|
@@ -25,9 +25,13 @@ struct intel_cqm_state {
|
|
|
static DEFINE_PER_CPU(struct intel_cqm_state, cqm_state);
|
|
|
|
|
|
/*
|
|
|
- * Protects cache_cgroups and cqm_rmid_lru.
|
|
|
+ * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
|
|
|
+ * Also protects event->hw.cqm_rmid
|
|
|
+ *
|
|
|
+ * Hold either for stability, both for modification of ->hw.cqm_rmid.
|
|
|
*/
|
|
|
static DEFINE_MUTEX(cache_mutex);
|
|
|
+static DEFINE_RAW_SPINLOCK(cache_lock);
|
|
|
|
|
|
/*
|
|
|
* Groups of events that have the same target(s), one RMID per group.
|
|
@@ -46,7 +50,34 @@ static cpumask_t cqm_cpumask;
|
|
|
|
|
|
#define QOS_EVENT_MASK QOS_L3_OCCUP_EVENT_ID
|
|
|
|
|
|
-static u64 __rmid_read(unsigned long rmid)
|
|
|
+/*
|
|
|
+ * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
|
|
|
+ *
|
|
|
+ * This rmid is always free and is guaranteed to have an associated
|
|
|
+ * near-zero occupancy value, i.e. no cachelines are tagged with this
|
|
|
+ * RMID, once __intel_cqm_rmid_rotate() returns.
|
|
|
+ */
|
|
|
+static unsigned int intel_cqm_rotation_rmid;
|
|
|
+
|
|
|
+#define INVALID_RMID (-1)
|
|
|
+
|
|
|
+/*
|
|
|
+ * Is @rmid valid for programming the hardware?
|
|
|
+ *
|
|
|
+ * rmid 0 is reserved by the hardware for all non-monitored tasks, which
|
|
|
+ * means that we should never come across an rmid with that value.
|
|
|
+ * Likewise, an rmid value of -1 is used to indicate "no rmid currently
|
|
|
+ * assigned" and is used as part of the rotation code.
|
|
|
+ */
|
|
|
+static inline bool __rmid_valid(unsigned int rmid)
|
|
|
+{
|
|
|
+ if (!rmid || rmid == INVALID_RMID)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+static u64 __rmid_read(unsigned int rmid)
|
|
|
{
|
|
|
u64 val;
|
|
|
|
|
@@ -64,13 +95,21 @@ static u64 __rmid_read(unsigned long rmid)
|
|
|
return val;
|
|
|
}
|
|
|
|
|
|
+enum rmid_recycle_state {
|
|
|
+ RMID_YOUNG = 0,
|
|
|
+ RMID_AVAILABLE,
|
|
|
+ RMID_DIRTY,
|
|
|
+};
|
|
|
+
|
|
|
struct cqm_rmid_entry {
|
|
|
- u64 rmid;
|
|
|
+ unsigned int rmid;
|
|
|
+ enum rmid_recycle_state state;
|
|
|
struct list_head list;
|
|
|
+ unsigned long queue_time;
|
|
|
};
|
|
|
|
|
|
/*
|
|
|
- * A least recently used list of RMIDs.
|
|
|
+ * cqm_rmid_free_lru - A least recently used list of RMIDs.
|
|
|
*
|
|
|
* Oldest entry at the head, newest (most recently used) entry at the
|
|
|
* tail. This list is never traversed, it's only used to keep track of
|
|
@@ -81,9 +120,18 @@ struct cqm_rmid_entry {
|
|
|
* in use. To mark an RMID as in use, remove its entry from the lru
|
|
|
* list.
|
|
|
*
|
|
|
- * This list is protected by cache_mutex.
|
|
|
+ *
|
|
|
+ * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
|
|
|
+ *
|
|
|
+ * This list is contains RMIDs that no one is currently using but that
|
|
|
+ * may have a non-zero occupancy value associated with them. The
|
|
|
+ * rotation worker moves RMIDs from the limbo list to the free list once
|
|
|
+ * the occupancy value drops below __intel_cqm_threshold.
|
|
|
+ *
|
|
|
+ * Both lists are protected by cache_mutex.
