|
@@ -101,7 +101,8 @@ static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
|
|
|
|
|
|
#define E1000_WRITE_REG_IO(a, reg, val) \
|
|
|
e1000_write_reg_io((a), E1000_##reg, val)
|
|
|
-static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw);
|
|
|
+static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
|
|
|
+ uint16_t duplex);
|
|
|
static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
|
|
|
|
|
|
/* IGP cable length table */
|
|
@@ -156,6 +157,14 @@ e1000_set_phy_type(struct e1000_hw *hw)
|
|
|
hw->phy_type = e1000_phy_igp;
|
|
|
break;
|
|
|
}
|
|
|
+ case IGP03E1000_E_PHY_ID:
|
|
|
+ hw->phy_type = e1000_phy_igp_3;
|
|
|
+ break;
|
|
|
+ case IFE_E_PHY_ID:
|
|
|
+ case IFE_PLUS_E_PHY_ID:
|
|
|
+ case IFE_C_E_PHY_ID:
|
|
|
+ hw->phy_type = e1000_phy_ife;
|
|
|
+ break;
|
|
|
case GG82563_E_PHY_ID:
|
|
|
if (hw->mac_type == e1000_80003es2lan) {
|
|
|
hw->phy_type = e1000_phy_gg82563;
|
|
@@ -332,6 +341,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
|
|
|
break;
|
|
|
case E1000_DEV_ID_82541EI:
|
|
|
case E1000_DEV_ID_82541EI_MOBILE:
|
|
|
+ case E1000_DEV_ID_82541ER_LOM:
|
|
|
hw->mac_type = e1000_82541;
|
|
|
break;
|
|
|
case E1000_DEV_ID_82541ER:
|
|
@@ -341,6 +351,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
|
|
|
hw->mac_type = e1000_82541_rev_2;
|
|
|
break;
|
|
|
case E1000_DEV_ID_82547EI:
|
|
|
+ case E1000_DEV_ID_82547EI_MOBILE:
|
|
|
hw->mac_type = e1000_82547;
|
|
|
break;
|
|
|
case E1000_DEV_ID_82547GI:
|
|
@@ -354,6 +365,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
|
|
|
case E1000_DEV_ID_82572EI_COPPER:
|
|
|
case E1000_DEV_ID_82572EI_FIBER:
|
|
|
case E1000_DEV_ID_82572EI_SERDES:
|
|
|
+ case E1000_DEV_ID_82572EI:
|
|
|
hw->mac_type = e1000_82572;
|
|
|
break;
|
|
|
case E1000_DEV_ID_82573E:
|
|
@@ -361,16 +373,29 @@ e1000_set_mac_type(struct e1000_hw *hw)
|
|
|
case E1000_DEV_ID_82573L:
|
|
|
hw->mac_type = e1000_82573;
|
|
|
break;
|
|
|
+ case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
|
|
|
+ case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
|
|
|
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
|
|
|
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
|
|
|
hw->mac_type = e1000_80003es2lan;
|
|
|
break;
|
|
|
+ case E1000_DEV_ID_ICH8_IGP_M_AMT:
|
|
|
+ case E1000_DEV_ID_ICH8_IGP_AMT:
|
|
|
+ case E1000_DEV_ID_ICH8_IGP_C:
|
|
|
+ case E1000_DEV_ID_ICH8_IFE:
|
|
|
+ case E1000_DEV_ID_ICH8_IGP_M:
|
|
|
+ hw->mac_type = e1000_ich8lan;
|
|
|
+ break;
|
|
|
default:
|
|
|
/* Should never have loaded on this device */
|
|
|
return -E1000_ERR_MAC_TYPE;
|
|
|
}
|
|
|
|
|
|
switch(hw->mac_type) {
|
|
|
+ case e1000_ich8lan:
|
|
|
+ hw->swfwhw_semaphore_present = TRUE;
|
|
|
+ hw->asf_firmware_present = TRUE;
|
|
|
+ break;
|
|
|
case e1000_80003es2lan:
|
|
|
hw->swfw_sync_present = TRUE;
|
|
|
/* fall through */
|
|
@@ -423,6 +448,7 @@ e1000_set_media_type(struct e1000_hw *hw)
|
|
|
case e1000_82542_rev2_1:
|
|
|
hw->media_type = e1000_media_type_fiber;
|
|
|
break;
|
|
|
+ case e1000_ich8lan:
|
|
|
case e1000_82573:
|
|
|
/* The STATUS_TBIMODE bit is reserved or reused for the this
|
|
|
* device.
|
|
@@ -527,6 +553,14 @@ e1000_reset_hw(struct e1000_hw *hw)
|
|
|
} while(timeout);
|
|
|
}
|
|
|
|
|
|
+ /* Workaround for ICH8 bit corruption issue in FIFO memory */
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ /* Set Tx and Rx buffer allocation to 8k apiece. */
|
|
|
+ E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
|
|
|
+ /* Set Packet Buffer Size to 16k. */
|
|
|
+ E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
|
|
|
+ }
|
|
|
+
|
|
|
/* Issue a global reset to the MAC. This will reset the chip's
|
|
|
* transmit, receive, DMA, and link units. It will not effect
|
|
|
* the current PCI configuration. The global reset bit is self-
|
|
@@ -550,6 +584,20 @@ e1000_reset_hw(struct e1000_hw *hw)
|
|
|
/* Reset is performed on a shadow of the control register */
|
|
|
E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
|
|
|
break;
|
|
|
+ case e1000_ich8lan:
|
|
|
+ if (!hw->phy_reset_disable &&
|
|
|
+ e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
|
|
|
+ /* e1000_ich8lan PHY HW reset requires MAC CORE reset
|
|
|
+ * at the same time to make sure the interface between
|
|
|
+ * MAC and the external PHY is reset.
|
|
|
+ */
|
|
|
+ ctrl |= E1000_CTRL_PHY_RST;
|
|
|
+ }
|
|
|
+
|
|
|
+ e1000_get_software_flag(hw);
|
|
|
+ E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
|
|
|
+ msec_delay(5);
|
|
|
+ break;
|
|
|
default:
|
|
|
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
|
|
|
break;
|
|
@@ -591,6 +639,7 @@ e1000_reset_hw(struct e1000_hw *hw)
|
|
|
/* fall through */
|
|
|
case e1000_82571:
|
|
|
case e1000_82572:
|
|
|
+ case e1000_ich8lan:
|
|
|
case e1000_80003es2lan:
|
|
|
ret_val = e1000_get_auto_rd_done(hw);
|
|
|
if(ret_val)
|
|
@@ -633,6 +682,12 @@ e1000_reset_hw(struct e1000_hw *hw)
|
|
|
e1000_pci_set_mwi(hw);
|
|
|
}
|
|
|
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ uint32_t kab = E1000_READ_REG(hw, KABGTXD);
|
|
|
+ kab |= E1000_KABGTXD_BGSQLBIAS;
|
|
|
+ E1000_WRITE_REG(hw, KABGTXD, kab);
|
|
|
+ }
|
|
|
+
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
@@ -675,9 +730,12 @@ e1000_init_hw(struct e1000_hw *hw)
|
|
|
|
|
|
/* Disabling VLAN filtering. */
|
|
|
DEBUGOUT("Initializing the IEEE VLAN\n");
|
|
|
- if (hw->mac_type < e1000_82545_rev_3)
|
|
|
- E1000_WRITE_REG(hw, VET, 0);
|
|
|
- e1000_clear_vfta(hw);
|
|
|
+ /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
|
|
|
+ if (hw->mac_type != e1000_ich8lan) {
|
|
|
+ if (hw->mac_type < e1000_82545_rev_3)
|
|
|
+ E1000_WRITE_REG(hw, VET, 0);
|
|
|
+ e1000_clear_vfta(hw);
|
|
|
+ }
|
|
|
|
|
|
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
|
|
|
if(hw->mac_type == e1000_82542_rev2_0) {
|
|
@@ -705,8 +763,14 @@ e1000_init_hw(struct e1000_hw *hw)
|
|
|
/* Zero out the Multicast HASH table */
|
|
|
DEBUGOUT("Zeroing the MTA\n");
|
|
|
mta_size = E1000_MC_TBL_SIZE;
|
|
|
- for(i = 0; i < mta_size; i++)
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
|
|
|
+ for(i = 0; i < mta_size; i++) {
|
|
|
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
|
|
|
+ /* use write flush to prevent Memory Write Block (MWB) from
|
|
|
+ * occuring when accessing our register space */
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
+ }
|
|
|
|
|
|
/* Set the PCI priority bit correctly in the CTRL register. This
|
|
|
* determines if the adapter gives priority to receives, or if it
|
|
@@ -744,6 +808,10 @@ e1000_init_hw(struct e1000_hw *hw)
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
+ /* More time needed for PHY to initialize */
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ msec_delay(15);
|
|
|
+
|
|
|
/* Call a subroutine to configure the link and setup flow control. */
|
|
|
ret_val = e1000_setup_link(hw);
|
|
|
|
|
@@ -757,6 +825,7 @@ e1000_init_hw(struct e1000_hw *hw)
|
|
|
case e1000_82571:
|
|
|
case e1000_82572:
|
|
|
case e1000_82573:
|
|
|
+ case e1000_ich8lan:
|
|
|
case e1000_80003es2lan:
|
|
|
ctrl |= E1000_TXDCTL_COUNT_DESC;
|
|
|
break;
|
|
@@ -795,6 +864,7 @@ e1000_init_hw(struct e1000_hw *hw)
|
|
|
/* Fall through */
|
|
|
case e1000_82571:
|
|
|
case e1000_82572:
|
|
|
+ case e1000_ich8lan:
|
|
|
ctrl = E1000_READ_REG(hw, TXDCTL1);
|
|
|
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
|
|
|
if(hw->mac_type >= e1000_82571)
|
|
@@ -818,6 +888,11 @@ e1000_init_hw(struct e1000_hw *hw)
|
|
|
*/
|
|
|
e1000_clear_hw_cntrs(hw);
|
|
|
|
|
|
+ /* ICH8 No-snoop bits are opposite polarity.
|
|
|
+ * Set to snoop by default after reset. */
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
|
|
|
+
|
|
|
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
|
|
|
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
|
|
|
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
@@ -905,6 +980,7 @@ e1000_setup_link(struct e1000_hw *hw)
|
|
|
*/
|
|
|
if (hw->fc == e1000_fc_default) {
|
|
|
switch (hw->mac_type) {
|
|
|
+ case e1000_ich8lan:
|
|
|
case e1000_82573:
|
|
|
hw->fc = e1000_fc_full;
|
|
|
break;
|
|
@@ -971,9 +1047,12 @@ e1000_setup_link(struct e1000_hw *hw)
|
|
|
*/
|
|
|
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
|
|
|
|
|
|
- E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
|
|
|
- E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
|
|
|
- E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
|
|
|
+ /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
|
|
|
+ if (hw->mac_type != e1000_ich8lan) {
|
|
|
+ E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
|
|
|
+ E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
|
|
|
+ E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
|
|
|
+ }
|
|
|
|
|
|
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
|
|
|
|
|
@@ -1237,12 +1316,13 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw)
|
|
|
|
|
|
/* Wait 10ms for MAC to configure PHY from eeprom settings */
|
|
|
msec_delay(15);
|
|
|
-
|
|
|
+ if (hw->mac_type != e1000_ich8lan) {
|
|
|
/* Configure activity LED after PHY reset */
|
|
|
led_ctrl = E1000_READ_REG(hw, LEDCTL);
|
|
|
led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
|
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
|
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
|
|
|
+ }
|
|
|
|
|
|
/* disable lplu d3 during driver init */
|
|
|
ret_val = e1000_set_d3_lplu_state(hw, FALSE);
|
|
@@ -1478,8 +1558,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw)
|
|
|
if (ret_val)
|
|
|
return ret_val;
|
|
|
|
|
|
- /* Enable Pass False Carrier on the PHY */
|
|
|
- phy_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
|
+ phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
|
|
|
|
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
|
|
|
phy_data);
|
|
@@ -1561,28 +1640,40 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw)
|
|
|
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
|
|
|
if(hw->disable_polarity_correction == 1)
|
|
|
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
- if(ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Force TX_CLK in the Extended PHY Specific Control Register
|
|
|
- * to 25MHz clock.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
|
|
- if(ret_val)
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
return ret_val;
|
|
|
|
|
|
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
|
|
-
|
|
|
if (hw->phy_revision < M88E1011_I_REV_4) {
|
|
|
- /* Configure Master and Slave downshift values */
|
|
|
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
|
|
|
+ /* Force TX_CLK in the Extended PHY Specific Control Register
|
|
|
+ * to 25MHz clock.
