) {
|
|
|
+ /* Already pinned cores must use their nodes */
|
|
|
+ if (core_pinned_to_node_id(core) == node->id) {
|
|
|
+ node_best = node;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ /* Skip nodes that already have enough cores */
|
|
|
+ if (cores_pinned(node) >= cores_per_node_target + extra)
|
|
|
+ continue;
|
|
|
+ dist_cur = dist_node_to_core(node, core);
|
|
|
+ if (dist_cur < dist_best) {
|
|
|
+ dist_best = dist_cur;
|
|
|
+ node_best = node;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return node_best;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Find the best node for each core with respect to "extra" core count
|
|
|
+ */
|
|
|
+static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys,
|
|
|
+ int extra)
|
|
|
+{
|
|
|
+ struct toptree *node, *core, *tmp;
|
|
|
+
|
|
|
+ toptree_for_each_safe(core, tmp, phys, CORE) {
|
|
|
+ node = node_for_core(numa, core, extra);
|
|
|
+ if (!node)
|
|
|
+ return;
|
|
|
+ toptree_move(core, node);
|
|
|
+ pin_core_to_node(core->id, node->id);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Move structures of given level to specified NUMA node
|
|
|
+ */
|
|
|
+static void move_level_to_numa_node(struct toptree *node, struct toptree *phys,
|
|
|
+ enum toptree_level level, bool perfect)
|
|
|
+{
|
|
|
+ struct toptree *cur, *tmp;
|
|
|
+ int cores_free;
|
|
|
+
|
|
|
+ toptree_for_each_safe(cur, tmp, phys, level) {
|
|
|
+ cores_free = cores_per_node_target - toptree_count(node, CORE);
|
|
|
+ if (perfect) {
|
|
|
+ if (cores_free == toptree_count(cur, CORE))
|
|
|
+ toptree_move(cur, node);
|
|
|
+ } else {
|
|
|
+ if (cores_free >= toptree_count(cur, CORE))
|
|
|
+ toptree_move(cur, node);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Move structures of a given level to NUMA nodes. If "perfect" is specified
|
|
|
+ * move only perfectly fitting structures. Otherwise move also smaller
|
|
|
+ * than needed structures.
|
|
|
+ */
|
|
|
+static void move_level_to_numa(struct toptree *numa, struct toptree *phys,
|
|
|
+ enum toptree_level level, bool perfect)
|
|
|
+{
|
|
|
+ struct toptree *node;
|
|
|
+
|
|
|
+ toptree_for_each(node, numa, NODE)
|
|
|
+ move_level_to_numa_node(node, phys, level, perfect);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * For the first run try to move the big structures
|
|
|
+ */
|
|
|
+static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys)
|
|
|
+{
|
|
|
+ struct toptree *core;
|
|
|
+
|
|
|
+ /* Always try to move perfectly fitting structures first */
|
|
|
+ move_level_to_numa(numa, phys, BOOK, true);
|
|
|
+ move_level_to_numa(numa, phys, BOOK, false);
|
|
|
+ move_level_to_numa(numa, phys, MC, true);
|
|
|
+ move_level_to_numa(numa, phys, MC, false);
|
|
|
+ /* Now pin all the moved cores */
|
|
|
+ toptree_for_each(core, numa, CORE)
|
|
|
+ pin_core_to_node(core->id, core_node(core)->id);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Allocate new topology and create required nodes
|
|
|
+ */
|
|
|
+static struct toptree *toptree_new(int id, int nodes)
|
|
|
+{
|
|
|
+ struct toptree *tree;
|
|
|
+ int nid;
|
|
|
+
|
|
|
+ tree = toptree_alloc(TOPOLOGY, id);
|
|
|
+ if (!tree)
|
|
|
+ goto fail;
|
|
|
+ for (nid = 0; nid < nodes; nid++) {
|
|
|
+ if (!toptree_get_child(tree, nid))
|
|
|
+ goto fail;
|
|
|
+ }
|
|
|
+ return tree;
|
|
|
+fail:
|
|
|
+ panic("NUMA emulation could not allocate topology");
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Move cores from physical topology into NUMA target topology
|
|
|
+ * and try to keep as much of the physical topology as possible.
