|
@@ -195,58 +195,6 @@ void __init sme_early_init(void)
|
|
|
swiotlb_force = SWIOTLB_FORCE;
|
|
|
}
|
|
|
|
|
|
-static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
|
|
|
- gfp_t gfp, unsigned long attrs)
|
|
|
-{
|
|
|
- unsigned int order;
|
|
|
- struct page *page;
|
|
|
- void *vaddr = NULL;
|
|
|
-
|
|
|
- order = get_order(size);
|
|
|
- page = alloc_pages_node(dev_to_node(dev), gfp, order);
|
|
|
- if (page) {
|
|
|
- dma_addr_t addr;
|
|
|
-
|
|
|
- /*
|
|
|
- * Since we will be clearing the encryption bit, check the
|
|
|
- * mask with it already cleared.
|
|
|
- */
|
|
|
- addr = __phys_to_dma(dev, page_to_phys(page));
|
|
|
- if ((addr + size) > dev->coherent_dma_mask) {
|
|
|
- __free_pages(page, get_order(size));
|
|
|
- } else {
|
|
|
- vaddr = page_address(page);
|
|
|
- *dma_handle = addr;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (!vaddr)
|
|
|
- vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
|
|
|
-
|
|
|
- if (!vaddr)
|
|
|
- return NULL;
|
|
|
-
|
|
|
- /* Clear the SME encryption bit for DMA use if not swiotlb area */
|
|
|
- if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) {
|
|
|
- set_memory_decrypted((unsigned long)vaddr, 1 << order);
|
|
|
- memset(vaddr, 0, PAGE_SIZE << order);
|
|
|
- *dma_handle = __sme_clr(*dma_handle);
|
|
|
- }
|
|
|
-
|
|
|
- return vaddr;
|
|
|
-}
|
|
|
-
|
|
|
-static void sev_free(struct device *dev, size_t size, void *vaddr,
|
|
|
- dma_addr_t dma_handle, unsigned long attrs)
|
|
|
-{
|
|
|
- /* Set the SME encryption bit for re-use if not swiotlb area */
|
|
|
- if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle)))
|
|
|
- set_memory_encrypted((unsigned long)vaddr,
|
|
|
- 1 << get_order(size));
|
|
|
-
|
|
|
- swiotlb_free_coherent(dev, size, vaddr, dma_handle);
|
|
|
-}
|
|
|
-
|
|
|
static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
|
|
|
{
|
|
|
pgprot_t old_prot, new_prot;
|
|
@@ -399,20 +347,6 @@ bool sev_active(void)
|
|
|
}
|
|
|
EXPORT_SYMBOL(sev_active);
|
|
|
|
|
|
-static const struct dma_map_ops sev_dma_ops = {
|
|
|
- .alloc = sev_alloc,
|
|
|
- .free = sev_free,
|
|
|
- .map_page = swiotlb_map_page,
|
|
|
- .unmap_page = swiotlb_unmap_page,
|
|
|
- .map_sg = swiotlb_map_sg_attrs,
|
|
|
- .unmap_sg = swiotlb_unmap_sg_attrs,
|
|
|
- .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
|
|
|
- .sync_single_for_device = swiotlb_sync_single_for_device,
|
|
|
- .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
|
|
|
- .sync_sg_for_device = swiotlb_sync_sg_for_device,
|
|
|
- .mapping_error = swiotlb_dma_mapping_error,
|
|
|
-};
|
|
|
-
|
|
|
/* Architecture __weak replacement functions */
|
|
|
void __init mem_encrypt_init(void)
|
|
|
{
|
|
@@ -423,12 +357,11 @@ void __init mem_encrypt_init(void)
|
|
|
swiotlb_update_mem_attributes();
|
|
|
|
|
|
/*
|
|
|
- * With SEV, DMA operations cannot use encryption. New DMA ops
|
|
|
- * are required in order to mark the DMA areas as decrypted or
|
|
|
- * to use bounce buffers.
|
|
|
+ * With SEV, DMA operations cannot use encryption, we need to use
|
|
|
+ * SWIOTLB to bounce buffer DMA operation.
|
|
|
*/
|
|
|
if (sev_active())
|
|
|
- dma_ops = &sev_dma_ops;
|
|
|
+ dma_ops = &swiotlb_dma_ops;
|
|
|
|
|
|
/*
|
|
|
* With SEV, we need to unroll the rep string I/O instructions.
|