|
|
|
+ */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
|
|
+
|
|
|
+ if ((hw->phy_revision == E1000_REVISION_2) &&
|
|
|
+ (hw->phy_id == M88E1111_I_PHY_ID)) {
|
|
|
+ /* Vidalia Phy, set the downshift counter to 5x */
|
|
|
+ phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
|
|
|
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
|
|
|
+ ret_val = e1000_write_phy_reg(hw,
|
|
|
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ } else {
|
|
|
+ /* Configure Master and Slave downshift values */
|
|
|
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
|
|
|
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
|
|
|
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
|
|
|
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
|
|
|
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
|
|
- if(ret_val)
|
|
|
- return ret_val;
|
|
|
+ ret_val = e1000_write_phy_reg(hw,
|
|
|
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/* SW Reset the PHY so all changes take effect */
|
|
@@ -1620,6 +1711,10 @@ e1000_copper_link_autoneg(struct e1000_hw *hw)
|
|
|
if(hw->autoneg_advertised == 0)
|
|
|
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
|
|
|
|
+ /* IFE phy only supports 10/100 */
|
|
|
+ if (hw->phy_type == e1000_phy_ife)
|
|
|
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
|
|
|
+
|
|
|
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
|
|
|
ret_val = e1000_phy_setup_autoneg(hw);
|
|
|
if(ret_val) {
|
|
@@ -1717,6 +1812,26 @@ e1000_setup_copper_link(struct e1000_hw *hw)
|
|
|
|
|
|
DEBUGFUNC("e1000_setup_copper_link");
|
|
|
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_80003es2lan:
|
|
|
+ case e1000_ich8lan:
|
|
|
+ /* Set the mac to wait the maximum time between each
|
|
|
+ * iteration and increase the max iterations when
|
|
|
+ * polling the phy; this fixes erroneous timeouts at 10Mbps. */
|
|
|
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ reg_data |= 0x3F;
|
|
|
+ ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
/* Check if it is a valid PHY and set PHY mode if necessary. */
|
|
|
ret_val = e1000_copper_link_preconfig(hw);
|
|
|
if(ret_val)
|
|
@@ -1724,10 +1839,8 @@ e1000_setup_copper_link(struct e1000_hw *hw)
|
|
|
|
|
|
switch (hw->mac_type) {
|
|
|
case e1000_80003es2lan:
|
|
|
- ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
|
|
|
- ®_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
+ /* Kumeran registers are written-only */
|
|
|
+ reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
|
|
|
reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
|
|
|
ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
|
|
|
reg_data);
|
|
@@ -1739,6 +1852,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
|
|
|
}
|
|
|
|
|
|
if (hw->phy_type == e1000_phy_igp ||
|
|
|
+ hw->phy_type == e1000_phy_igp_3 ||
|
|
|
hw->phy_type == e1000_phy_igp_2) {
|
|
|
ret_val = e1000_copper_link_igp_setup(hw);
|
|
|
if(ret_val)
|
|
@@ -1803,7 +1917,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
|
|
|
* hw - Struct containing variables accessed by shared code
|
|
|
******************************************************************************/
|
|
|
static int32_t
|
|
|
-e1000_configure_kmrn_for_10_100(struct e1000_hw *hw)
|
|
|
+e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
|
|
|
{
|
|
|
int32_t ret_val = E1000_SUCCESS;
|
|
|
uint32_t tipg;
|
|
@@ -1823,6 +1937,18 @@ e1000_configure_kmrn_for_10_100(struct e1000_hw *hw)
|
|
|
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
|
|
|
E1000_WRITE_REG(hw, TIPG, tipg);
|
|
|
|
|
|
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
|
|
|
+
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (duplex == HALF_DUPLEX)
|
|
|
+ reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
|
+ else
|
|
|
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
|
|
|
+
|
|
|
return ret_val;
|
|
|
}
|
|
|
|
|
@@ -1847,6 +1973,14 @@ e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
|
|
|
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
|
|
|
E1000_WRITE_REG(hw, TIPG, tipg);
|
|
|
|
|
|
+ ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
|
|
|
+
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
|
|
|
+
|
|
|
return ret_val;
|
|
|
}
|
|
|
|
|
@@ -1869,10 +2003,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|
|
if(ret_val)
|
|
|
return ret_val;
|
|
|
|
|
|
- /* Read the MII 1000Base-T Control Register (Address 9). */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
|
|
|
- if(ret_val)
|
|
|
- return ret_val;
|
|
|
+ if (hw->phy_type != e1000_phy_ife) {
|
|
|
+ /* Read the MII 1000Base-T Control Register (Address 9). */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ } else
|
|
|
+ mii_1000t_ctrl_reg=0;
|
|
|
|
|
|
/* Need to parse both autoneg_advertised and fc and set up
|
|
|
* the appropriate PHY registers. First we will parse for
|
|
@@ -1923,6 +2060,9 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|
|
if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
|
|
|
DEBUGOUT("Advertise 1000mb Full duplex\n");
|
|
|
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
|
|
|
+ if (hw->phy_type == e1000_phy_ife) {
|
|
|
+ DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/* Check for a software override of the flow control settings, and
|
|
@@ -1984,9 +2124,11 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|
|
|
|
|
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
|
|
|
|
|
|
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
|
|
|
- if(ret_val)
|
|
|
- return ret_val;
|
|
|
+ if (hw->phy_type != e1000_phy_ife) {
|
|
|
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
@@ -2089,6 +2231,18 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
|
|
|
|
|
|
/* Need to reset the PHY or these changes will be ignored */
|
|
|
mii_ctrl_reg |= MII_CR_RESET;
|
|
|
+ /* Disable MDI-X support for 10/100 */
|
|
|
+ } else if (hw->phy_type == e1000_phy_ife) {
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data &= ~IFE_PMC_AUTO_MDIX;
|
|
|
+ phy_data &= ~IFE_PMC_FORCE_MDIX;
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
} else {
|
|
|
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
|
|
|
* forced whenever speed or duplex are forced.
|
|
@@ -2721,8 +2875,12 @@ e1000_check_for_link(struct e1000_hw *hw)
|
|
|
*/
|
|
|
if(hw->tbi_compatibility_en) {
|
|
|
uint16_t speed, duplex;
|
|
|
- e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
|
|
- if(speed != SPEED_1000) {
|
|
|
+ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error getting link speed and duplex\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ if (speed != SPEED_1000) {
|
|
|
/* If link speed is not set to gigabit speed, we do not need
|
|
|
* to enable TBI compatibility.
|
|
|
*/
|
|
@@ -2889,7 +3047,13 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw,
|
|
|
if (*speed == SPEED_1000)
|
|
|
ret_val = e1000_configure_kmrn_for_1000(hw);
|
|
|
else
|
|
|
- ret_val = e1000_configure_kmrn_for_10_100(hw);
|
|
|
+ ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
|
|
|
+ ret_val = e1000_kumeran_lock_loss_workaround(hw);
|
|
|
if (ret_val)
|
|
|
return ret_val;
|
|
|
}
|
|
@@ -3079,6 +3243,9 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
|
|
|
|
|
|
DEBUGFUNC("e1000_swfw_sync_acquire");
|
|
|
|
|
|
+ if (hw->swfwhw_semaphore_present)
|
|
|
+ return e1000_get_software_flag(hw);
|
|
|
+
|
|
|
if (!hw->swfw_sync_present)
|
|
|
return e1000_get_hw_eeprom_semaphore(hw);
|
|
|
|
|
@@ -3118,6 +3285,11 @@ e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
|
|
|
|
|
|
DEBUGFUNC("e1000_swfw_sync_release");
|
|
|
|
|
|
+ if (hw->swfwhw_semaphore_present) {
|
|
|
+ e1000_release_software_flag(hw);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
if (!hw->swfw_sync_present) {
|
|
|
e1000_put_hw_eeprom_semaphore(hw);
|
|
|
return;
|
|
@@ -3160,7 +3332,8 @@ e1000_read_phy_reg(struct e1000_hw *hw,
|
|
|
if (e1000_swfw_sync_acquire(hw, swfw))
|
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
|
|
|
|
- if((hw->phy_type == e1000_phy_igp ||
|
|
|
+ if ((hw->phy_type == e1000_phy_igp ||
|
|
|
+ hw->phy_type == e1000_phy_igp_3 ||
|
|
|
hw->phy_type == e1000_phy_igp_2) &&
|
|
|
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
|
|
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
@@ -3299,7 +3472,8 @@ e1000_write_phy_reg(struct e1000_hw *hw,
|
|
|
if (e1000_swfw_sync_acquire(hw, swfw))
|
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
|
|
|
|
- if((hw->phy_type == e1000_phy_igp ||
|
|
|
+ if ((hw->phy_type == e1000_phy_igp ||
|
|
|
+ hw->phy_type == e1000_phy_igp_3 ||
|
|
|
hw->phy_type == e1000_phy_igp_2) &&
|
|
|
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
|
|
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
@@ -3514,7 +3688,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
|
|
if (hw->mac_type >= e1000_82571)
|
|
|
- msec_delay(10);
|
|
|
+ msec_delay_irq(10);
|
|
|
e1000_swfw_sync_release(hw, swfw);
|
|
|
} else {
|
|
|
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
|
|
@@ -3544,6 +3718,12 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
|
|
|
ret_val = e1000_get_phy_cfg_done(hw);
|
|
|
e1000_release_software_semaphore(hw);
|
|
|
|
|
|
+ if ((hw->mac_type == e1000_ich8lan) &&
|
|
|
+ (hw->phy_type == e1000_phy_igp_3)) {
|
|
|
+ ret_val = e1000_init_lcd_from_nvm(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
return ret_val;
|
|
|
}
|
|
|
|
|
@@ -3572,9 +3752,11 @@ e1000_phy_reset(struct e1000_hw *hw)
|
|
|
case e1000_82541_rev_2:
|
|
|
case e1000_82571:
|
|
|
case e1000_82572:
|
|
|
+ case e1000_ich8lan:
|
|
|
ret_val = e1000_phy_hw_reset(hw);
|
|
|
if(ret_val)
|
|
|
return ret_val;
|
|
|
+
|
|
|
break;
|
|
|
default:
|
|
|
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
|
|
@@ -3596,12 +3778,121 @@ e1000_phy_reset(struct e1000_hw *hw)
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
+/******************************************************************************
|
|
|
+* Work-around for 82566 power-down: on D3 entry-
|
|
|
+* 1) disable gigabit link
|
|
|
+* 2) write VR power-down enable
|
|
|
+* 3) read it back
|
|
|
+* if successful continue, else issue LCD reset and repeat
|
|
|
+*
|
|
|
+* hw - struct containing variables accessed by shared code
|
|
|
+******************************************************************************/
|
|
|
+void
|
|
|
+e1000_phy_powerdown_workaround(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ int32_t reg;
|
|
|
+ uint16_t phy_data;
|
|
|
+ int32_t retry = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_powerdown_workaround");
|
|
|
+
|
|
|
+ if (hw->phy_type != e1000_phy_igp_3)
|
|
|
+ return;
|
|
|
+
|
|
|
+ do {
|
|
|
+ /* Disable link */
|
|
|
+ reg = E1000_READ_REG(hw, PHY_CTRL);
|
|
|
+ E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
|
|
|
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
|
|
|
+
|
|
|
+ /* Write VR power-down enable */
|
|
|
+ e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
|
|
|
+ e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
|
|
|
+ IGP3_VR_CTRL_MODE_SHUT);
|
|
|
+
|
|
|
+ /* Read it back and test */
|
|
|
+ e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
|
|
|
+ if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
|
|
|
+ break;
|
|
|
+
|
|
|
+ /* Issue PHY reset and repeat at most one more time */
|
|
|
+ reg = E1000_READ_REG(hw, CTRL);
|
|
|
+ E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
|
|
|
+ retry++;
|
|
|
+ } while (retry);
|
|
|
+
|
|
|
+ return;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+* Work-around for 82566 Kumeran PCS lock loss:
|
|
|
+* On link status change (i.e. PCI reset, speed change) and link is up and
|
|
|
+* speed is gigabit-
|
|
|
+* 0) if workaround is optionally disabled do nothing
|
|
|
+* 1) wait 1ms for Kumeran link to come up
|
|
|
+* 2) check Kumeran Diagnostic register PCS lock loss bit
|
|
|
+* 3) if not set the link is locked (all is good), otherwise...
