|
@@ -0,0 +1,736 @@
|
|
|
+.. |struct dev_pm_ops| replace:: :c:type:`struct dev_pm_ops <dev_pm_ops>`
|
|
|
+.. |struct dev_pm_domain| replace:: :c:type:`struct dev_pm_domain <dev_pm_domain>`
|
|
|
+.. |struct bus_type| replace:: :c:type:`struct bus_type <bus_type>`
|
|
|
+.. |struct device_type| replace:: :c:type:`struct device_type <device_type>`
|
|
|
+.. |struct class| replace:: :c:type:`struct class <class>`
|
|
|
+.. |struct wakeup_source| replace:: :c:type:`struct wakeup_source <wakeup_source>`
|
|
|
+.. |struct device| replace:: :c:type:`struct device <device>`
|
|
|
+
|
|
|
+==============================
|
|
|
+Device Power Management Basics
|
|
|
+==============================
|
|
|
+
|
|
|
+::
|
|
|
+
|
|
|
+ Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
|
|
|
+ Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu>
|
|
|
+ Copyright (c) 2016 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
+
|
|
|
+Most of the code in Linux is device drivers, so most of the Linux power
|
|
|
+management (PM) code is also driver-specific. Most drivers will do very
|
|
|
+little; others, especially for platforms with small batteries (like cell
|
|
|
+phones), will do a lot.
|
|
|
+
|
|
|
+This writeup gives an overview of how drivers interact with system-wide
|
|
|
+power management goals, emphasizing the models and interfaces that are
|
|
|
+shared by everything that hooks up to the driver model core. Read it as
|
|
|
+background for the domain-specific work you'd do with any specific driver.
|
|
|
+
|
|
|
+
|
|
|
+Two Models for Device Power Management
|
|
|
+======================================
|
|
|
+
|
|
|
+Drivers will use one or both of these models to put devices into low-power
|
|
|
+states:
|
|
|
+
|
|
|
+ System Sleep model:
|
|
|
+
|
|
|
+ Drivers can enter low-power states as part of entering system-wide
|
|
|
+ low-power states like "suspend" (also known as "suspend-to-RAM"), or
|
|
|
+ (mostly for systems with disks) "hibernation" (also known as
|
|
|
+ "suspend-to-disk").
|
|
|
+
|
|
|
+ This is something that device, bus, and class drivers collaborate on
|
|
|
+ by implementing various role-specific suspend and resume methods to
|
|
|
+ cleanly power down hardware and software subsystems, then reactivate
|
|
|
+ them without loss of data.
|
|
|
+
|
|
|
+ Some drivers can manage hardware wakeup events, which make the system
|
|
|
+ leave the low-power state. This feature may be enabled or disabled
|
|
|
+ using the relevant :file:`/sys/devices/.../power/wakeup` file (for
|
|
|
+ Ethernet drivers the ioctl interface used by ethtool may also be used
|
|
|
+ for this purpose); enabling it may cost some power usage, but let the
|
|
|
+ whole system enter low-power states more often.
|
|
|
+
|
|
|
+ Runtime Power Management model:
|
|
|
+
|
|
|
+ Devices may also be put into low-power states while the system is
|
|
|
+ running, independently of other power management activity in principle.
|
|
|
+ However, devices are not generally independent of each other (for
|
|
|
+ example, a parent device cannot be suspended unless all of its child
|
|
|
+ devices have been suspended). Moreover, depending on the bus type the
|
|
|
+ device is on, it may be necessary to carry out some bus-specific
|
|
|
+ operations on the device for this purpose. Devices put into low power
|
|
|
+ states at run time may require special handling during system-wide power
|
|
|
+ transitions (suspend or hibernation).
|
|
|
+
|
|
|
+ For these reasons not only the device driver itself, but also the
|
|
|
+ appropriate subsystem (bus type, device type or device class) driver and
|
|
|
+ the PM core are involved in runtime power management. As in the system
|
|
|
+ sleep power management case, they need to collaborate by implementing
|
|
|
+ various role-specific suspend and resume methods, so that the hardware
|
|
|
+ is cleanly powered down and reactivated without data or service loss.
|
|
|
+
|
|
|
+There's not a lot to be said about those low-power states except that they are
|
|
|
+very system-specific, and often device-specific. Also, that if enough devices
|
|
|
+have been put into low-power states (at runtime), the effect may be very similar
|
|
|
+to entering some system-wide low-power state (system sleep) ... and that
|
|
|
+synergies exist, so that several drivers using runtime PM might put the system
|
|
|
+into a state where even deeper power saving options are available.
|
|
|
+
|
|
|
+Most suspended devices will have quiesced all I/O: no more DMA or IRQs (except
|
|
|
+for wakeup events), no more data read or written, and requests from upstream
|
|
|
+drivers are no longer accepted. A given bus or platform may have different
|
|
|
+requirements though.
|
|
|
+
|
|
|
+Examples of hardware wakeup events include an alarm from a real time clock,
|
|
|
+network wake-on-LAN packets, keyboard or mouse activity, and media insertion
|
|
|
+or removal (for PCMCIA, MMC/SD, USB, and so on).
|
|
|
+
|
|
|
+Interfaces for Entering System Sleep States
|
|
|
+===========================================
|
|
|
+
|
|
|
+There are programming interfaces provided for subsystems (bus type, device type,
|
|
|
+device class) and device drivers to allow them to participate in the power
|
|
|
+management of devices they are concerned with. These interfaces cover both
|
|
|
+system sleep and runtime power management.