|
|
|
+ */
|
|
|
+static struct toptree *toptree_to_numa(struct toptree *phys)
|
|
|
+{
|
|
|
+ static int first = 1;
|
|
|
+ struct toptree *numa;
|
|
|
+
|
|
|
+ cores_per_node_target = (cores_total + cores_free(phys)) / emu_nodes;
|
|
|
+ numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes);
|
|
|
+ if (first) {
|
|
|
+ toptree_to_numa_first(numa, phys);
|
|
|
+ first = 0;
|
|
|
+ }
|
|
|
+ toptree_to_numa_single(numa, phys, 0);
|
|
|
+ toptree_to_numa_single(numa, phys, 1);
|
|
|
+ toptree_unify_tree(numa);
|
|
|
+
|
|
|
+ WARN_ON(cpumask_weight(&phys->mask));
|
|
|
+ return numa;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Create a toptree out of the physical topology that we got from the hypervisor
|
|
|
+ */
|
|
|
+static struct toptree *toptree_from_topology(void)
|
|
|
+{
|
|
|
+ struct toptree *phys, *node, *book, *mc, *core;
|
|
|
+ struct cpu_topology_s390 *top;
|
|
|
+ int cpu;
|
|
|
+
|
|
|
+ phys = toptree_new(TOPTREE_ID_PHYS, 1);
|
|
|
+
|
|
|
+ for_each_online_cpu(cpu) {
|
|
|
+ top = &per_cpu(cpu_topology, cpu);
|
|
|
+ node = toptree_get_child(phys, 0);
|
|
|
+ book = toptree_get_child(node, top->book_id);
|
|
|
+ mc = toptree_get_child(book, top->socket_id);
|
|
|
+ core = toptree_get_child(mc, top->core_id);
|
|
|
+ if (!book || !mc || !core)
|
|
|
+ panic("NUMA emulation could not allocate memory");
|
|
|
+ cpumask_set_cpu(cpu, &core->mask);
|
|
|
+ toptree_update_mask(mc);
|
|
|
+ }
|
|
|
+ return phys;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Add toptree core to topology and create correct CPU masks
|
|
|
+ */
|
|
|
+static void topology_add_core(struct toptree *core)
|
|
|
+{
|
|
|
+ struct cpu_topology_s390 *top;
|
|
|
+ int cpu;
|
|
|
+
|
|
|
+ for_each_cpu(cpu, &core->mask) {
|
|
|
+ top = &per_cpu(cpu_topology, cpu);
|
|
|
+ cpumask_copy(&top->thread_mask, &core->mask);
|
|
|
+ cpumask_copy(&top->core_mask, &core_mc(core)->mask);
|
|
|
+ cpumask_copy(&top->book_mask, &core_book(core)->mask);
|
|
|
+ cpumask_set_cpu(cpu, node_to_cpumask_map[core_node(core)->id]);
|
|
|
+ top->node_id = core_node(core)->id;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Apply toptree to topology and create CPU masks
|
|
|
+ */
|
|
|
+static void toptree_to_topology(struct toptree *numa)
|
|
|
+{
|
|
|
+ struct toptree *core;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ /* Clear all node masks */
|
|
|
+ for (i = 0; i < MAX_NUMNODES; i++)
|
|
|
+ cpumask_clear(node_to_cpumask_map[i]);
|
|
|
+
|
|
|
+ /* Rebuild all masks */
|
|
|
+ toptree_for_each(core, numa, CORE)
|
|
|
+ topology_add_core(core);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Show the node to core mapping
|
|
|
+ */
|
|
|
+static void print_node_to_core_map(void)
|
|
|
+{
|
|
|
+ int nid, cid;
|
|
|
+
|
|
|
+ if (!numa_debug_enabled)
|
|
|
+ return;
|
|
|
+ printk(KERN_DEBUG "NUMA node to core mapping\n");
|
|
|
+ for (nid = 0; nid < emu_nodes; nid++) {
|
|
|
+ printk(KERN_DEBUG " node %3d: ", nid);
|
|
|
+ for (cid = 0; cid < ARRAY_SIZE(cores_to_node_id); cid++) {
|
|
|
+ if (cores_to_node_id[cid] == nid)
|
|
|
+ printk(KERN_CONT "%d ", cid);
|
|
|
+ }
|
|
|
+ printk(KERN_CONT "\n");
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Transfer physical topology into a NUMA topology and modify CPU masks
|
|
|
+ * according to the NUMA topology.