|
|
|
+* 4) reset the PHY
|
|
|
+* 5) repeat up to 10 times
|
|
|
+* Note: this is only called for IGP3 copper when speed is 1gb.
|
|
|
+*
|
|
|
+* hw - struct containing variables accessed by shared code
|
|
|
+******************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ int32_t ret_val;
|
|
|
+ int32_t reg;
|
|
|
+ int32_t cnt;
|
|
|
+ uint16_t phy_data;
|
|
|
+
|
|
|
+ if (hw->kmrn_lock_loss_workaround_disabled)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ /* Make sure link is up before proceeding. If not just return.
|
|
|
+ * Attempting this while link is negotiating fouls up link
|
|
|
+ * stability */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+
|
|
|
+ if (phy_data & MII_SR_LINK_STATUS) {
|
|
|
+ for (cnt = 0; cnt < 10; cnt++) {
|
|
|
+ /* read once to clear */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ /* and again to get new status */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* check for PCS lock */
|
|
|
+ if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ /* Issue PHY reset */
|
|
|
+ e1000_phy_hw_reset(hw);
|
|
|
+ msec_delay_irq(5);
|
|
|
+ }
|
|
|
+ /* Disable GigE link negotiation */
|
|
|
+ reg = E1000_READ_REG(hw, PHY_CTRL);
|
|
|
+ E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
|
|
|
+ E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
|
|
|
+
|
|
|
+ /* unable to acquire PCS lock */
|
|
|
+ return E1000_ERR_PHY;
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
/******************************************************************************
|
|
|
* Probes the expected PHY address for known PHY IDs
|
|
|
*
|
|
|
* hw - Struct containing variables accessed by shared code
|
|
|
******************************************************************************/
|
|
|
-static int32_t
|
|
|
+int32_t
|
|
|
e1000_detect_gig_phy(struct e1000_hw *hw)
|
|
|
{
|
|
|
int32_t phy_init_status, ret_val;
|
|
@@ -3613,8 +3904,8 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
|
|
|
/* The 82571 firmware may still be configuring the PHY. In this
|
|
|
* case, we cannot access the PHY until the configuration is done. So
|
|
|
* we explicitly set the PHY values. */
|
|
|
- if(hw->mac_type == e1000_82571 ||
|
|
|
- hw->mac_type == e1000_82572) {
|
|
|
+ if (hw->mac_type == e1000_82571 ||
|
|
|
+ hw->mac_type == e1000_82572) {
|
|
|
hw->phy_id = IGP01E1000_I_PHY_ID;
|
|
|
hw->phy_type = e1000_phy_igp_2;
|
|
|
return E1000_SUCCESS;
|
|
@@ -3631,7 +3922,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
|
|
|
|
|
|
/* Read the PHY ID Registers to identify which PHY is onboard. */
|
|
|
ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
|
|
|
- if(ret_val)
|
|
|
+ if (ret_val)
|
|
|
return ret_val;
|
|
|
|
|
|
hw->phy_id = (uint32_t) (phy_id_high << 16);
|
|
@@ -3669,6 +3960,12 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
|
|
|
case e1000_80003es2lan:
|
|
|
if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
|
|
|
break;
|
|
|
+ case e1000_ich8lan:
|
|
|
+ if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
|
|
|
+ if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
|
|
|
+ if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
|
|
|
+ if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
|
|
|
+ break;
|
|
|
default:
|
|
|
DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
|
|
|
return -E1000_ERR_CONFIG;
|
|
@@ -3783,6 +4080,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
+/******************************************************************************
|
|
|
+* Get PHY information from various PHY registers for ife PHY only.
|
|
|
+*
|
|
|
+* hw - Struct containing variables accessed by shared code
|
|
|
+* phy_info - PHY information structure
|
|
|
+******************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_phy_ife_get_info(struct e1000_hw *hw,
|
|
|
+ struct e1000_phy_info *phy_info)
|
|
|
+{
|
|
|
+ int32_t ret_val;
|
|
|
+ uint16_t phy_data, polarity;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_ife_get_info");
|
|
|
+
|
|
|
+ phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
|
|
|
+ phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ phy_info->polarity_correction =
|
|
|
+ (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
|
|
|
+ IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
|
|
|
+
|
|
|
+ if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
|
|
|
+ ret_val = e1000_check_polarity(hw, &polarity);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ } else {
|
|
|
+ /* Polarity is forced. */
|
|
|
+ polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
|
|
|
+ IFE_PSC_FORCE_POLARITY_SHIFT;
|
|
|
+ }
|
|
|
+ phy_info->cable_polarity = polarity;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_info->mdix_mode =
|
|
|
+ (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
|
|
|
+ IFE_PMC_MDIX_MODE_SHIFT;
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
/******************************************************************************
|
|
|
* Get PHY information from various PHY registers fot m88 PHY only.
|
|
|
*
|
|
@@ -3898,9 +4242,12 @@ e1000_phy_get_info(struct e1000_hw *hw,
|
|
|
return -E1000_ERR_CONFIG;
|
|
|
}
|
|
|
|
|
|
- if(hw->phy_type == e1000_phy_igp ||
|
|
|
+ if (hw->phy_type == e1000_phy_igp ||
|
|
|
+ hw->phy_type == e1000_phy_igp_3 ||
|
|
|
hw->phy_type == e1000_phy_igp_2)
|
|
|
return e1000_phy_igp_get_info(hw, phy_info);
|
|
|
+ else if (hw->phy_type == e1000_phy_ife)
|
|
|
+ return e1000_phy_ife_get_info(hw, phy_info);
|
|
|
else
|
|
|
return e1000_phy_m88_get_info(hw, phy_info);
|
|
|
}
|
|
@@ -4049,6 +4396,35 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
|
|
|
eeprom->use_eerd = TRUE;
|
|
|
eeprom->use_eewr = FALSE;
|
|
|
break;
|
|
|
+ case e1000_ich8lan:
|
|
|
+ {
|
|
|
+ int32_t i = 0;
|
|
|
+ uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
|
|
|
+
|
|
|
+ eeprom->type = e1000_eeprom_ich8;
|
|
|
+ eeprom->use_eerd = FALSE;
|
|
|
+ eeprom->use_eewr = FALSE;
|
|
|
+ eeprom->word_size = E1000_SHADOW_RAM_WORDS;
|
|
|
+
|
|
|
+ /* Zero the shadow RAM structure. But don't load it from NVM
|
|
|
+ * so as to save time for driver init */
|
|
|
+ if (hw->eeprom_shadow_ram != NULL) {
|
|
|
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
|
|
|
+ hw->eeprom_shadow_ram[i].modified = FALSE;
|
|
|
+ hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
|
|
|
+ ICH8_FLASH_SECTOR_SIZE;
|
|
|
+
|
|
|
+ hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
|
|
|
+ hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
|
|
|
+ hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
|
|
|
+ hw->flash_bank_size /= 2 * sizeof(uint16_t);
|
|
|
+
|
|
|
+ break;
|
|
|
+ }
|
|
|
default:
|
|
|
break;
|
|
|
}
|
|
@@ -4469,7 +4845,10 @@ e1000_read_eeprom(struct e1000_hw *hw,
|
|
|
return ret_val;
|
|
|
}
|
|
|
|
|
|
- if(eeprom->type == e1000_eeprom_spi) {
|
|
|
+ if (eeprom->type == e1000_eeprom_ich8)
|
|
|
+ return e1000_read_eeprom_ich8(hw, offset, words, data);
|
|
|
+
|
|
|
+ if (eeprom->type == e1000_eeprom_spi) {
|
|
|
uint16_t word_in;
|
|
|
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
|
|
|
|
|
@@ -4636,7 +5015,10 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
|
|
|
|
|
|
DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
|
|
|
|
|
|
- if(hw->mac_type == e1000_82573) {
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ return FALSE;
|
|
|
+
|
|
|
+ if (hw->mac_type == e1000_82573) {
|
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
|
|
|
|
/* Isolate bits 15 & 16 */
|
|
@@ -4686,8 +5068,22 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
|
|
|
- if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ /* Drivers must allocate the shadow ram structure for the
|
|
|
+ * EEPROM checksum to be updated. Otherwise, this bit as well
|
|
|
+ * as the checksum must both be set correctly for this
|
|
|
+ * validation to pass.
|
|
|
+ */
|
|
|
+ e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
|
|
|
+ if ((eeprom_data & 0x40) == 0) {
|
|
|
+ eeprom_data |= 0x40;
|
|
|
+ e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
|
|
|
+ e1000_update_eeprom_checksum(hw);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
|
|
|
+ if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
|
|
|
DEBUGOUT("EEPROM Read Error\n");
|
|
|
return -E1000_ERR_EEPROM;
|
|
|
}
|
|
@@ -4713,6 +5109,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
|
|
|
int32_t
|
|
|
e1000_update_eeprom_checksum(struct e1000_hw *hw)
|
|
|
{
|
|
|
+ uint32_t ctrl_ext;
|
|
|
uint16_t checksum = 0;
|
|
|
uint16_t i, eeprom_data;
|
|
|
|
|
@@ -4731,6 +5128,14 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw)
|
|
|
return -E1000_ERR_EEPROM;
|
|
|
} else if (hw->eeprom.type == e1000_eeprom_flash) {
|
|
|
e1000_commit_shadow_ram(hw);
|
|
|
+ } else if (hw->eeprom.type == e1000_eeprom_ich8) {
|
|
|
+ e1000_commit_shadow_ram(hw);
|
|
|
+ /* Reload the EEPROM, or else modifications will not appear
|
|
|
+ * until after next adapter reset. */
|
|
|
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
|
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
|
|
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
|
|
+ msec_delay(10);
|
|
|
}
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
@@ -4770,6 +5175,9 @@ e1000_write_eeprom(struct e1000_hw *hw,
|
|
|
if(eeprom->use_eewr == TRUE)
|
|
|
return e1000_write_eeprom_eewr(hw, offset, words, data);
|
|
|
|
|
|
+ if (eeprom->type == e1000_eeprom_ich8)
|
|
|
+ return e1000_write_eeprom_ich8(hw, offset, words, data);
|
|
|
+
|
|
|
/* Prepare the EEPROM for writing */
|
|
|
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
|
|
|
return -E1000_ERR_EEPROM;
|
|
@@ -4957,11 +5365,17 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
|
|
|
uint32_t flop = 0;
|
|
|
uint32_t i = 0;
|
|
|
int32_t error = E1000_SUCCESS;
|
|
|
-
|
|
|
- /* The flop register will be used to determine if flash type is STM */
|
|
|
- flop = E1000_READ_REG(hw, FLOP);
|
|
|
+ uint32_t old_bank_offset = 0;
|
|
|
+ uint32_t new_bank_offset = 0;
|
|
|
+ uint32_t sector_retries = 0;
|
|
|
+ uint8_t low_byte = 0;
|
|
|
+ uint8_t high_byte = 0;
|
|
|
+ uint8_t temp_byte = 0;
|
|
|
+ boolean_t sector_write_failed = FALSE;
|
|
|
|
|
|
if (hw->mac_type == e1000_82573) {
|
|
|
+ /* The flop register will be used to determine if flash type is STM */
|
|
|
+ flop = E1000_READ_REG(hw, FLOP);
|
|
|
for (i=0; i < attempts; i++) {
|
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
|
if ((eecd & E1000_EECD_FLUPD) == 0) {
|
|
@@ -4995,6 +5409,106 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
|
|
|
+ /* We're writing to the opposite bank so if we're on bank 1,
|
|
|
+ * write to bank 0 etc. We also need to erase the segment that
|
|
|
+ * is going to be written */
|
|
|
+ if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
|
|
|
+ new_bank_offset = hw->flash_bank_size * 2;
|
|
|
+ old_bank_offset = 0;
|
|
|
+ e1000_erase_ich8_4k_segment(hw, 1);
|
|
|
+ } else {
|
|
|
+ old_bank_offset = hw->flash_bank_size * 2;
|
|
|
+ new_bank_offset = 0;
|
|
|
+ e1000_erase_ich8_4k_segment(hw, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ do {
|
|
|
+ sector_write_failed = FALSE;
|
|
|
+ /* Loop for every byte in the shadow RAM,
|
|
|
+ * which is in units of words. */
|
|
|
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
|
|
|
+ /* Determine whether to write the value stored
|
|
|
+ * in the other NVM bank or a modified value stored
|
|
|
+ * in the shadow RAM */
|
|
|
+ if (hw->eeprom_shadow_ram[i].modified == TRUE) {
|
|
|
+ low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
|
|
|
+ e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
|
|
|
+ &temp_byte);
|
|
|
+ udelay(100);
|
|
|
+ error = e1000_verify_write_ich8_byte(hw,
|
|
|
+ (i << 1) + new_bank_offset,
|
|
|
+ low_byte);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ sector_write_failed = TRUE;
|
|
|
+ high_byte =
|
|
|
+ (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
|
|
|
+ e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
|
|
|
+ &temp_byte);
|
|
|
+ udelay(100);
|
|
|
+ } else {
|
|
|
+ e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
|
|
|
+ &low_byte);
|
|
|
+ udelay(100);
|
|
|
+ error = e1000_verify_write_ich8_byte(hw,
|
|
|
+ (i << 1) + new_bank_offset, low_byte);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ sector_write_failed = TRUE;
|
|
|
+ e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
|
|
|
+ &high_byte);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If the word is 0x13, then make sure the signature bits
|
|
|
+ * (15:14) are 11b until the commit has completed.