|
|
|
+
|
|
|
+
|
|
|
+Device Power Management Operations
|
|
|
+----------------------------------
|
|
|
+
|
|
|
+Device power management operations, at the subsystem level as well as at the
|
|
|
+device driver level, are implemented by defining and populating objects of type
|
|
|
+|struct dev_pm_ops| defined in :file:`include/linux/pm.h`. The roles of the
|
|
|
+methods included in it will be explained in what follows. For now, it should be
|
|
|
+sufficient to remember that the last three methods are specific to runtime power
|
|
|
+management while the remaining ones are used during system-wide power
|
|
|
+transitions.
|
|
|
+
|
|
|
+There also is a deprecated "old" or "legacy" interface for power management
|
|
|
+operations available at least for some subsystems. This approach does not use
|
|
|
+|struct dev_pm_ops| objects and it is suitable only for implementing system
|
|
|
+sleep power management methods in a limited way. Therefore it is not described
|
|
|
+in this document, so please refer directly to the source code for more
|
|
|
+information about it.
|
|
|
+
|
|
|
+
|
|
|
+Subsystem-Level Methods
|
|
|
+-----------------------
|
|
|
+
|
|
|
+The core methods to suspend and resume devices reside in
|
|
|
+|struct dev_pm_ops| pointed to by the :c:member:`ops` member of
|
|
|
+|struct dev_pm_domain|, or by the :c:member:`pm` member of |struct bus_type|,
|
|
|
+|struct device_type| and |struct class|. They are mostly of interest to the
|
|
|
+people writing infrastructure for platforms and buses, like PCI or USB, or
|
|
|
+device type and device class drivers. They also are relevant to the writers of
|
|
|
+device drivers whose subsystems (PM domains, device types, device classes and
|
|
|
+bus types) don't provide all power management methods.
|
|
|
+
|
|
|
+Bus drivers implement these methods as appropriate for the hardware and the
|
|
|
+drivers using it; PCI works differently from USB, and so on. Not many people
|
|
|
+write subsystem-level drivers; most driver code is a "device driver" that builds
|
|
|
+on top of bus-specific framework code.
|
|
|
+
|
|
|
+For more information on these driver calls, see the description later;
|
|
|
+they are called in phases for every device, respecting the parent-child
|
|
|
+sequencing in the driver model tree.
|
|
|
+
|
|
|
+
|
|
|
+:file:`/sys/devices/.../power/wakeup` files
|
|
|
+-------------------------------------------
|
|
|
+
|
|
|
+All device objects in the driver model contain fields that control the handling
|
|
|
+of system wakeup events (hardware signals that can force the system out of a
|
|
|
+sleep state). These fields are initialized by bus or device driver code using
|
|
|
+:c:func:`device_set_wakeup_capable()` and :c:func:`device_set_wakeup_enable()`,
|
|
|
+defined in :file:`include/linux/pm_wakeup.h`.
|
|
|
+
|
|
|
+The :c:member:`power.can_wakeup` flag just records whether the device (and its
|
|
|
+driver) can physically support wakeup events. The
|
|
|
+:c:func:`device_set_wakeup_capable()` routine affects this flag. The
|
|
|
+:c:member:`power.wakeup` field is a pointer to an object of type
|
|
|
+|struct wakeup_source| used for controlling whether or not the device should use
|
|
|
+its system wakeup mechanism and for notifying the PM core of system wakeup
|
|
|
+events signaled by the device. This object is only present for wakeup-capable
|
|
|
+devices (i.e. devices whose :c:member:`can_wakeup` flags are set) and is created
|
|
|
+(or removed) by :c:func:`device_set_wakeup_capable()`.
|
|
|
+
|
|
|
+Whether or not a device is capable of issuing wakeup events is a hardware
|
|
|
+matter, and the kernel is responsible for keeping track of it. By contrast,
|
|
|
+whether or not a wakeup-capable device should issue wakeup events is a policy
|
|
|
+decision, and it is managed by user space through a sysfs attribute: the
|
|
|
+:file:`power/wakeup` file. User space can write the "enabled" or "disabled"
|
|
|
+strings to it to indicate whether or not, respectively, the device is supposed
|
|
|
+to signal system wakeup. This file is only present if the
|
|
|
+:c:member:`power.wakeup` object exists for the given device and is created (or
|
|
|
+removed) along with that object, by :c:func:`device_set_wakeup_capable()`.
|
|
|
+Reads from the file will return the corresponding string.
|
|
|
+
|
|
|
+The initial value in the :file:`power/wakeup` file is "disabled" for the
|
|
|
+majority of devices; the major exceptions are power buttons, keyboards, and
|
|
|
+Ethernet adapters whose WoL (wake-on-LAN) feature has been set up with ethtool.
|
|
|
+It should also default to "enabled" for devices that don't generate wakeup
|
|
|
+requests on their own but merely forward wakeup requests from one bus to another
|
|
|
+(like PCI Express ports).
|
|
|
+
|
|
|
+The :c:func:`device_may_wakeup()` routine returns true only if the
|
|
|
+:c:member:`power.wakeup` object exists and the corresponding :file:`power/wakeup`
|
|
|
+file contains the "enabled" string. This information is used by subsystems,
|
|
|
+like the PCI bus type code, to see whether or not to enable the devices' wakeup
|
|
|
+mechanisms. If device wakeup mechanisms are enabled or disabled directly by
|
|
|
+drivers, they also should use :c:func:`device_may_wakeup()` to decide what to do
|
|
|
+during a system sleep transition. Device drivers, however, are not expected to
|
|
|
+call :c:func:`device_set_wakeup_enable()` directly in any case.