|
|
|
*/
|
|
|
-static LIST_HEAD(cqm_rmid_lru);
|
|
|
+static LIST_HEAD(cqm_rmid_free_lru);
|
|
|
+static LIST_HEAD(cqm_rmid_limbo_lru);
|
|
|
|
|
|
/*
|
|
|
* We use a simple array of pointers so that we can lookup a struct
|
|
@@ -120,37 +168,43 @@ static int __get_rmid(void)
|
|
|
|
|
|
lockdep_assert_held(&cache_mutex);
|
|
|
|
|
|
- if (list_empty(&cqm_rmid_lru))
|
|
|
- return -EAGAIN;
|
|
|
+ if (list_empty(&cqm_rmid_free_lru))
|
|
|
+ return INVALID_RMID;
|
|
|
|
|
|
- entry = list_first_entry(&cqm_rmid_lru, struct cqm_rmid_entry, list);
|
|
|
+ entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
|
|
|
list_del(&entry->list);
|
|
|
|
|
|
return entry->rmid;
|
|
|
}
|
|
|
|
|
|
-static void __put_rmid(int rmid)
|
|
|
+static void __put_rmid(unsigned int rmid)
|
|
|
{
|
|
|
struct cqm_rmid_entry *entry;
|
|
|
|
|
|
lockdep_assert_held(&cache_mutex);
|
|
|
|
|
|
+ WARN_ON(!__rmid_valid(rmid));
|
|
|
entry = __rmid_entry(rmid);
|
|
|
|
|
|
- list_add_tail(&entry->list, &cqm_rmid_lru);
|
|
|
+ entry->queue_time = jiffies;
|
|
|
+ entry->state = RMID_YOUNG;
|
|
|
+
|
|
|
+ list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
|
|
|
}
|
|
|
|
|
|
static int intel_cqm_setup_rmid_cache(void)
|
|
|
{
|
|
|
struct cqm_rmid_entry *entry;
|
|
|
- int r;
|
|
|
+ unsigned int nr_rmids;
|
|
|
+ int r = 0;
|
|
|
|
|
|
+ nr_rmids = cqm_max_rmid + 1;
|
|
|
cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) *
|
|
|
- (cqm_max_rmid + 1), GFP_KERNEL);
|
|
|
+ nr_rmids, GFP_KERNEL);
|
|
|
if (!cqm_rmid_ptrs)
|
|
|
return -ENOMEM;
|
|
|
|
|
|
- for (r = 0; r <= cqm_max_rmid; r++) {
|
|
|
+ for (; r <= cqm_max_rmid; r++) {
|
|
|
struct cqm_rmid_entry *entry;
|
|
|
|
|
|
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
|
|
@@ -161,7 +215,7 @@ static int intel_cqm_setup_rmid_cache(void)
|
|
|
entry->rmid = r;
|
|
|
cqm_rmid_ptrs[r] = entry;
|
|
|
|
|
|
- list_add_tail(&entry->list, &cqm_rmid_lru);
|
|
|
+ list_add_tail(&entry->list, &cqm_rmid_free_lru);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -171,6 +225,10 @@ static int intel_cqm_setup_rmid_cache(void)
|
|
|
entry = __rmid_entry(0);
|
|
|
list_del(&entry->list);
|
|
|
|
|
|
+ mutex_lock(&cache_mutex);
|
|
|
+ intel_cqm_rotation_rmid = __get_rmid();
|
|
|
+ mutex_unlock(&cache_mutex);
|
|
|
+
|
|
|
return 0;
|
|
|
fail:
|
|
|
while (r--)
|
|
@@ -313,6 +371,424 @@ static bool __conflict_event(struct perf_event *a, struct perf_event *b)
|
|
|
return false;
|
|
|
}
|
|
|
|
|
|
+struct rmid_read {
|
|
|
+ unsigned int rmid;
|
|
|
+ atomic64_t value;
|
|
|
+};
|
|
|
+
|
|
|
+static void __intel_cqm_event_count(void *info);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Exchange the RMID of a group of events.
|
|
|
+ */
|
|
|
+static unsigned int
|
|
|
+intel_cqm_xchg_rmid(struct perf_event *group, unsigned int rmid)
|
|
|
+{
|
|
|
+ struct perf_event *event;
|
|
|
+ unsigned int old_rmid = group->hw.cqm_rmid;
|
|
|
+ struct list_head *head = &group->hw.cqm_group_entry;
|
|
|
+
|
|
|
+ lockdep_assert_held(&cache_mutex);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If our RMID is being deallocated, perform a read now.