|
|
|
+ * This will allow us to write 10b which indicates the
|
|
|
+ * signature is valid. We want to do this after the write
|
|
|
+ * has completed so that we don't mark the segment valid
|
|
|
+ * while the write is still in progress */
|
|
|
+ if (i == E1000_ICH8_NVM_SIG_WORD)
|
|
|
+ high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
|
|
|
+
|
|
|
+ error = e1000_verify_write_ich8_byte(hw,
|
|
|
+ (i << 1) + new_bank_offset + 1, high_byte);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ sector_write_failed = TRUE;
|
|
|
+
|
|
|
+ if (sector_write_failed == FALSE) {
|
|
|
+ /* Clear the now not used entry in the cache */
|
|
|
+ hw->eeprom_shadow_ram[i].modified = FALSE;
|
|
|
+ hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Don't bother writing the segment valid bits if sector
|
|
|
+ * programming failed. */
|
|
|
+ if (sector_write_failed == FALSE) {
|
|
|
+ /* Finally validate the new segment by setting bit 15:14
|
|
|
+ * to 10b in word 0x13 , this can be done without an
|
|
|
+ * erase as well since these bits are 11 to start with
|
|
|
+ * and we need to change bit 14 to 0b */
|
|
|
+ e1000_read_ich8_byte(hw,
|
|
|
+ E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
|
|
|
+ &high_byte);
|
|
|
+ high_byte &= 0xBF;
|
|
|
+ error = e1000_verify_write_ich8_byte(hw,
|
|
|
+ E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
|
|
|
+ high_byte);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ sector_write_failed = TRUE;
|
|
|
+
|
|
|
+ /* And invalidate the previously valid segment by setting
|
|
|
+ * its signature word (0x13) high_byte to 0b. This can be
|
|
|
+ * done without an erase because flash erase sets all bits
|
|
|
+ * to 1's. We can write 1's to 0's without an erase */
|
|
|
+ error = e1000_verify_write_ich8_byte(hw,
|
|
|
+ E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
|
|
|
+ 0);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ sector_write_failed = TRUE;
|
|
|
+ }
|
|
|
+ } while (++sector_retries < 10 && sector_write_failed == TRUE);
|
|
|
+ }
|
|
|
+
|
|
|
return error;
|
|
|
}
|
|
|
|
|
@@ -5102,15 +5616,19 @@ e1000_init_rx_addrs(struct e1000_hw *hw)
|
|
|
* the other port. */
|
|
|
if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
|
|
|
rar_num -= 1;
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ rar_num = E1000_RAR_ENTRIES_ICH8LAN;
|
|
|
+
|
|
|
/* Zero out the other 15 receive addresses. */
|
|
|
DEBUGOUT("Clearing RAR[1-15]\n");
|
|
|
for(i = 1; i < rar_num; i++) {
|
|
|
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-#if 0
|
|
|
/******************************************************************************
|
|
|
* Updates the MAC's list of multicast addresses.
|
|
|
*
|
|
@@ -5145,6 +5663,8 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
|
|
|
/* Clear RAR[1-15] */
|
|
|
DEBUGOUT(" Clearing RAR[1-15]\n");
|
|
|
num_rar_entry = E1000_RAR_ENTRIES;
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
|
|
|
/* Reserve a spot for the Locally Administered Address to work around
|
|
|
* an 82571 issue in which a reset on one port will reload the MAC on
|
|
|
* the other port. */
|
|
@@ -5153,14 +5673,19 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
|
|
|
|
|
|
for(i = rar_used_count; i < num_rar_entry; i++) {
|
|
|
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
}
|
|
|
|
|
|
/* Clear the MTA */
|
|
|
DEBUGOUT(" Clearing MTA\n");
|
|
|
num_mta_entry = E1000_NUM_MTA_REGISTERS;
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
|
|
|
for(i = 0; i < num_mta_entry; i++) {
|
|
|
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
}
|
|
|
|
|
|
/* Add the new addresses */
|
|
@@ -5194,7 +5719,6 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
|
|
|
}
|
|
|
DEBUGOUT("MC Update Complete\n");
|
|
|
}
|
|
|
-#endif /* 0 */
|
|
|
|
|
|
/******************************************************************************
|
|
|
* Hashes an address to determine its location in the multicast table
|
|
@@ -5217,24 +5741,46 @@ e1000_hash_mc_addr(struct e1000_hw *hw,
|
|
|
* LSB MSB
|
|
|
*/
|
|
|
case 0:
|
|
|
- /* [47:36] i.e. 0x563 for above example address */
|
|
|
- hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ /* [47:38] i.e. 0x158 for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
|
|
|
+ } else {
|
|
|
+ /* [47:36] i.e. 0x563 for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
|
|
|
+ }
|
|
|
break;
|
|
|
case 1:
|
|
|
- /* [46:35] i.e. 0xAC6 for above example address */
|
|
|
- hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ /* [46:37] i.e. 0x2B1 for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
|
|
|
+ } else {
|
|
|
+ /* [46:35] i.e. 0xAC6 for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
|
|
|
+ }
|
|
|
break;
|
|
|
case 2:
|
|
|
- /* [45:34] i.e. 0x5D8 for above example address */
|
|
|
- hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ /*[45:36] i.e. 0x163 for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
|
|
|
+ } else {
|
|
|
+ /* [45:34] i.e. 0x5D8 for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
|
|
|
+ }
|
|
|
break;
|
|
|
case 3:
|
|
|
- /* [43:32] i.e. 0x634 for above example address */
|
|
|
- hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ /* [43:34] i.e. 0x18D for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
|
|
|
+ } else {
|
|
|
+ /* [43:32] i.e. 0x634 for above example address */
|
|
|
+ hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
|
|
|
+ }
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
hash_value &= 0xFFF;
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ hash_value &= 0x3FF;
|
|
|
|
|
|
return hash_value;
|
|
|
}
|
|
@@ -5262,6 +5808,8 @@ e1000_mta_set(struct e1000_hw *hw,
|
|
|
* register are determined by the lower 5 bits of the value.
|
|
|
*/
|
|
|
hash_reg = (hash_value >> 5) & 0x7F;
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ hash_reg &= 0x1F;
|
|
|
hash_bit = hash_value & 0x1F;
|
|
|
|
|
|
mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
|
|
@@ -5275,9 +5823,12 @@ e1000_mta_set(struct e1000_hw *hw,
|
|
|
if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
|
|
|
temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
|
|
|
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
} else {
|
|
|
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -5334,7 +5885,9 @@ e1000_rar_set(struct e1000_hw *hw,
|
|
|
}
|
|
|
|
|
|
E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
@@ -5351,12 +5904,18 @@ e1000_write_vfta(struct e1000_hw *hw,
|
|
|
{
|
|
|
uint32_t temp;
|
|
|
|
|
|
- if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ return;
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
|
|
|
temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
|
|
|
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
} else {
|
|
|
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -5373,6 +5932,9 @@ e1000_clear_vfta(struct e1000_hw *hw)
|
|
|
uint32_t vfta_offset = 0;
|
|
|
uint32_t vfta_bit_in_reg = 0;
|
|
|
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ return;
|
|
|
+
|
|
|
if (hw->mac_type == e1000_82573) {
|
|
|
if (hw->mng_cookie.vlan_id != 0) {
|
|
|
/* The VFTA is a 4096b bit-field, each identifying a single VLAN
|
|
@@ -5392,6 +5954,7 @@ e1000_clear_vfta(struct e1000_hw *hw)
|
|
|
* manageability unit */
|
|
|
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
|
|
|
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -5421,9 +5984,18 @@ e1000_id_led_init(struct e1000_hw * hw)
|
|
|
DEBUGOUT("EEPROM Read Error\n");
|
|
|
return -E1000_ERR_EEPROM;
|
|
|
}
|
|
|
- if((eeprom_data== ID_LED_RESERVED_0000) ||
|
|
|
- (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
|
|
|
- for(i = 0; i < 4; i++) {
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82573) &&
|
|
|
+ (eeprom_data == ID_LED_RESERVED_82573))
|
|
|
+ eeprom_data = ID_LED_DEFAULT_82573;
|
|
|
+ else if ((eeprom_data == ID_LED_RESERVED_0000) ||
|
|
|
+ (eeprom_data == ID_LED_RESERVED_FFFF)) {
|
|
|
+ if (hw->mac_type == e1000_ich8lan)
|
|
|
+ eeprom_data = ID_LED_DEFAULT_ICH8LAN;
|
|
|
+ else
|
|
|
+ eeprom_data = ID_LED_DEFAULT;
|
|
|
+ }
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
temp = (eeprom_data >> (i << 2)) & led_mask;
|
|
|
switch(temp) {
|
|
|
case ID_LED_ON1_DEF2:
|
|
@@ -5518,6 +6090,44 @@ e1000_setup_led(struct e1000_hw *hw)
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
+/******************************************************************************
|
|
|
+ * Used on 82571 and later Si that has LED blink bits.
|
|
|
+ * Callers must use their own timer and should have already called
|
|
|
+ * e1000_id_led_init()
|
|
|
+ * Call e1000_cleanup led() to stop blinking
|
|
|
+ *
|
|
|
+ * hw - Struct containing variables accessed by shared code
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_blink_led_start(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ int16_t i;
|
|
|
+ uint32_t ledctl_blink = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_id_led_blink_on");
|
|
|
+
|
|
|
+ if (hw->mac_type < e1000_82571) {
|
|
|
+ /* Nothing to do */
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ }
|
|
|
+ if (hw->media_type == e1000_media_type_fiber) {
|
|
|
+ /* always blink LED0 for PCI-E fiber */
|
|
|
+ ledctl_blink = E1000_LEDCTL_LED0_BLINK |
|
|
|
+ (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
|
+ } else {
|
|
|
+ /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
|
|
|
+ ledctl_blink = hw->ledctl_mode2;
|
|
|
+ for (i=0; i < 4; i++)
|
|
|
+ if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
|
|
|
+ E1000_LEDCTL_MODE_LED_ON)
|
|
|
+ ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
|
|
|
+ }
|
|
|
+
|
|
|
+ E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
/******************************************************************************
|
|
|
* Restores the saved state of the SW controlable LED.