|
|
|
+
|
|
|
+It ought to be noted that system wakeup is conceptually different from "remote
|
|
|
+wakeup" used by runtime power management, although it may be supported by the
|
|
|
+same physical mechanism. Remote wakeup is a feature allowing devices in
|
|
|
+low-power states to trigger specific interrupts to signal conditions in which
|
|
|
+they should be put into the full-power state. Those interrupts may or may not
|
|
|
+be used to signal system wakeup events, depending on the hardware design. On
|
|
|
+some systems it is impossible to trigger them from system sleep states. In any
|
|
|
+case, remote wakeup should always be enabled for runtime power management for
|
|
|
+all devices and drivers that support it.
|
|
|
+
|
|
|
+
|
|
|
+:file:`/sys/devices/.../power/control` files
|
|
|
+--------------------------------------------
|
|
|
+
|
|
|
+Each device in the driver model has a flag to control whether it is subject to
|
|
|
+runtime power management. This flag, :c:member:`runtime_auto`, is initialized
|
|
|
+by the bus type (or generally subsystem) code using :c:func:`pm_runtime_allow()`
|
|
|
+or :c:func:`pm_runtime_forbid()`; the default is to allow runtime power
|
|
|
+management.
|
|
|
+
|
|
|
+The setting can be adjusted by user space by writing either "on" or "auto" to
|
|
|
+the device's :file:`power/control` sysfs file. Writing "auto" calls
|
|
|
+:c:func:`pm_runtime_allow()`, setting the flag and allowing the device to be
|
|
|
+runtime power-managed by its driver. Writing "on" calls
|
|
|
+:c:func:`pm_runtime_forbid()`, clearing the flag, returning the device to full
|
|
|
+power if it was in a low-power state, and preventing the
|
|
|
+device from being runtime power-managed. User space can check the current value
|
|
|
+of the :c:member:`runtime_auto` flag by reading that file.
|
|
|
+
|
|
|
+The device's :c:member:`runtime_auto` flag has no effect on the handling of
|
|
|
+system-wide power transitions. In particular, the device can (and in the
|
|
|
+majority of cases should and will) be put into a low-power state during a
|
|
|
+system-wide transition to a sleep state even though its :c:member:`runtime_auto`
|
|
|
+flag is clear.
|
|
|
+
|
|
|
+For more information about the runtime power management framework, refer to
|
|
|
+:file:`Documentation/power/runtime_pm.txt`.
|
|
|
+
|
|
|
+
|
|
|
+Calling Drivers to Enter and Leave System Sleep States
|
|
|
+======================================================
|
|
|
+
|
|
|
+When the system goes into a sleep state, each device's driver is asked to
|
|
|
+suspend the device by putting it into a state compatible with the target
|
|
|
+system state. That's usually some version of "off", but the details are
|
|
|
+system-specific. Also, wakeup-enabled devices will usually stay partly
|
|
|
+functional in order to wake the system.
|
|
|
+
|
|
|
+When the system leaves that low-power state, the device's driver is asked to
|
|
|
+resume it by returning it to full power. The suspend and resume operations
|
|
|
+always go together, and both are multi-phase operations.
|
|
|
+
|
|
|
+For simple drivers, suspend might quiesce the device using class code
|
|
|
+and then turn its hardware as "off" as possible during suspend_noirq. The
|
|
|
+matching resume calls would then completely reinitialize the hardware
|
|
|
+before reactivating its class I/O queues.
|
|
|
+
|
|
|
+More power-aware drivers might prepare the devices for triggering system wakeup
|
|
|
+events.
|
|
|
+
|
|
|
+
|
|
|
+Call Sequence Guarantees
|
|
|
+------------------------
|
|
|
+
|
|
|
+To ensure that bridges and similar links needing to talk to a device are
|
|
|
+available when the device is suspended or resumed, the device hierarchy is
|
|
|
+walked in a bottom-up order to suspend devices. A top-down order is
|
|
|
+used to resume those devices.
|
|
|
+
|
|
|
+The ordering of the device hierarchy is defined by the order in which devices
|
|
|
+get registered: a child can never be registered, probed or resumed before
|
|
|
+its parent; and can't be removed or suspended after that parent.
|
|
|
+
|
|
|
+The policy is that the device hierarchy should match hardware bus topology.
|
|
|
+[Or at least the control bus, for devices which use multiple busses.]
|
|
|
+In particular, this means that a device registration may fail if the parent of
|
|
|
+the device is suspending (i.e. has been chosen by the PM core as the next
|
|
|
+device to suspend) or has already suspended, as well as after all of the other
|
|
|
+devices have been suspended. Device drivers must be prepared to cope with such
|
|
|
+situations.
|
|
|
+
|
|
|
+
|
|
|
+System Power Management Phases
|
|
|
+------------------------------
|
|
|
+
|
|
|
+Suspending or resuming the system is done in several phases. Different phases
|
|
|
+are used for suspend-to-idle, shallow (standby), and deep ("suspend-to-RAM")
|
|
|
+sleep states and the hibernation state ("suspend-to-disk"). Each phase involves
|
|
|
+executing callbacks for every device before the next phase begins. Not all
|
|
|
+buses or classes support all these callbacks and not all drivers use all the
|
|
|
+callbacks. The various phases always run after tasks have been frozen and
|
|
|
+before they are unfrozen. Furthermore, the ``*_noirq phases`` run at a time
|
|
|
+when IRQ handlers have been disabled (except for those marked with the
|
|
|
+IRQF_NO_SUSPEND flag).