|
|
|
+ */
|
|
|
+ if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
|
|
|
+ struct rmid_read rr = {
|
|
|
+ .value = ATOMIC64_INIT(0),
|
|
|
+ .rmid = old_rmid,
|
|
|
+ };
|
|
|
+
|
|
|
+ on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
|
|
|
+ &rr, 1);
|
|
|
+ local64_set(&group->count, atomic64_read(&rr.value));
|
|
|
+ }
|
|
|
+
|
|
|
+ raw_spin_lock_irq(&cache_lock);
|
|
|
+
|
|
|
+ group->hw.cqm_rmid = rmid;
|
|
|
+ list_for_each_entry(event, head, hw.cqm_group_entry)
|
|
|
+ event->hw.cqm_rmid = rmid;
|
|
|
+
|
|
|
+ raw_spin_unlock_irq(&cache_lock);
|
|
|
+
|
|
|
+ return old_rmid;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
|
|
|
+ * cachelines are still tagged with RMIDs in limbo, we progressively
|
|
|
+ * increment the threshold until we find an RMID in limbo with <=
|
|
|
+ * __intel_cqm_threshold lines tagged. This is designed to mitigate the
|
|
|
+ * problem where cachelines tagged with an RMID are not steadily being
|
|
|
+ * evicted.
|
|
|
+ *
|
|
|
+ * On successful rotations we decrease the threshold back towards zero.
|
|
|
+ *
|
|
|
+ * __intel_cqm_max_threshold provides an upper bound on the threshold,
|
|
|
+ * and is measured in bytes because it's exposed to userland.
|
|
|
+ */
|
|
|
+static unsigned int __intel_cqm_threshold;
|
|
|
+static unsigned int __intel_cqm_max_threshold;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Test whether an RMID has a zero occupancy value on this cpu.
|
|
|
+ */
|
|
|
+static void intel_cqm_stable(void *arg)
|
|
|
+{
|
|
|
+ struct cqm_rmid_entry *entry;
|
|
|
+
|
|
|
+ list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
|
|
|
+ if (entry->state != RMID_AVAILABLE)
|
|
|
+ break;
|
|
|
+
|
|
|
+ if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
|
|
|
+ entry->state = RMID_DIRTY;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * If we have group events waiting for an RMID that don't conflict with
|
|
|
+ * events already running, assign @rmid.
|
|
|
+ */
|
|
|
+static bool intel_cqm_sched_in_event(unsigned int rmid)
|
|
|
+{
|
|
|
+ struct perf_event *leader, *event;
|
|
|
+
|
|
|
+ lockdep_assert_held(&cache_mutex);
|
|
|
+
|
|
|
+ leader = list_first_entry(&cache_groups, struct perf_event,
|
|
|
+ hw.cqm_groups_entry);
|
|
|
+ event = leader;
|
|
|
+
|
|
|
+ list_for_each_entry_continue(event, &cache_groups,
|
|
|
+ hw.cqm_groups_entry) {
|
|
|
+ if (__rmid_valid(event->hw.cqm_rmid))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (__conflict_event(event, leader))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ intel_cqm_xchg_rmid(event, rmid);
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Initially use this constant for both the limbo queue time and the
|
|
|
+ * rotation timer interval, pmu::hrtimer_interval_ms.
|
|
|
+ *
|
|
|
+ * They don't need to be the same, but the two are related since if you
|
|
|
+ * rotate faster than you recycle RMIDs, you may run out of available
|
|
|
+ * RMIDs.
|
|
|
+ */
|
|
|
+#define RMID_DEFAULT_QUEUE_TIME 250 /* ms */
|
|
|
+
|
|
|
+static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
|
|
|
+
|
|
|
+/*
|
|
|
+ * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
|
|
|
+ * @nr_available: number of freeable RMIDs on the limbo list
|
|
|
+ *
|
|
|
+ * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
|
|
|
+ * cachelines are tagged with those RMIDs. After this we can reuse them
|
|
|
+ * and know that the current set of active RMIDs is stable.
|
|
|
+ *
|
|
|
+ * Return %true or %false depending on whether stabilization needs to be
|
|
|
+ * reattempted.
|
|
|
+ *
|
|
|
+ * If we return %true then @nr_available is updated to indicate the
|
|
|
+ * number of RMIDs on the limbo list that have been queued for the
|
|
|
+ * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
|
|
|
+ * are above __intel_cqm_threshold.
|
|
|
+ */
|
|
|
+static bool intel_cqm_rmid_stabilize(unsigned int *available)
|
|
|
+{
|
|
|
+ struct cqm_rmid_entry *entry, *tmp;
|
|
|
+ struct perf_event *event;
|
|
|
+
|
|
|
+ lockdep_assert_held(&cache_mutex);
|
|
|
+
|
|
|
+ *available = 0;
|
|
|
+ list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
|
|
|
+ unsigned long min_queue_time;
|
|
|
+ unsigned long now = jiffies;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We hold RMIDs placed into limbo for a minimum queue
|
|
|
+ * time. Before the minimum queue time has elapsed we do
|
|
|
+ * not recycle RMIDs.