|
|
|
*
|
|
@@ -5548,6 +6158,10 @@ e1000_cleanup_led(struct e1000_hw *hw)
|
|
|
return ret_val;
|
|
|
/* Fall Through */
|
|
|
default:
|
|
|
+ if (hw->phy_type == e1000_phy_ife) {
|
|
|
+ e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
|
|
|
+ break;
|
|
|
+ }
|
|
|
/* Restore LEDCTL settings */
|
|
|
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
|
|
|
break;
|
|
@@ -5592,7 +6206,10 @@ e1000_led_on(struct e1000_hw *hw)
|
|
|
/* Clear SW Defineable Pin 0 to turn on the LED */
|
|
|
ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
|
ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- } else if(hw->media_type == e1000_media_type_copper) {
|
|
|
+ } else if (hw->phy_type == e1000_phy_ife) {
|
|
|
+ e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
|
|
|
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
|
|
|
+ } else if (hw->media_type == e1000_media_type_copper) {
|
|
|
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
@@ -5640,7 +6257,10 @@ e1000_led_off(struct e1000_hw *hw)
|
|
|
/* Set SW Defineable Pin 0 to turn off the LED */
|
|
|
ctrl |= E1000_CTRL_SWDPIN0;
|
|
|
ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- } else if(hw->media_type == e1000_media_type_copper) {
|
|
|
+ } else if (hw->phy_type == e1000_phy_ife) {
|
|
|
+ e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
|
|
|
+ (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
|
|
|
+ } else if (hw->media_type == e1000_media_type_copper) {
|
|
|
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
@@ -5678,12 +6298,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
|
|
|
temp = E1000_READ_REG(hw, XOFFRXC);
|
|
|
temp = E1000_READ_REG(hw, XOFFTXC);
|
|
|
temp = E1000_READ_REG(hw, FCRUC);
|
|
|
+
|
|
|
+ if (hw->mac_type != e1000_ich8lan) {
|
|
|
temp = E1000_READ_REG(hw, PRC64);
|
|
|
temp = E1000_READ_REG(hw, PRC127);
|
|
|
temp = E1000_READ_REG(hw, PRC255);
|
|
|
temp = E1000_READ_REG(hw, PRC511);
|
|
|
temp = E1000_READ_REG(hw, PRC1023);
|
|
|
temp = E1000_READ_REG(hw, PRC1522);
|
|
|
+ }
|
|
|
+
|
|
|
temp = E1000_READ_REG(hw, GPRC);
|
|
|
temp = E1000_READ_REG(hw, BPRC);
|
|
|
temp = E1000_READ_REG(hw, MPRC);
|
|
@@ -5703,12 +6327,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
|
|
|
temp = E1000_READ_REG(hw, TOTH);
|
|
|
temp = E1000_READ_REG(hw, TPR);
|
|
|
temp = E1000_READ_REG(hw, TPT);
|
|
|
+
|
|
|
+ if (hw->mac_type != e1000_ich8lan) {
|
|
|
temp = E1000_READ_REG(hw, PTC64);
|
|
|
temp = E1000_READ_REG(hw, PTC127);
|
|
|
temp = E1000_READ_REG(hw, PTC255);
|
|
|
temp = E1000_READ_REG(hw, PTC511);
|
|
|
temp = E1000_READ_REG(hw, PTC1023);
|
|
|
temp = E1000_READ_REG(hw, PTC1522);
|
|
|
+ }
|
|
|
+
|
|
|
temp = E1000_READ_REG(hw, MPTC);
|
|
|
temp = E1000_READ_REG(hw, BPTC);
|
|
|
|
|
@@ -5731,6 +6359,9 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
|
|
|
|
|
|
temp = E1000_READ_REG(hw, IAC);
|
|
|
temp = E1000_READ_REG(hw, ICRXOC);
|
|
|
+
|
|
|
+ if (hw->mac_type == e1000_ich8lan) return;
|
|
|
+
|
|
|
temp = E1000_READ_REG(hw, ICRXPTC);
|
|
|
temp = E1000_READ_REG(hw, ICRXATC);
|
|
|
temp = E1000_READ_REG(hw, ICTXPTC);
|
|
@@ -5911,6 +6542,7 @@ e1000_get_bus_info(struct e1000_hw *hw)
|
|
|
hw->bus_width = e1000_bus_width_pciex_1;
|
|
|
break;
|
|
|
case e1000_82571:
|
|
|
+ case e1000_ich8lan:
|
|
|
case e1000_80003es2lan:
|
|
|
hw->bus_type = e1000_bus_type_pci_express;
|
|
|
hw->bus_speed = e1000_bus_speed_2500;
|
|
@@ -5948,8 +6580,6 @@ e1000_get_bus_info(struct e1000_hw *hw)
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
-#if 0
|
|
|
/******************************************************************************
|
|
|
* Reads a value from one of the devices registers using port I/O (as opposed
|
|
|
* memory mapped I/O). Only 82544 and newer devices support port I/O.
|
|
@@ -5967,7 +6597,6 @@ e1000_read_reg_io(struct e1000_hw *hw,
|
|
|
e1000_io_write(hw, io_addr, offset);
|
|
|
return e1000_io_read(hw, io_data);
|
|
|
}
|
|
|
-#endif /* 0 */
|
|
|
|
|
|
/******************************************************************************
|
|
|
* Writes a value to one of the devices registers using port I/O (as opposed to
|
|
@@ -6012,8 +6641,6 @@ e1000_get_cable_length(struct e1000_hw *hw,
|
|
|
{
|
|
|
int32_t ret_val;
|
|
|
uint16_t agc_value = 0;
|
|
|
- uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
|
|
|
- uint16_t max_agc = 0;
|
|
|
uint16_t i, phy_data;
|
|
|
uint16_t cable_length;
|
|
|
|
|
@@ -6086,6 +6713,8 @@ e1000_get_cable_length(struct e1000_hw *hw,
|
|
|
break;
|
|
|
}
|
|
|
} else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
|
|
|
+ uint16_t cur_agc_value;
|
|
|
+ uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
|
|
|
uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
|
|
|
{IGP01E1000_PHY_AGC_A,
|
|
|
IGP01E1000_PHY_AGC_B,
|
|
@@ -6098,23 +6727,23 @@ e1000_get_cable_length(struct e1000_hw *hw,
|
|
|
if(ret_val)
|
|
|
return ret_val;
|
|
|
|
|
|
- cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
|
|
|
+ cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
|
|
|
|
|
|
- /* Array bound check. */
|
|
|
- if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
|
|
|
- (cur_agc == 0))
|
|
|
+ /* Value bound check. */
|
|
|
+ if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
|
|
|
+ (cur_agc_value == 0))
|
|
|
return -E1000_ERR_PHY;
|
|
|
|
|
|
- agc_value += cur_agc;
|
|
|
+ agc_value += cur_agc_value;
|
|
|
|
|
|
/* Update minimal AGC value. */
|
|
|
- if(min_agc > cur_agc)
|
|
|
- min_agc = cur_agc;
|
|
|
+ if (min_agc_value > cur_agc_value)
|
|
|
+ min_agc_value = cur_agc_value;
|
|
|
}
|
|
|
|
|
|
/* Remove the minimal AGC result for length < 50m */
|
|
|
- if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
|
|
|
- agc_value -= min_agc;
|
|
|
+ if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
|
|
|
+ agc_value -= min_agc_value;
|
|
|
|
|
|
/* Get the average length of the remaining 3 channels */
|
|
|
agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
|
|
@@ -6130,7 +6759,10 @@ e1000_get_cable_length(struct e1000_hw *hw,
|
|
|
IGP01E1000_AGC_RANGE) : 0;
|
|
|
*max_length = e1000_igp_cable_length_table[agc_value] +
|
|
|
IGP01E1000_AGC_RANGE;
|
|
|
- } else if (hw->phy_type == e1000_phy_igp_2) {
|
|
|
+ } else if (hw->phy_type == e1000_phy_igp_2 ||
|
|
|
+ hw->phy_type == e1000_phy_igp_3) {
|
|
|
+ uint16_t cur_agc_index, max_agc_index = 0;
|
|
|
+ uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
|
|
|
uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
|
|
|
{IGP02E1000_PHY_AGC_A,
|
|
|
IGP02E1000_PHY_AGC_B,
|
|
@@ -6145,19 +6777,27 @@ e1000_get_cable_length(struct e1000_hw *hw,
|
|
|
/* Getting bits 15:9, which represent the combination of course and
|
|
|
* fine gain values. The result is a number that can be put into
|
|
|
* the lookup table to obtain the approximate cable length. */
|
|
|
- cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
|
|
|
- IGP02E1000_AGC_LENGTH_MASK;
|
|
|
+ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
|
|
|
+ IGP02E1000_AGC_LENGTH_MASK;
|
|
|
|
|
|
- /* Remove min & max AGC values from calculation. */
|
|
|
- if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc])
|
|
|
- min_agc = cur_agc;
|
|
|
- if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc])
|
|
|
- max_agc = cur_agc;
|
|
|
+ /* Array index bound check. */
|
|
|
+ if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
|
|
|
+ (cur_agc_index == 0))
|
|
|
+ return -E1000_ERR_PHY;
|
|
|
|
|
|
- agc_value += e1000_igp_2_cable_length_table[cur_agc];
|
|
|
+ /* Remove min & max AGC values from calculation. */
|
|
|
+ if (e1000_igp_2_cable_length_table[min_agc_index] >
|
|
|
+ e1000_igp_2_cable_length_table[cur_agc_index])
|
|
|
+ min_agc_index = cur_agc_index;
|
|
|
+ if (e1000_igp_2_cable_length_table[max_agc_index] <
|
|
|
+ e1000_igp_2_cable_length_table[cur_agc_index])
|
|
|
+ max_agc_index = cur_agc_index;
|
|
|
+
|
|
|
+ agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
|
|
|
}
|
|
|
|
|
|
- agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]);
|
|
|
+ agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
|
|
|
+ e1000_igp_2_cable_length_table[max_agc_index]);
|
|
|
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
|
|
|
|
|
|
/* Calculate cable length with the error range of +/- 10 meters. */
|
|
@@ -6203,7 +6843,8 @@ e1000_check_polarity(struct e1000_hw *hw,
|
|
|
return ret_val;
|
|
|
*polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
|
|
|
M88E1000_PSSR_REV_POLARITY_SHIFT;
|
|
|
- } else if(hw->phy_type == e1000_phy_igp ||
|
|
|
+ } else if (hw->phy_type == e1000_phy_igp ||
|
|
|
+ hw->phy_type == e1000_phy_igp_3 ||
|
|
|
hw->phy_type == e1000_phy_igp_2) {
|
|
|
/* Read the Status register to check the speed */
|
|
|
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
|
|
@@ -6229,6 +6870,13 @@ e1000_check_polarity(struct e1000_hw *hw,
|
|
|
* 100 Mbps this bit is always 0) */
|
|
|
*polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
|
|
|
}
|
|
|
+ } else if (hw->phy_type == e1000_phy_ife) {
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
|
|
|
+ IFE_PESC_POLARITY_REVERSED_SHIFT;
|
|
|
}
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
@@ -6256,7 +6904,8 @@ e1000_check_downshift(struct e1000_hw *hw)
|
|
|
|
|
|
DEBUGFUNC("e1000_check_downshift");
|
|
|
|
|
|
- if(hw->phy_type == e1000_phy_igp ||
|
|
|
+ if (hw->phy_type == e1000_phy_igp ||
|
|
|
+ hw->phy_type == e1000_phy_igp_3 ||
|
|
|
hw->phy_type == e1000_phy_igp_2) {
|
|
|
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
|
|
|
&phy_data);
|
|
@@ -6273,6 +6922,9 @@ e1000_check_downshift(struct e1000_hw *hw)
|
|
|
|
|
|
hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
|
|
|
M88E1000_PSSR_DOWNSHIFT_SHIFT;
|
|
|
+ } else if (hw->phy_type == e1000_phy_ife) {
|
|
|
+ /* e1000_phy_ife supports 10/100 speed only */
|
|
|
+ hw->speed_downgraded = FALSE;
|
|
|
}
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
@@ -6317,7 +6969,9 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
|
|
|
|
|
|
if(speed == SPEED_1000) {
|
|
|
|
|
|
- e1000_get_cable_length(hw, &min_length, &max_length);
|
|
|
+ ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
|
|
|
if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
|
|
|
min_length >= e1000_igp_cable_length_50) {
|
|
@@ -6525,20 +7179,27 @@ static int32_t
|
|
|
e1000_set_d3_lplu_state(struct e1000_hw *hw,
|
|
|
boolean_t active)
|
|
|
{
|
|
|
+ uint32_t phy_ctrl = 0;
|
|
|
int32_t ret_val;
|
|
|
uint16_t phy_data;
|
|
|
DEBUGFUNC("e1000_set_d3_lplu_state");
|
|
|
|
|
|
- if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2)
|
|
|
+ if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
|
|
|
+ && hw->phy_type != e1000_phy_igp_3)
|
|
|
return E1000_SUCCESS;
|
|
|
|
|
|
/* During driver activity LPLU should not be used or it will attain link
|
|
|
* from the lowest speeds starting from 10Mbps. The capability is used for
|
|
|
* Dx transitions and states */
|
|
|