|
|
|
+
|
|
|
+All phases use PM domain, bus, type, class or driver callbacks (that is, methods
|
|
|
+defined in ``dev->pm_domain->ops``, ``dev->bus->pm``, ``dev->type->pm``,
|
|
|
+``dev->class->pm`` or ``dev->driver->pm``). These callbacks are regarded by the
|
|
|
+PM core as mutually exclusive. Moreover, PM domain callbacks always take
|
|
|
+precedence over all of the other callbacks and, for example, type callbacks take
|
|
|
+precedence over bus, class and driver callbacks. To be precise, the following
|
|
|
+rules are used to determine which callback to execute in the given phase:
|
|
|
+
|
|
|
+ 1. If ``dev->pm_domain`` is present, the PM core will choose the callback
|
|
|
+ provided by ``dev->pm_domain->ops`` for execution.
|
|
|
+
|
|
|
+ 2. Otherwise, if both ``dev->type`` and ``dev->type->pm`` are present, the
|
|
|
+ callback provided by ``dev->type->pm`` will be chosen for execution.
|
|
|
+
|
|
|
+ 3. Otherwise, if both ``dev->class`` and ``dev->class->pm`` are present,
|
|
|
+ the callback provided by ``dev->class->pm`` will be chosen for
|
|
|
+ execution.
|
|
|
+
|
|
|
+ 4. Otherwise, if both ``dev->bus`` and ``dev->bus->pm`` are present, the
|
|
|
+ callback provided by ``dev->bus->pm`` will be chosen for execution.
|
|
|
+
|
|
|
+This allows PM domains and device types to override callbacks provided by bus
|
|
|
+types or device classes if necessary.
|
|
|
+
|
|
|
+The PM domain, type, class and bus callbacks may in turn invoke device- or
|
|
|
+driver-specific methods stored in ``dev->driver->pm``, but they don't have to do
|
|
|
+that.
|
|
|
+
|
|
|
+If the subsystem callback chosen for execution is not present, the PM core will
|
|
|
+execute the corresponding method from the ``dev->driver->pm`` set instead if
|
|
|
+there is one.
|
|
|
+
|
|
|
+
|
|
|
+Entering System Suspend
|
|
|
+-----------------------
|
|
|
+
|
|
|
+When the system goes into the freeze, standby or memory sleep state,
|
|
|
+the phases are: ``prepare``, ``suspend``, ``suspend_late``, ``suspend_noirq``.
|
|
|
+
|
|
|
+ 1. The ``prepare`` phase is meant to prevent races by preventing new
|
|
|
+ devices from being registered; the PM core would never know that all the
|
|
|
+ children of a device had been suspended if new children could be
|
|
|
+ registered at will. [By contrast, from the PM core's perspective,
|
|
|
+ devices may be unregistered at any time.] Unlike the other
|
|
|
+ suspend-related phases, during the ``prepare`` phase the device
|
|
|
+ hierarchy is traversed top-down.
|
|
|
+
|
|
|
+ After the ``->prepare`` callback method returns, no new children may be
|
|
|
+ registered below the device. The method may also prepare the device or
|
|
|
+ driver in some way for the upcoming system power transition, but it
|
|
|
+ should not put the device into a low-power state.
|
|
|
+
|
|
|
+ For devices supporting runtime power management, the return value of the
|
|
|
+ prepare callback can be used to indicate to the PM core that it may
|
|
|
+ safely leave the device in runtime suspend (if runtime-suspended
|
|
|
+ already), provided that all of the device's descendants are also left in
|
|
|
+ runtime suspend. Namely, if the prepare callback returns a positive
|
|
|
+ number and that happens for all of the descendants of the device too,
|
|
|
+ and all of them (including the device itself) are runtime-suspended, the
|
|
|
+ PM core will skip the ``suspend``, ``suspend_late`` and
|
|
|
+ ``suspend_noirq`` phases as well as all of the corresponding phases of
|
|
|
+ the subsequent device resume for all of these devices. In that case,
|
|
|
+ the ``->complete`` callback will be invoked directly after the
|
|
|
+ ``->prepare`` callback and is entirely responsible for putting the
|
|
|
+ device into a consistent state as appropriate.
|
|
|
+
|
|
|
+ Note that this direct-complete procedure applies even if the device is
|
|
|
+ disabled for runtime PM; only the runtime-PM status matters. It follows
|
|
|
+ that if a device has system-sleep callbacks but does not support runtime
|
|
|
+ PM, then its prepare callback must never return a positive value. This
|
|
|
+ is because all such devices are initially set to runtime-suspended with
|
|
|
+ runtime PM disabled.
|
|
|
+
|
|
|
+ 2. The ``->suspend`` methods should quiesce the device to stop it from
|
|
|
+ performing I/O. They also may save the device registers and put it into
|
|
|
+ the appropriate low-power state, depending on the bus type the device is
|
|
|
+ on, and they may enable wakeup events.
|
|
|
+
|
|
|
+ 3. For a number of devices it is convenient to split suspend into the
|
|
|
+ "quiesce device" and "save device state" phases, in which cases
|
|
|
+ ``suspend_late`` is meant to do the latter. It is always executed after
|
|
|
+ runtime power management has been disabled for the device in question.
|
|
|
+
|
|
|
+ 4. The ``suspend_noirq`` phase occurs after IRQ handlers have been disabled,
|
|
|
+ which means that the driver's interrupt handler will not be called while
|
|
|
+ the callback method is running. The ``->suspend_noirq`` methods should
|
|
|
+ save the values of the device's registers that weren't saved previously
|
|
|
+ and finally put the device into the appropriate low-power state.