|
|
|
+ *
|
|
|
+ * This function is called under the CPU hotplug lock.
|
|
|
+ */
|
|
|
+static void emu_update_cpu_topology(void)
|
|
|
+{
|
|
|
+ struct toptree *phys, *numa;
|
|
|
+
|
|
|
+ phys = toptree_from_topology();
|
|
|
+ numa = toptree_to_numa(phys);
|
|
|
+ toptree_free(phys);
|
|
|
+ toptree_to_topology(numa);
|
|
|
+ toptree_free(numa);
|
|
|
+ print_node_to_core_map();
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum
|
|
|
+ * alignment (needed for memory hotplug).
|
|
|
+ */
|
|
|
+static unsigned long emu_setup_size_adjust(unsigned long size)
|
|
|
+{
|
|
|
+ size = size ? : CONFIG_EMU_SIZE;
|
|
|
+ size = roundup(size, memory_block_size_bytes());
|
|
|
+ return size;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * If we have not enough memory for the specified nodes, reduce the node count.
|
|
|
+ */
|
|
|
+static int emu_setup_nodes_adjust(int nodes)
|
|
|
+{
|
|
|
+ int nodes_max;
|
|
|
+
|
|
|
+ nodes_max = memblock.memory.total_size / emu_size;
|
|
|
+ nodes_max = max(nodes_max, 1);
|
|
|
+ if (nodes_max >= nodes)
|
|
|
+ return nodes;
|
|
|
+ pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes);
|
|
|
+ return nodes_max;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Early emu setup
|
|
|
+ */
|
|
|
+static void emu_setup(void)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+
|
|
|
+ emu_size = emu_setup_size_adjust(emu_size);
|
|
|
+ emu_nodes = emu_setup_nodes_adjust(emu_nodes);
|
|
|
+ for (i = 0; i < ARRAY_SIZE(cores_to_node_id); i++)
|
|
|
+ cores_to_node_id[i] = NODE_ID_FREE;
|
|
|
+ pr_info("Creating %d nodes with memory stripe size %ld MB\n",
|
|
|
+ emu_nodes, emu_size >> 20);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return node id for given page number
|
|
|
+ */
|
|
|
+static int emu_pfn_to_nid(unsigned long pfn)
|
|
|
+{
|
|
|
+ return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return stripe size
|
|
|
+ */
|
|
|
+static unsigned long emu_align(void)
|
|
|
+{
|
|
|
+ return emu_size;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return distance between two nodes
|
|
|
+ */
|
|
|
+static int emu_distance(int node1, int node2)
|
|
|
+{
|
|
|
+ return (node1 != node2) * EMU_NODE_DIST;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Define callbacks for generic s390 NUMA infrastructure
|
|
|
+ */
|
|
|
+const struct numa_mode numa_mode_emu = {
|
|
|
+ .name = "emu",
|
|
|
+ .setup = emu_setup,
|
|
|
+ .update_cpu_topology = emu_update_cpu_topology,
|
|
|
+ .__pfn_to_nid = emu_pfn_to_nid,
|
|
|
+ .align = emu_align,
|
|
|
+ .distance = emu_distance,
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * Kernel parameter: emu_nodes=<n>
|
|
|
+ */
|
|
|
+static int __init early_parse_emu_nodes(char *p)
|
|
|
+{
|
|
|
+ int count;
|
|
|
+
|
|
|
+ if (kstrtoint(p, 0, &count) != 0 || count <= 0)
|
|
|
+ return 0;
|
|
|
+ if (count <= 0)
|
|
|
+ return 0;
|
|
|
+ emu_nodes = min(count, MAX_NUMNODES);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+early_param("emu_nodes", early_parse_emu_nodes);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Kernel parameter: emu_size=[<n>[k|M|G|T]]
|
|
|
+ */
|
|
|
+static int __init early_parse_emu_size(char *p)
|
|
|
+{
|
|
|
+ emu_size = memparse(p, NULL);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+early_param("emu_size", early_parse_emu_size);
|