- if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
|
|
|
+ if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
|
|
|
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
|
|
|
- if(ret_val)
|
|
|
+ if (ret_val)
|
|
|
return ret_val;
|
|
|
+ } else if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ /* MAC writes into PHY register based on the state transition
|
|
|
+ * and start auto-negotiation. SW driver can overwrite the settings
|
|
|
+ * in CSR PHY power control E1000_PHY_CTRL register. */
|
|
|
+ phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
|
|
|
} else {
|
|
|
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
|
|
|
if(ret_val)
|
|
@@ -6553,11 +7214,16 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
|
|
|
if(ret_val)
|
|
|
return ret_val;
|
|
|
} else {
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
|
|
|
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
|
|
|
+ } else {
|
|
|
phy_data &= ~IGP02E1000_PM_D3_LPLU;
|
|
|
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
|
phy_data);
|
|
|
if (ret_val)
|
|
|
return ret_val;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
|
|
@@ -6593,17 +7259,22 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
|
|
|
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
|
|
|
|
|
|
if(hw->mac_type == e1000_82541_rev_2 ||
|
|
|
- hw->mac_type == e1000_82547_rev_2) {
|
|
|
+ hw->mac_type == e1000_82547_rev_2) {
|
|
|
phy_data |= IGP01E1000_GMII_FLEX_SPD;
|
|
|
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
|
|
|
if(ret_val)
|
|
|
return ret_val;
|
|
|
} else {
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
|
|
|
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
|
|
|
+ } else {
|
|
|
phy_data |= IGP02E1000_PM_D3_LPLU;
|
|
|
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
|
phy_data);
|
|
|
if (ret_val)
|
|
|
return ret_val;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/* When LPLU is enabled we should disable SmartSpeed */
|
|
@@ -6638,6 +7309,7 @@ static int32_t
|
|
|
e1000_set_d0_lplu_state(struct e1000_hw *hw,
|
|
|
boolean_t active)
|
|
|
{
|
|
|
+ uint32_t phy_ctrl = 0;
|
|
|
int32_t ret_val;
|
|
|
uint16_t phy_data;
|
|
|
DEBUGFUNC("e1000_set_d0_lplu_state");
|
|
@@ -6645,15 +7317,24 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
|
|
|
if(hw->mac_type <= e1000_82547_rev_2)
|
|
|
return E1000_SUCCESS;
|
|
|
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
|
|
|
+ } else {
|
|
|
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
|
|
|
if(ret_val)
|
|
|
return ret_val;
|
|
|
+ }
|
|
|
|
|
|
if (!active) {
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
|
|
|
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
|
|
|
+ } else {
|
|
|
phy_data &= ~IGP02E1000_PM_D0_LPLU;
|
|
|
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
|
|
|
if (ret_val)
|
|
|
return ret_val;
|
|
|
+ }
|
|
|
|
|
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
|
|
|
* Dx states where the power conservation is most important. During
|
|
@@ -6686,10 +7367,15 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
|
|
|
|
|
|
} else {
|
|
|
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
|
|
|
+ E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
|
|
|
+ } else {
|
|
|
phy_data |= IGP02E1000_PM_D0_LPLU;
|
|
|
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
|
|
|
if (ret_val)
|
|
|
return ret_val;
|
|
|
+ }
|
|
|
|
|
|
/* When LPLU is enabled we should disable SmartSpeed */
|
|
|
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
|
|
@@ -6928,8 +7614,10 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw,
|
|
|
|
|
|
length >>= 2;
|
|
|
/* The device driver writes the relevant command block into the ram area. */
|
|
|
- for (i = 0; i < length; i++)
|
|
|
+ for (i = 0; i < length; i++) {
|
|
|
E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
|
|
|
+ E1000_WRITE_FLUSH(hw);
|
|
|
+ }
|
|
|
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
@@ -6961,15 +7649,18 @@ e1000_mng_write_commit(
|
|
|
* returns - TRUE when the mode is IAMT or FALSE.
|
|
|
****************************************************************************/
|
|
|
boolean_t
|
|
|
-e1000_check_mng_mode(
|
|
|
- struct e1000_hw *hw)
|
|
|
+e1000_check_mng_mode(struct e1000_hw *hw)
|
|
|
{
|
|
|
uint32_t fwsm;
|
|
|
|
|
|
fwsm = E1000_READ_REG(hw, FWSM);
|
|
|
|
|
|
- if((fwsm & E1000_FWSM_MODE_MASK) ==
|
|
|
- (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ if ((fwsm & E1000_FWSM_MODE_MASK) ==
|
|
|
+ (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
|
|
|
+ return TRUE;
|
|
|
+ } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
|
|
|
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
|
|
|
return TRUE;
|
|
|
|
|
|
return FALSE;
|
|
@@ -7209,7 +7900,6 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw)
|
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
|
}
|
|
|
|
|
|
-#if 0
|
|
|
/***************************************************************************
|
|
|
*
|
|
|
* Enables PCI-Express master access.
|
|
@@ -7233,7 +7923,6 @@ e1000_enable_pciex_master(struct e1000_hw *hw)
|
|
|
ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
|
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
|
}
|
|
|
-#endif /* 0 */
|
|
|
|
|
|
/*******************************************************************************
|
|
|
*
|
|
@@ -7299,8 +7988,10 @@ e1000_get_auto_rd_done(struct e1000_hw *hw)
|
|
|
case e1000_82572:
|
|
|
case e1000_82573:
|
|
|
case e1000_80003es2lan:
|
|
|
- while(timeout) {
|
|
|
- if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
|
|
|
+ case e1000_ich8lan:
|
|
|
+ while (timeout) {
|
|
|
+ if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
|
|
|
+ break;
|
|
|
else msec_delay(1);
|
|
|
timeout--;
|
|
|
}
|
|
@@ -7340,7 +8031,7 @@ e1000_get_phy_cfg_done(struct e1000_hw *hw)
|
|
|
|
|
|
switch (hw->mac_type) {
|
|
|
default:
|
|
|
- msec_delay(10);
|
|
|
+ msec_delay_irq(10);
|
|
|
break;
|
|
|
case e1000_80003es2lan:
|
|
|
/* Separate *_CFG_DONE_* bit for each port */
|
|
@@ -7523,6 +8214,13 @@ int32_t
|
|
|
e1000_check_phy_reset_block(struct e1000_hw *hw)
|
|
|
{
|
|
|
uint32_t manc = 0;
|
|
|
+ uint32_t fwsm = 0;
|
|
|
+
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ fwsm = E1000_READ_REG(hw, FWSM);
|
|
|
+ return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
|
|
|
+ : E1000_BLK_PHY_RESET;
|
|
|
+ }
|
|
|
|
|
|
if (hw->mac_type > e1000_82547_rev_2)
|
|
|
manc = E1000_READ_REG(hw, MANC);
|
|
@@ -7549,6 +8247,8 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw)
|
|
|
if((fwsm & E1000_FWSM_MODE_MASK) != 0)
|
|
|
return TRUE;
|
|
|
break;
|
|
|
+ case e1000_ich8lan:
|
|
|
+ return TRUE;
|
|
|
default:
|
|
|
break;
|
|
|
}
|
|
@@ -7556,4 +8256,846 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw)
|
|
|
}
|
|
|
|
|
|
|
|
|
+/******************************************************************************
|
|
|
+ * Configure PCI-Ex no-snoop
|
|
|
+ *
|
|
|
+ * hw - Struct containing variables accessed by shared code.
|
|
|
+ * no_snoop - Bitmap of no-snoop events.
|
|
|
+ *
|
|
|
+ * returns: E1000_SUCCESS
|
|
|
+ *
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
|
|
|
+{
|
|
|
+ uint32_t gcr_reg = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_set_pci_ex_no_snoop");
|
|
|
+
|
|
|
+ if (hw->bus_type == e1000_bus_type_unknown)
|
|
|
+ e1000_get_bus_info(hw);
|
|
|
+
|
|
|
+ if (hw->bus_type != e1000_bus_type_pci_express)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ if (no_snoop) {
|
|
|
+ gcr_reg = E1000_READ_REG(hw, GCR);
|
|
|
+ gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
|
|
|
+ gcr_reg |= no_snoop;
|
|
|
+ E1000_WRITE_REG(hw, GCR, gcr_reg);
|
|
|
+ }
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ uint32_t ctrl_ext;
|
|
|
+
|
|
|
+ E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
|
|
|
+
|
|
|
+ ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
|
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
|
|
|
+ E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/***************************************************************************
|
|
|
+ *
|
|
|
+ * Get software semaphore FLAG bit (SWFLAG).
|
|
|
+ * SWFLAG is used to synchronize the access to all shared resource between
|
|
|
+ * SW, FW and HW.
|
|
|
+ *
|
|
|
+ * hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ ***************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_get_software_flag(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ int32_t timeout = PHY_CFG_TIMEOUT;
|
|
|
+ uint32_t extcnf_ctrl;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_get_software_flag");
|
|
|
+
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ while (timeout) {
|
|
|
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
|
|
|
+ extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
|
|
|
+ E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
|
|
|
+
|
|
|
+ extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
|
|
|
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
|
|
|
+ break;
|
|
|
+ msec_delay_irq(1);
|
|
|
+ timeout--;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!timeout) {
|
|
|
+ DEBUGOUT("FW or HW locks the resource too long.\n");
|
|
|
+ return -E1000_ERR_CONFIG;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/***************************************************************************
|
|
|
+ *
|
|
|
+ * Release software semaphore FLAG bit (SWFLAG).
|
|
|
+ * SWFLAG is used to synchronize the access to all shared resource between
|
|
|
+ * SW, FW and HW.
|
|
|
+ *
|
|
|
+ * hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ ***************************************************************************/
|
|
|
+void
|
|
|
+e1000_release_software_flag(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ uint32_t extcnf_ctrl;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_release_software_flag");
|
|
|
+
|
|
|
+ if (hw->mac_type == e1000_ich8lan) {
|
|
|
+ extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
|
|
|
+ extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
|
|
|
+ E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
|
|
|
+ }
|
|
|
+
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+/***************************************************************************
|
|
|
+ *
|
|
|
+ * Disable dynamic power down mode in ife PHY.
|
|
|
+ * It can be used to workaround band-gap problem.
|
|
|
+ *
|
|
|
+ * hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ ***************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ uint16_t phy_data;
|
|
|
+ int32_t ret_val = E1000_SUCCESS;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
|
|
|
+
|
|
|
+ if (hw->phy_type == e1000_phy_ife) {
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret_val;
|
|
|
+}
|
|
|
+
|
|
|
+/***************************************************************************
|
|
|
+ *
|
|
|
+ * Enable dynamic power down mode in ife PHY.