|
|
|
+
|
|
|
+ The majority of subsystems and device drivers need not implement this
|
|
|
+ callback. However, bus types allowing devices to share interrupt
|
|
|
+ vectors, like PCI, generally need it; otherwise a driver might encounter
|
|
|
+ an error during the suspend phase by fielding a shared interrupt
|
|
|
+ generated by some other device after its own device had been set to low
|
|
|
+ power.
|
|
|
+
|
|
|
+At the end of these phases, drivers should have stopped all I/O transactions
|
|
|
+(DMA, IRQs), saved enough state that they can re-initialize or restore previous
|
|
|
+state (as needed by the hardware), and placed the device into a low-power state.
|
|
|
+On many platforms they will gate off one or more clock sources; sometimes they
|
|
|
+will also switch off power supplies or reduce voltages. [Drivers supporting
|
|
|
+runtime PM may already have performed some or all of these steps.]
|
|
|
+
|
|
|
+If :c:func:`device_may_wakeup(dev)` returns ``true``, the device should be
|
|
|
+prepared for generating hardware wakeup signals to trigger a system wakeup event
|
|
|
+when the system is in the sleep state. For example, :c:func:`enable_irq_wake()`
|
|
|
+might identify GPIO signals hooked up to a switch or other external hardware,
|
|
|
+and :c:func:`pci_enable_wake()` does something similar for the PCI PME signal.
|
|
|
+
|
|
|
+If any of these callbacks returns an error, the system won't enter the desired
|
|
|
+low-power state. Instead, the PM core will unwind its actions by resuming all
|
|
|
+the devices that were suspended.
|
|
|
+
|
|
|
+
|
|
|
+Leaving System Suspend
|
|
|
+----------------------
|
|
|
+
|
|
|
+When resuming from freeze, standby or memory sleep, the phases are:
|
|
|
+``resume_noirq``, ``resume_early``, ``resume``, ``complete``.
|
|
|
+
|
|
|
+ 1. The ``->resume_noirq`` callback methods should perform any actions
|
|
|
+ needed before the driver's interrupt handlers are invoked. This
|
|
|
+ generally means undoing the actions of the ``suspend_noirq`` phase. If
|
|
|
+ the bus type permits devices to share interrupt vectors, like PCI, the
|
|
|
+ method should bring the device and its driver into a state in which the
|
|
|
+ driver can recognize if the device is the source of incoming interrupts,
|
|
|
+ if any, and handle them correctly.
|
|
|
+
|
|
|
+ For example, the PCI bus type's ``->pm.resume_noirq()`` puts the device
|
|
|
+ into the full-power state (D0 in the PCI terminology) and restores the
|
|
|
+ standard configuration registers of the device. Then it calls the
|
|
|
+ device driver's ``->pm.resume_noirq()`` method to perform device-specific
|
|
|
+ actions.
|
|
|
+
|
|
|
+ 2. The ``->resume_early`` methods should prepare devices for the execution
|
|
|
+ of the resume methods. This generally involves undoing the actions of
|
|
|
+ the preceding ``suspend_late`` phase.
|
|
|
+
|
|
|
+ 3. The ``->resume`` methods should bring the device back to its operating
|
|
|
+ state, so that it can perform normal I/O. This generally involves
|
|
|
+ undoing the actions of the ``suspend`` phase.
|
|
|
+
|
|
|
+ 4. The ``complete`` phase should undo the actions of the ``prepare`` phase.
|
|
|
+ For this reason, unlike the other resume-related phases, during the
|
|
|
+ ``complete`` phase the device hierarchy is traversed bottom-up.
|
|
|
+
|
|
|
+ Note, however, that new children may be registered below the device as
|
|
|
+ soon as the ``->resume`` callbacks occur; it's not necessary to wait
|
|
|
+ until the ``complete`` phase with that.
|
|
|
+
|
|
|
+ Moreover, if the preceding ``->prepare`` callback returned a positive
|
|
|
+ number, the device may have been left in runtime suspend throughout the
|
|
|
+ whole system suspend and resume (the ``suspend``, ``suspend_late``,
|
|
|
+ ``suspend_noirq`` phases of system suspend and the ``resume_noirq``,
|
|
|
+ ``resume_early``, ``resume`` phases of system resume may have been
|
|
|
+ skipped for it). In that case, the ``->complete`` callback is entirely
|
|
|
+ responsible for putting the device into a consistent state after system
|
|
|
+ suspend if necessary. [For example, it may need to queue up a runtime
|
|
|
+ resume request for the device for this purpose.] To check if that is
|
|
|
+ the case, the ``->complete`` callback can consult the device's
|
|
|
+ ``power.direct_complete`` flag. Namely, if that flag is set when the
|
|
|
+ ``->complete`` callback is being run, it has been called directly after
|
|
|
+ the preceding ``->prepare`` and special actions may be required
|
|
|
+ to make the device work correctly afterward.
|
|
|
+
|
|
|
+At the end of these phases, drivers should be as functional as they were before
|
|
|
+suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are
|
|
|
+gated on.
|
|
|
+
|
|
|
+However, the details here may again be platform-specific. For example,
|
|
|
+some systems support multiple "run" states, and the mode in effect at
|
|
|
+the end of resume might not be the one which preceded suspension.
|
|
|
+That means availability of certain clocks or power supplies changed,
|
|
|
+which could easily affect how a driver works.
|
|
|
+
|
|
|
+Drivers need to be able to handle hardware which has been reset since all of the
|
|
|
+suspend methods were called, for example by complete reinitialization.
|
|
|
+This may be the hardest part, and the one most protected by NDA'd documents
|
|
|
+and chip errata. It's simplest if the hardware state hasn't changed since
|
|
|
+the suspend was carried out, but that can only be guaranteed if the target
|
|
|
+system sleep entered was suspend-to-idle. For the other system sleep states
|
|
|
+that may not be the case (and usually isn't for ACPI-defined system sleep
|
|
|
+states, like S3).
|
|
|
+
|
|
|
+Drivers must also be prepared to notice that the device has been removed
|
|
|
+while the system was powered down, whenever that's physically possible.
|
|
|
+PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common examples of busses
|
|
|
+where common Linux platforms will see such removal. Details of how drivers
|
|
|
+will notice and handle such removals are currently bus-specific, and often
|
|
|
+involve a separate thread.
|
|
|
+
|
|
|
+These callbacks may return an error value, but the PM core will ignore such
|
|
|
+errors since there's nothing it can do about them other than printing them in
|
|
|
+the system log.
|
|
|
+
|
|
|
+
|
|
|
+Entering Hibernation
|
|
|
+--------------------
|
|
|
+
|
|
|
+Hibernating the system is more complicated than putting it into sleep states,
|
|
|
+because it involves creating and saving a system image. Therefore there are
|
|
|
+more phases for hibernation, with a different set of callbacks. These phases
|
|
|
+always run after tasks have been frozen and enough memory has been freed.
|
|
|
+
|
|
|
+The general procedure for hibernation is to quiesce all devices ("freeze"),
|
|
|
+create an image of the system memory while everything is stable, reactivate all
|
|
|
+devices ("thaw"), write the image to permanent storage, and finally shut down
|
|
|
+the system ("power off"). The phases used to accomplish this are: ``prepare``,
|
|
|
+``freeze``, ``freeze_late``, ``freeze_noirq``, ``thaw_noirq``, ``thaw_early``,
|
|
|
+``thaw``, ``complete``, ``prepare``, ``poweroff``, ``poweroff_late``,
|
|
|
+``poweroff_noirq``.
|
|
|
+
|
|
|
+ 1. The ``prepare`` phase is discussed in the "Entering System Suspend"
|
|
|
+ section above.
|
|
|
+
|
|
|
+ 2. The ``->freeze`` methods should quiesce the device so that it doesn't
|
|
|
+ generate IRQs or DMA, and they may need to save the values of device
|
|
|
+ registers. However the device does not have to be put in a low-power
|
|
|
+ state, and to save time it's best not to do so. Also, the device should
|
|
|
+ not be prepared to generate wakeup events.
|
|
|
+
|
|
|
+ 3. The ``freeze_late`` phase is analogous to the ``suspend_late`` phase
|
|
|
+ described earlier, except that the device should not be put into a
|
|
|
+ low-power state and should not be allowed to generate wakeup events.
|
|
|
+
|
|
|
+ 4. The ``freeze_noirq`` phase is analogous to the ``suspend_noirq`` phase
|
|
|
+ discussed earlier, except again that the device should not be put into
|
|
|
+ a low-power state and should not be allowed to generate wakeup events.
|
|
|
+
|
|
|
+At this point the system image is created. All devices should be inactive and
|
|
|
+the contents of memory should remain undisturbed while this happens, so that the
|
|
|
+image forms an atomic snapshot of the system state.
|
|
|
+
|
|
|
+ 5. The ``thaw_noirq`` phase is analogous to the ``resume_noirq`` phase
|
|
|
+ discussed earlier. The main difference is that its methods can assume
|
|
|
+ the device is in the same state as at the end of the ``freeze_noirq``
|
|
|
+ phase.
|
|
|
+
|
|
|
+ 6. The ``thaw_early`` phase is analogous to the ``resume_early`` phase
|
|
|
+ described above. Its methods should undo the actions of the preceding
|
|
|
+ ``freeze_late``, if necessary.
|
|
|
+
|
|
|
+ 7. The ``thaw`` phase is analogous to the ``resume`` phase discussed
|
|
|
+ earlier. Its methods should bring the device back to an operating
|
|
|
+ state, so that it can be used for saving the image if necessary.
|
|
|
+
|
|
|
+ 8. The ``complete`` phase is discussed in the "Leaving System Suspend"
|
|
|
+ section above.
|
|
|
+
|
|
|
+At this point the system image is saved, and the devices then need to be
|
|
|
+prepared for the upcoming system shutdown. This is much like suspending them
|
|
|
+before putting the system into the suspend-to-idle, shallow or deep sleep state,
|
|
|
+and the phases are similar.
|
|
|
+
|
|
|
+ 9. The ``prepare`` phase is discussed above.
|
|
|
+
|
|
|
+ 10. The ``poweroff`` phase is analogous to the ``suspend`` phase.
|
|
|
+
|
|
|
+ 11. The ``poweroff_late`` phase is analogous to the ``suspend_late`` phase.
|
|
|
+
|
|
|
+ 12. The ``poweroff_noirq`` phase is analogous to the ``suspend_noirq`` phase.
|
|
|
+
|
|
|
+The ``->poweroff``, ``->poweroff_late`` and ``->poweroff_noirq`` callbacks
|
|
|
+should do essentially the same things as the ``->suspend``, ``->suspend_late``
|
|
|
+and ``->suspend_noirq`` callbacks, respectively. The only notable difference is
|
|
|
+that they need not store the device register values, because the registers
|
|
|
+should already have been stored during the ``freeze``, ``freeze_late`` or
|
|
|
+``freeze_noirq`` phases.
|
|
|
+
|
|
|
+
|
|
|
+Leaving Hibernation
|
|
|
+-------------------
|
|
|
+
|
|
|
+Resuming from hibernation is, again, more complicated than resuming from a sleep
|
|
|
+state in which the contents of main memory are preserved, because it requires
|
|
|
+a system image to be loaded into memory and the pre-hibernation memory contents
|
|
|
+to be restored before control can be passed back to the image kernel.