|
|
|
+ * It can be used to workaround band-gap problem.
|
|
|
+ *
|
|
|
+ * hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ ***************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ uint16_t phy_data;
|
|
|
+ int32_t ret_val = E1000_SUCCESS;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
|
|
|
+
|
|
|
+ if (hw->phy_type == e1000_phy_ife) {
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret_val;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
|
|
|
+ * register.
|
|
|
+ *
|
|
|
+ * hw - Struct containing variables accessed by shared code
|
|
|
+ * offset - offset of word in the EEPROM to read
|
|
|
+ * data - word read from the EEPROM
|
|
|
+ * words - number of words to read
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
|
|
|
+ uint16_t *data)
|
|
|
+{
|
|
|
+ int32_t error = E1000_SUCCESS;
|
|
|
+ uint32_t flash_bank = 0;
|
|
|
+ uint32_t act_offset = 0;
|
|
|
+ uint32_t bank_offset = 0;
|
|
|
+ uint16_t word = 0;
|
|
|
+ uint16_t i = 0;
|
|
|
+
|
|
|
+ /* We need to know which is the valid flash bank. In the event
|
|
|
+ * that we didn't allocate eeprom_shadow_ram, we may not be
|
|
|
+ * managing flash_bank. So it cannot be trusted and needs
|
|
|
+ * to be updated with each read.
|
|
|
+ */
|
|
|
+ /* Value of bit 22 corresponds to the flash bank we're on. */
|
|
|
+ flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
|
|
|
+
|
|
|
+ /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
|
|
|
+ bank_offset = flash_bank * (hw->flash_bank_size * 2);
|
|
|
+
|
|
|
+ error = e1000_get_software_flag(hw);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ return error;
|
|
|
+
|
|
|
+ for (i = 0; i < words; i++) {
|
|
|
+ if (hw->eeprom_shadow_ram != NULL &&
|
|
|
+ hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
|
|
|
+ data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
|
|
|
+ } else {
|
|
|
+ /* The NVM part needs a byte offset, hence * 2 */
|
|
|
+ act_offset = bank_offset + ((offset + i) * 2);
|
|
|
+ error = e1000_read_ich8_word(hw, act_offset, &word);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ break;
|
|
|
+ data[i] = word;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ e1000_release_software_flag(hw);
|
|
|
+
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
|
|
|
+ * register. Actually, writes are written to the shadow ram cache in the hw
|
|
|
+ * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
|
|
|
+ * the NVM, which occurs when the NVM checksum is updated.
|
|
|
+ *
|
|
|
+ * hw - Struct containing variables accessed by shared code
|
|
|
+ * offset - offset of word in the EEPROM to write
|
|
|
+ * words - number of words to write
|
|
|
+ * data - words to write to the EEPROM
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
|
|
|
+ uint16_t *data)
|
|
|
+{
|
|
|
+ uint32_t i = 0;
|
|
|
+ int32_t error = E1000_SUCCESS;
|
|
|
+
|
|
|
+ error = e1000_get_software_flag(hw);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ return error;
|
|
|
+
|
|
|
+ /* A driver can write to the NVM only if it has eeprom_shadow_ram
|
|
|
+ * allocated. Subsequent reads to the modified words are read from
|
|
|
+ * this cached structure as well. Writes will only go into this
|
|
|
+ * cached structure unless it's followed by a call to
|
|
|
+ * e1000_update_eeprom_checksum() where it will commit the changes
|
|
|
+ * and clear the "modified" field.
|
|
|
+ */
|
|
|
+ if (hw->eeprom_shadow_ram != NULL) {
|
|
|
+ for (i = 0; i < words; i++) {
|
|
|
+ if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
|
|
|
+ hw->eeprom_shadow_ram[offset+i].modified = TRUE;
|
|
|
+ hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
|
|
|
+ } else {
|
|
|
+ error = -E1000_ERR_EEPROM;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* Drivers have the option to not allocate eeprom_shadow_ram as long
|
|
|
+ * as they don't perform any NVM writes. An attempt in doing so
|
|
|
+ * will result in this error.
|
|
|
+ */
|
|
|
+ error = -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+
|
|
|
+ e1000_release_software_flag(hw);
|
|
|
+
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * This function does initial flash setup so that a new read/write/erase cycle
|
|
|
+ * can be started.
|
|
|
+ *
|
|
|
+ * hw - The pointer to the hw structure
|
|
|
+ ****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_ich8_cycle_init(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ union ich8_hws_flash_status hsfsts;
|
|
|
+ int32_t error = E1000_ERR_EEPROM;
|
|
|
+ int32_t i = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_ich8_cycle_init");
|
|
|
+
|
|
|
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
|
|
|
+
|
|
|
+ /* May be check the Flash Des Valid bit in Hw status */
|
|
|
+ if (hsfsts.hsf_status.fldesvalid == 0) {
|
|
|
+ DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
|
|
|
+ return error;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Clear FCERR in Hw status by writing 1 */
|
|
|
+ /* Clear DAEL in Hw status by writing a 1 */
|
|
|
+ hsfsts.hsf_status.flcerr = 1;
|
|
|
+ hsfsts.hsf_status.dael = 1;
|
|
|
+
|
|
|
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
|
|
|
+
|
|
|
+ /* Either we should have a hardware SPI cycle in progress bit to check
|
|
|
+ * against, in order to start a new cycle or FDONE bit should be changed
|
|
|
+ * in the hardware so that it is 1 after harware reset, which can then be
|
|
|
+ * used as an indication whether a cycle is in progress or has been
|
|
|
+ * completed .. we should also have some software semaphore mechanism to
|
|
|
+ * guard FDONE or the cycle in progress bit so that two threads access to
|
|
|
+ * those bits can be sequentiallized or a way so that 2 threads dont
|
|
|
+ * start the cycle at the same time */
|
|
|
+
|
|
|
+ if (hsfsts.hsf_status.flcinprog == 0) {
|
|
|
+ /* There is no cycle running at present, so we can start a cycle */
|
|
|
+ /* Begin by setting Flash Cycle Done. */
|
|
|
+ hsfsts.hsf_status.flcdone = 1;
|
|
|
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
|
|
|
+ error = E1000_SUCCESS;
|
|
|
+ } else {
|
|
|
+ /* otherwise poll for sometime so the current cycle has a chance
|
|
|
+ * to end before giving up. */
|
|
|
+ for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
|
|
|
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
|
|
|
+ if (hsfsts.hsf_status.flcinprog == 0) {
|
|
|
+ error = E1000_SUCCESS;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ udelay(1);
|
|
|
+ }
|
|
|
+ if (error == E1000_SUCCESS) {
|
|
|
+ /* Successful in waiting for previous cycle to timeout,
|
|
|
+ * now set the Flash Cycle Done. */
|
|
|
+ hsfsts.hsf_status.flcdone = 1;
|
|
|
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
|
|
|
+ } else {
|
|
|
+ DEBUGOUT("Flash controller busy, cannot get access");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * This function starts a flash cycle and waits for its completion
|
|
|
+ *
|
|
|
+ * hw - The pointer to the hw structure
|
|
|
+ ****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
|
|
|
+{
|
|
|
+ union ich8_hws_flash_ctrl hsflctl;
|
|
|
+ union ich8_hws_flash_status hsfsts;
|
|
|
+ int32_t error = E1000_ERR_EEPROM;
|
|
|
+ uint32_t i = 0;
|
|
|
+
|
|
|
+ /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
|
|
|
+ hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
|
|
|
+ hsflctl.hsf_ctrl.flcgo = 1;
|
|
|
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
|
|
|
+
|
|
|
+ /* wait till FDONE bit is set to 1 */
|
|
|
+ do {
|
|
|
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
|
|
|
+ if (hsfsts.hsf_status.flcdone == 1)
|
|
|
+ break;
|
|
|
+ udelay(1);
|
|
|
+ i++;
|
|
|
+ } while (i < timeout);
|
|
|
+ if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
|
|
|
+ error = E1000_SUCCESS;
|
|
|
+ }
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Reads a byte or word from the NVM using the ICH8 flash access registers.
|
|
|
+ *
|
|
|
+ * hw - The pointer to the hw structure
|
|
|
+ * index - The index of the byte or word to read.
|
|
|
+ * size - Size of data to read, 1=byte 2=word
|
|
|
+ * data - Pointer to the word to store the value read.
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
|
|
|
+ uint32_t size, uint16_t* data)
|
|
|
+{
|
|
|
+ union ich8_hws_flash_status hsfsts;
|
|
|
+ union ich8_hws_flash_ctrl hsflctl;
|
|
|
+ uint32_t flash_linear_address;
|
|
|
+ uint32_t flash_data = 0;
|
|
|
+ int32_t error = -E1000_ERR_EEPROM;
|
|
|
+ int32_t count = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_read_ich8_data");
|
|
|
+
|
|
|
+ if (size < 1 || size > 2 || data == 0x0 ||
|
|
|
+ index > ICH8_FLASH_LINEAR_ADDR_MASK)
|
|
|
+ return error;
|
|
|
+
|
|
|
+ flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
|
|
|
+ hw->flash_base_addr;
|
|
|
+
|
|
|
+ do {
|
|
|
+ udelay(1);
|
|
|
+ /* Steps */
|
|
|
+ error = e1000_ich8_cycle_init(hw);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ break;
|
|
|
+
|
|
|
+ hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
|
|
|
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
|
|
|
+ hsflctl.hsf_ctrl.fldbcount = size - 1;
|
|
|
+ hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
|
|
|
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
|
|
|
+
|
|
|
+ /* Write the last 24 bits of index into Flash Linear address field in
|
|
|
+ * Flash Address */
|
|
|
+ /* TODO: TBD maybe check the index against the size of flash */
|
|
|
+
|
|
|
+ E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
|
|
|
+
|
|
|
+ error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
|
|
|
+
|
|
|
+ /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
|
|
|
+ * sequence a few more times, else read in (shift in) the Flash Data0,
|
|
|
+ * the order is least significant byte first msb to lsb */
|
|
|
+ if (error == E1000_SUCCESS) {
|
|
|
+ flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
|
|
|
+ if (size == 1) {
|
|
|
+ *data = (uint8_t)(flash_data & 0x000000FF);
|
|
|
+ } else if (size == 2) {
|
|
|
+ *data = (uint16_t)(flash_data & 0x0000FFFF);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ } else {
|
|
|
+ /* If we've gotten here, then things are probably completely hosed,
|
|
|
+ * but if the error condition is detected, it won't hurt to give
|
|
|
+ * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
|
|
|
+ */
|
|
|
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
|
|
|
+ if (hsfsts.hsf_status.flcerr == 1) {
|
|
|
+ /* Repeat for some time before giving up. */
|
|
|
+ continue;
|
|
|
+ } else if (hsfsts.hsf_status.flcdone == 0) {
|
|
|
+ DEBUGOUT("Timeout error - flash cycle did not complete.");
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
|
|
|
+
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Writes One /two bytes to the NVM using the ICH8 flash access registers.
|
|
|
+ *
|
|
|
+ * hw - The pointer to the hw structure
|
|
|
+ * index - The index of the byte/word to read.
|
|
|
+ * size - Size of data to read, 1=byte 2=word
|
|
|
+ * data - The byte(s) to write to the NVM.