|
|
|
+
|
|
|
+Although in principle the image might be loaded into memory and the
|
|
|
+pre-hibernation memory contents restored by the boot loader, in practice this
|
|
|
+can't be done because boot loaders aren't smart enough and there is no
|
|
|
+established protocol for passing the necessary information. So instead, the
|
|
|
+boot loader loads a fresh instance of the kernel, called "the restore kernel",
|
|
|
+into memory and passes control to it in the usual way. Then the restore kernel
|
|
|
+reads the system image, restores the pre-hibernation memory contents, and passes
|
|
|
+control to the image kernel. Thus two different kernel instances are involved
|
|
|
+in resuming from hibernation. In fact, the restore kernel may be completely
|
|
|
+different from the image kernel: a different configuration and even a different
|
|
|
+version. This has important consequences for device drivers and their
|
|
|
+subsystems.
|
|
|
+
|
|
|
+To be able to load the system image into memory, the restore kernel needs to
|
|
|
+include at least a subset of device drivers allowing it to access the storage
|
|
|
+medium containing the image, although it doesn't need to include all of the
|
|
|
+drivers present in the image kernel. After the image has been loaded, the
|
|
|
+devices managed by the boot kernel need to be prepared for passing control back
|
|
|
+to the image kernel. This is very similar to the initial steps involved in
|
|
|
+creating a system image, and it is accomplished in the same way, using
|
|
|
+``prepare``, ``freeze``, and ``freeze_noirq`` phases. However, the devices
|
|
|
+affected by these phases are only those having drivers in the restore kernel;
|
|
|
+other devices will still be in whatever state the boot loader left them.
|
|
|
+
|
|
|
+Should the restoration of the pre-hibernation memory contents fail, the restore
|
|
|
+kernel would go through the "thawing" procedure described above, using the
|
|
|
+``thaw_noirq``, ``thaw_early``, ``thaw``, and ``complete`` phases, and then
|
|
|
+continue running normally. This happens only rarely. Most often the
|
|
|
+pre-hibernation memory contents are restored successfully and control is passed
|
|
|
+to the image kernel, which then becomes responsible for bringing the system back
|
|
|
+to the working state.
|
|
|
+
|
|
|
+To achieve this, the image kernel must restore the devices' pre-hibernation
|
|
|
+functionality. The operation is much like waking up from a sleep state (with
|
|
|
+the memory contents preserved), although it involves different phases:
|
|
|
+``restore_noirq``, ``restore_early``, ``restore``, ``complete``.
|
|
|
+
|
|
|
+ 1. The ``restore_noirq`` phase is analogous to the ``resume_noirq`` phase.
|
|
|
+
|
|
|
+ 2. The ``restore_early`` phase is analogous to the ``resume_early`` phase.
|
|
|
+
|
|
|
+ 3. The ``restore`` phase is analogous to the ``resume`` phase.
|
|
|
+
|
|
|
+ 4. The ``complete`` phase is discussed above.
|
|
|
+
|
|
|
+The main difference from ``resume[_early|_noirq]`` is that
|
|
|
+``restore[_early|_noirq]`` must assume the device has been accessed and
|
|
|
+reconfigured by the boot loader or the restore kernel. Consequently, the state
|
|
|
+of the device may be different from the state remembered from the ``freeze``,
|
|
|
+``freeze_late`` and ``freeze_noirq`` phases. The device may even need to be
|
|
|
+reset and completely re-initialized. In many cases this difference doesn't
|
|
|
+matter, so the ``->resume[_early|_noirq]`` and ``->restore[_early|_norq]``
|
|
|
+method pointers can be set to the same routines. Nevertheless, different
|
|
|
+callback pointers are used in case there is a situation where it actually does
|
|
|
+matter.
|
|
|
+
|
|
|
+
|
|
|
+Power Management Notifiers
|
|
|
+==========================
|
|
|
+
|
|
|
+There are some operations that cannot be carried out by the power management
|
|
|
+callbacks discussed above, because the callbacks occur too late or too early.
|
|
|
+To handle these cases, subsystems and device drivers may register power
|
|
|
+management notifiers that are called before tasks are frozen and after they have
|
|
|
+been thawed. Generally speaking, the PM notifiers are suitable for performing
|
|
|
+actions that either require user space to be available, or at least won't
|
|
|
+interfere with user space.
|
|
|
+
|
|
|
+For details refer to :doc:`notifiers`.
|
|
|
+
|
|
|
+
|
|
|
+Device Low-Power (suspend) States
|
|
|
+=================================
|
|
|
+
|
|
|
+Device low-power states aren't standard. One device might only handle
|
|
|
+"on" and "off", while another might support a dozen different versions of
|
|
|
+"on" (how many engines are active?), plus a state that gets back to "on"
|
|
|
+faster than from a full "off".
|
|
|
+
|
|
|
+Some buses define rules about what different suspend states mean. PCI
|
|
|
+gives one example: after the suspend sequence completes, a non-legacy
|
|
|
+PCI device may not perform DMA or issue IRQs, and any wakeup events it
|
|
|
+issues would be issued through the PME# bus signal. Plus, there are
|
|
|
+several PCI-standard device states, some of which are optional.
|
|
|
+
|
|
|
+In contrast, integrated system-on-chip processors often use IRQs as the
|
|
|
+wakeup event sources (so drivers would call :c:func:`enable_irq_wake`) and
|
|
|
+might be able to treat DMA completion as a wakeup event (sometimes DMA can stay
|
|
|
+active too, it'd only be the CPU and some peripherals that sleep).
|
|
|
+
|
|
|
+Some details here may be platform-specific. Systems may have devices that
|
|
|
+can be fully active in certain sleep states, such as an LCD display that's
|
|
|
+refreshed using DMA while most of the system is sleeping lightly ... and
|
|
|
+its frame buffer might even be updated by a DSP or other non-Linux CPU while
|
|
|
+the Linux control processor stays idle.
|
|
|
+
|
|
|
+Moreover, the specific actions taken may depend on the target system state.
|
|
|
+One target system state might allow a given device to be very operational;
|
|
|
+another might require a hard shut down with re-initialization on resume.
|
|
|
+And two different target systems might use the same device in different
|
|
|
+ways; the aforementioned LCD might be active in one product's "standby",
|
|
|
+but a different product using the same SOC might work differently.
|
|
|
+
|
|
|
+
|
|
|
+Device Power Management Domains
|
|
|
+===============================
|
|
|
+
|
|
|
+Sometimes devices share reference clocks or other power resources. In those
|
|
|
+cases it generally is not possible to put devices into low-power states
|
|
|
+individually. Instead, a set of devices sharing a power resource can be put
|
|
|
+into a low-power state together at the same time by turning off the shared
|
|
|
+power resource. Of course, they also need to be put into the full-power state
|
|
|
+together, by turning the shared power resource on. A set of devices with this
|
|
|
+property is often referred to as a power domain. A power domain may also be
|
|
|
+nested inside another power domain. The nested domain is referred to as the
|
|
|
+sub-domain of the parent domain.
|
|
|
+
|
|
|
+Support for power domains is provided through the :c:member:`pm_domain` field of
|
|
|
+|struct device|. This field is a pointer to an object of type
|
|
|
+|struct dev_pm_domain|, defined in :file:`include/linux/pm.h``, providing a set
|
|
|
+of power management callbacks analogous to the subsystem-level and device driver
|
|
|
+callbacks that are executed for the given device during all power transitions,
|
|
|
+instead of the respective subsystem-level callbacks. Specifically, if a
|
|
|
+device's :c:member:`pm_domain` pointer is not NULL, the ``->suspend()`` callback
|
|
|
+from the object pointed to by it will be executed instead of its subsystem's
|
|
|
+(e.g. bus type's) ``->suspend()`` callback and analogously for all of the
|
|
|
+remaining callbacks. In other words, power management domain callbacks, if
|
|
|
+defined for the given device, always take precedence over the callbacks provided
|
|
|
+by the device's subsystem (e.g. bus type).
|
|
|
+
|
|
|
+The support for device power management domains is only relevant to platforms
|
|
|
+needing to use the same device driver power management callbacks in many
|
|
|
+different power domain configurations and wanting to avoid incorporating the
|
|
|
+support for power domains into subsystem-level callbacks, for example by
|
|
|
+modifying the platform bus type. Other platforms need not implement it or take
|
|
|
+it into account in any way.
|
|
|
+
|
|
|
+Devices may be defined as IRQ-safe which indicates to the PM core that their
|
|
|
+runtime PM callbacks may be invoked with disabled interrupts (see
|
|
|
+:file:`Documentation/power/runtime_pm.txt` for more information). If an
|
|
|
+IRQ-safe device belongs to a PM domain, the runtime PM of the domain will be
|
|
|
+disallowed, unless the domain itself is defined as IRQ-safe. However, it
|
|
|
+makes sense to define a PM domain as IRQ-safe only if all the devices in it
|
|
|
+are IRQ-safe. Moreover, if an IRQ-safe domain has a parent domain, the runtime
|
|
|
+PM of the parent is only allowed if the parent itself is IRQ-safe too with the
|
|
|
+additional restriction that all child domains of an IRQ-safe parent must also
|
|
|
+be IRQ-safe.
|
|
|
+
|
|
|
+
|
|
|
+Runtime Power Management
|
|
|
+========================
|
|
|
+
|
|
|
+Many devices are able to dynamically power down while the system is still
|
|
|
+running. This feature is useful for devices that are not being used, and
|
|
|
+can offer significant power savings on a running system. These devices
|
|
|
+often support a range of runtime power states, which might use names such
|
|
|
+as "off", "sleep", "idle", "active", and so on. Those states will in some
|
|
|
+cases (like PCI) be partially constrained by the bus the device uses, and will
|
|
|
+usually include hardware states that are also used in system sleep states.
|
|
|
+
|
|
|
+A system-wide power transition can be started while some devices are in low
|
|
|
+power states due to runtime power management. The system sleep PM callbacks
|
|
|
+should recognize such situations and react to them appropriately, but the
|
|
|
+necessary actions are subsystem-specific.
|
|
|
+
|
|
|
+In some cases the decision may be made at the subsystem level while in other
|
|
|
+cases the device driver may be left to decide. In some cases it may be
|
|
|
+desirable to leave a suspended device in that state during a system-wide power
|
|
|
+transition, but in other cases the device must be put back into the full-power
|
|
|
+state temporarily, for example so that its system wakeup capability can be
|
|
|
+disabled. This all depends on the hardware and the design of the subsystem and
|
|
|
+device driver in question.
|
|
|
+
|
|
|
+During system-wide resume from a sleep state it's easiest to put devices into
|
|
|
+the full-power state, as explained in :file:`Documentation/power/runtime_pm.txt`.
|
|
|
+Refer to that document for more information regarding this particular issue as
|
|
|
+well as for information on the device runtime power management framework in
|
|
|
+general.
|