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
|
|
|
+ uint16_t data)
|
|
|
+{
|
|
|
+ union ich8_hws_flash_status hsfsts;
|
|
|
+ union ich8_hws_flash_ctrl hsflctl;
|
|
|
+ uint32_t flash_linear_address;
|
|
|
+ uint32_t flash_data = 0;
|
|
|
+ int32_t error = -E1000_ERR_EEPROM;
|
|
|
+ int32_t count = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_write_ich8_data");
|
|
|
+
|
|
|
+ if (size < 1 || size > 2 || data > size * 0xff ||
|
|
|
+ index > ICH8_FLASH_LINEAR_ADDR_MASK)
|
|
|
+ return error;
|
|
|
+
|
|
|
+ flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
|
|
|
+ hw->flash_base_addr;
|
|
|
+
|
|
|
+ do {
|
|
|
+ udelay(1);
|
|
|
+ /* Steps */
|
|
|
+ error = e1000_ich8_cycle_init(hw);
|
|
|
+ if (error != E1000_SUCCESS)
|
|
|
+ break;
|
|
|
+
|
|
|
+ hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
|
|
|
+ /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
|
|
|
+ hsflctl.hsf_ctrl.fldbcount = size -1;
|
|
|
+ hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
|
|
|
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
|
|
|
+
|
|
|
+ /* Write the last 24 bits of index into Flash Linear address field in
|
|
|
+ * Flash Address */
|
|
|
+ E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
|
|
|
+
|
|
|
+ if (size == 1)
|
|
|
+ flash_data = (uint32_t)data & 0x00FF;
|
|
|
+ else
|
|
|
+ flash_data = (uint32_t)data;
|
|
|
+
|
|
|
+ E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
|
|
|
+
|
|
|
+ /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
|
|
|
+ * sequence a few more times else done */
|
|
|
+ error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
|
|
|
+ if (error == E1000_SUCCESS) {
|
|
|
+ break;
|
|
|
+ } else {
|
|
|
+ /* If we're here, then things are most likely completely hosed,
|
|
|
+ * but if the error condition is detected, it won't hurt to give
|
|
|
+ * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
|
|
|
+ */
|
|
|
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
|
|
|
+ if (hsfsts.hsf_status.flcerr == 1) {
|
|
|
+ /* Repeat for some time before giving up. */
|
|
|
+ continue;
|
|
|
+ } else if (hsfsts.hsf_status.flcdone == 0) {
|
|
|
+ DEBUGOUT("Timeout error - flash cycle did not complete.");
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
|
|
|
+
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Reads a single byte from the NVM using the ICH8 flash access registers.
|
|
|
+ *
|
|
|
+ * hw - pointer to e1000_hw structure
|
|
|
+ * index - The index of the byte to read.
|
|
|
+ * data - Pointer to a byte to store the value read.
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
|
|
|
+{
|
|
|
+ int32_t status = E1000_SUCCESS;
|
|
|
+ uint16_t word = 0;
|
|
|
+
|
|
|
+ status = e1000_read_ich8_data(hw, index, 1, &word);
|
|
|
+ if (status == E1000_SUCCESS) {
|
|
|
+ *data = (uint8_t)word;
|
|
|
+ }
|
|
|
+
|
|
|
+ return status;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Writes a single byte to the NVM using the ICH8 flash access registers.
|
|
|
+ * Performs verification by reading back the value and then going through
|
|
|
+ * a retry algorithm before giving up.
|
|
|
+ *
|
|
|
+ * hw - pointer to e1000_hw structure
|
|
|
+ * index - The index of the byte to write.
|
|
|
+ * byte - The byte to write to the NVM.
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
|
|
|
+{
|
|
|
+ int32_t error = E1000_SUCCESS;
|
|
|
+ int32_t program_retries;
|
|
|
+ uint8_t temp_byte;
|
|
|
+
|
|
|
+ e1000_write_ich8_byte(hw, index, byte);
|
|
|
+ udelay(100);
|
|
|
+
|
|
|
+ for (program_retries = 0; program_retries < 100; program_retries++) {
|
|
|
+ e1000_read_ich8_byte(hw, index, &temp_byte);
|
|
|
+ if (temp_byte == byte)
|
|
|
+ break;
|
|
|
+ udelay(10);
|
|
|
+ e1000_write_ich8_byte(hw, index, byte);
|
|
|
+ udelay(100);
|
|
|
+ }
|
|
|
+ if (program_retries == 100)
|
|
|
+ error = E1000_ERR_EEPROM;
|
|
|
+
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Writes a single byte to the NVM using the ICH8 flash access registers.
|
|
|
+ *
|
|
|
+ * hw - pointer to e1000_hw structure
|
|
|
+ * index - The index of the byte to read.
|
|
|
+ * data - The byte to write to the NVM.
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
|
|
|
+{
|
|
|
+ int32_t status = E1000_SUCCESS;
|
|
|
+ uint16_t word = (uint16_t)data;
|
|
|
+
|
|
|
+ status = e1000_write_ich8_data(hw, index, 1, word);
|
|
|
+
|
|
|
+ return status;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Reads a word from the NVM using the ICH8 flash access registers.
|
|
|
+ *
|
|
|
+ * hw - pointer to e1000_hw structure
|
|
|
+ * index - The starting byte index of the word to read.
|
|
|
+ * data - Pointer to a word to store the value read.
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
|
|
|
+{
|
|
|
+ int32_t status = E1000_SUCCESS;
|
|
|
+ status = e1000_read_ich8_data(hw, index, 2, data);
|
|
|
+ return status;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Writes a word to the NVM using the ICH8 flash access registers.
|
|
|
+ *
|
|
|
+ * hw - pointer to e1000_hw structure
|
|
|
+ * index - The starting byte index of the word to read.
|
|
|
+ * data - The word to write to the NVM.
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
|
|
|
+{
|
|
|
+ int32_t status = E1000_SUCCESS;
|
|
|
+ status = e1000_write_ich8_data(hw, index, 2, data);
|
|
|
+ return status;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
|
|
|
+ * segment N is 4096 * N + flash_reg_addr.
|
|
|
+ *
|
|
|
+ * hw - pointer to e1000_hw structure
|
|
|
+ * segment - 0 for first segment, 1 for second segment, etc.
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
|
|
|
+{
|
|
|
+ union ich8_hws_flash_status hsfsts;
|
|
|
+ union ich8_hws_flash_ctrl hsflctl;
|
|
|
+ uint32_t flash_linear_address;
|
|
|
+ int32_t count = 0;
|
|
|
+ int32_t error = E1000_ERR_EEPROM;
|
|
|
+ int32_t iteration, seg_size;
|
|
|
+ int32_t sector_size;
|
|
|
+ int32_t j = 0;
|
|
|
+ int32_t error_flag = 0;
|
|
|
+
|
|
|
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
|
|
|
+
|
|
|
+ /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
|
|
|
+ /* 00: The Hw sector is 256 bytes, hence we need to erase 16
|
|
|
+ * consecutive sectors. The start index for the nth Hw sector can be
|
|
|
+ * calculated as = segment * 4096 + n * 256
|
|
|
+ * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
|
|
|
+ * The start index for the nth Hw sector can be calculated
|
|
|
+ * as = segment * 4096
|
|
|
+ * 10: Error condition
|
|
|
+ * 11: The Hw sector size is much bigger than the size asked to
|
|
|
+ * erase...error condition */
|
|
|
+ if (hsfsts.hsf_status.berasesz == 0x0) {
|
|
|
+ /* Hw sector size 256 */
|
|
|
+ sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
|
|
|
+ iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
|
|
|
+ } else if (hsfsts.hsf_status.berasesz == 0x1) {
|
|
|
+ sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
|
|
|
+ iteration = 1;
|
|
|
+ } else if (hsfsts.hsf_status.berasesz == 0x3) {
|
|
|
+ sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
|
|
|
+ iteration = 1;
|
|
|
+ } else {
|
|
|
+ return error;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (j = 0; j < iteration ; j++) {
|
|
|
+ do {
|
|
|
+ count++;
|
|
|
+ /* Steps */
|
|
|
+ error = e1000_ich8_cycle_init(hw);
|
|
|
+ if (error != E1000_SUCCESS) {
|
|
|
+ error_flag = 1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
|
|
|
+ * Control */
|
|
|
+ hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
|
|
|
+ hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
|
|
|
+ E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
|
|
|
+
|
|
|
+ /* Write the last 24 bits of an index within the block into Flash
|
|
|
+ * Linear address field in Flash Address. This probably needs to
|
|
|
+ * be calculated here based off the on-chip segment size and the
|
|
|
+ * software segment size assumed (4K) */
|
|
|
+ /* TBD */
|
|
|
+ flash_linear_address = segment * sector_size + j * seg_size;
|
|
|
+ flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
|
|
|
+ flash_linear_address += hw->flash_base_addr;
|
|
|
+
|
|
|
+ E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
|
|
|
+
|
|
|
+ error = e1000_ich8_flash_cycle(hw, 1000000);
|
|
|
+ /* Check if FCERR is set to 1. If 1, clear it and try the whole
|
|
|
+ * sequence a few more times else Done */
|
|
|
+ if (error == E1000_SUCCESS) {
|
|
|
+ break;
|
|
|
+ } else {
|
|
|
+ hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
|
|
|
+ if (hsfsts.hsf_status.flcerr == 1) {
|
|
|
+ /* repeat for some time before giving up */
|
|
|
+ continue;
|
|
|
+ } else if (hsfsts.hsf_status.flcdone == 0) {
|
|
|
+ error_flag = 1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
|
|
|
+ if (error_flag == 1)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if (error_flag != 1)
|
|
|
+ error = E1000_SUCCESS;
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ *
|
|
|
+ * Reverse duplex setting without breaking the link.
|
|
|
+ *
|
|
|
+ * hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ *****************************************************************************/
|
|
|
+int32_t
|
|
|
+e1000_duplex_reversal(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ int32_t ret_val;
|
|
|
+ uint16_t phy_data;
|
|
|
+
|
|
|
+ if (hw->phy_type != e1000_phy_igp_3)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data ^= MII_CR_FULL_DUPLEX;
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
|
|
|
+
|
|
|
+ return ret_val;
|
|
|
+}
|
|
|
+
|
|
|
+int32_t
|
|
|
+e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
|
|
|
+ uint32_t cnf_base_addr, uint32_t cnf_size)
|
|
|
+{
|
|
|
+ uint32_t ret_val = E1000_SUCCESS;
|
|
|
+ uint16_t word_addr, reg_data, reg_addr;
|
|
|
+ uint16_t i;
|
|
|
+
|
|
|
+ /* cnf_base_addr is in DWORD */
|
|
|
+ word_addr = (uint16_t)(cnf_base_addr << 1);
|
|
|
+
|
|
|
+ /* cnf_size is returned in size of dwords */
|
|
|
+ for (i = 0; i < cnf_size; i++) {
|
|
|
+ ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_get_software_flag(hw);
|
|
|
+ if (ret_val != E1000_SUCCESS)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
|
|
|
+
|
|
|
+ e1000_release_software_flag(hw);
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret_val;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+int32_t
|
|
|
+e1000_init_lcd_from_nvm(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
|
|
|
+
|
|
|
+ if (hw->phy_type != e1000_phy_igp_3)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ /* Check if SW needs configure the PHY */
|
|
|
+ reg_data = E1000_READ_REG(hw, FEXTNVM);
|
|
|
+ if (!(reg_data & FEXTNVM_SW_CONFIG))
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ /* Wait for basic configuration completes before proceeding*/
|
|
|
+ loop = 0;
|
|
|
+ do {
|
|
|
+ reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
|
|
|
+ udelay(100);
|
|
|
+ loop++;
|
|
|
+ } while ((!reg_data) && (loop < 50));
|
|
|
+
|
|
|
+ /* Clear the Init Done bit for the next init event */
|
|
|
+ reg_data = E1000_READ_REG(hw, STATUS);
|
|
|
+ reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
|
|
|
+ E1000_WRITE_REG(hw, STATUS, reg_data);
|
|
|
+
|
|
|
+ /* Make sure HW does not configure LCD from PHY extended configuration
|
|
|
+ before SW configuration */
|
|
|
+ reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
|
|
|
+ if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
|
|
|
+ reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
|
|
|
+ cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
|
|
|
+ cnf_size >>= 16;
|
|
|
+ if (cnf_size) {
|
|
|
+ reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
|
|
|
+ cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
|
|
|
+ /* cnf_base_addr is in DWORD */
|
|
|
+ cnf_base_addr >>= 16;
|
|
|
+
|
|
|
+ /* Configure LCD from extended configuration region. */
|
|
|
+ ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
|
|
|
+ cnf_size);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
|