|
|
|
+ *
|
|
|
+ * The reasoning is that until a sufficient time has
|
|
|
+ * passed since we stopped using an RMID, any RMID
|
|
|
+ * placed onto the limbo list will likely still have
|
|
|
+ * data tagged in the cache, which means we'll probably
|
|
|
+ * fail to recycle it anyway.
|
|
|
+ *
|
|
|
+ * We can save ourselves an expensive IPI by skipping
|
|
|
+ * any RMIDs that have not been queued for the minimum
|
|
|
+ * time.
|
|
|
+ */
|
|
|
+ min_queue_time = entry->queue_time +
|
|
|
+ msecs_to_jiffies(__rmid_queue_time_ms);
|
|
|
+
|
|
|
+ if (time_after(min_queue_time, now))
|
|
|
+ break;
|
|
|
+
|
|
|
+ entry->state = RMID_AVAILABLE;
|
|
|
+ (*available)++;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Fast return if none of the RMIDs on the limbo list have been
|
|
|
+ * sitting on the queue for the minimum queue time.
|
|
|
+ */
|
|
|
+ if (!*available)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Test whether an RMID is free for each package.
|
|
|
+ */
|
|
|
+ on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
|
|
|
+
|
|
|
+ list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
|
|
|
+ /*
|
|
|
+ * Exhausted all RMIDs that have waited min queue time.
|
|
|
+ */
|
|
|
+ if (entry->state == RMID_YOUNG)
|
|
|
+ break;
|
|
|
+
|
|
|
+ if (entry->state == RMID_DIRTY)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ list_del(&entry->list); /* remove from limbo */
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The rotation RMID gets priority if it's
|
|
|
+ * currently invalid. In which case, skip adding
|
|
|
+ * the RMID to the the free lru.
|
|
|
+ */
|
|
|
+ if (!__rmid_valid(intel_cqm_rotation_rmid)) {
|
|
|
+ intel_cqm_rotation_rmid = entry->rmid;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If we have groups waiting for RMIDs, hand
|
|
|
+ * them one now.
|
|
|
+ */
|
|
|
+ list_for_each_entry(event, &cache_groups,
|
|
|
+ hw.cqm_groups_entry) {
|
|
|
+ if (__rmid_valid(event->hw.cqm_rmid))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ intel_cqm_xchg_rmid(event, entry->rmid);
|
|
|
+ entry = NULL;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!entry)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Otherwise place it onto the free list.
|
|
|
+ */
|
|
|
+ list_add_tail(&entry->list, &cqm_rmid_free_lru);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ return __rmid_valid(intel_cqm_rotation_rmid);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Pick a victim group and move it to the tail of the group list.
|
|
|
+ */
|
|
|
+static struct perf_event *
|
|
|
+__intel_cqm_pick_and_rotate(void)
|
|
|
+{
|
|
|
+ struct perf_event *rotor;
|
|
|
+
|
|
|
+ lockdep_assert_held(&cache_mutex);
|
|
|
+ lockdep_assert_held(&cache_lock);
|
|
|
+
|
|
|
+ rotor = list_first_entry(&cache_groups, struct perf_event,
|
|
|
+ hw.cqm_groups_entry);
|
|
|
+ list_rotate_left(&cache_groups);
|
|
|
+
|
|
|
+ return rotor;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Attempt to rotate the groups and assign new RMIDs.
|
|
|
+ *
|
|
|
+ * Rotating RMIDs is complicated because the hardware doesn't give us
|
|
|
+ * any clues.
|
|
|
+ *
|
|
|
+ * There's problems with the hardware interface; when you change the
|
|
|
+ * task:RMID map cachelines retain their 'old' tags, giving a skewed
|
|
|
+ * picture. In order to work around this, we must always keep one free
|
|
|
+ * RMID - intel_cqm_rotation_rmid.
|
|
|
+ *
|
|
|
+ * Rotation works by taking away an RMID from a group (the old RMID),
|
|
|
+ * and assigning the free RMID to another group (the new RMID). We must
|
|
|
+ * then wait for the old RMID to not be used (no cachelines tagged).
|
|
|
+ * This ensure that all cachelines are tagged with 'active' RMIDs. At
|
|
|
+ * this point we can start reading values for the new RMID and treat the
|
|
|
+ * old RMID as the free RMID for the next rotation.
|
|
|
+ *
|
|
|
+ * Return %true or %false depending on whether we did any rotating.
|
|
|
+ */
|
|
|
+static bool __intel_cqm_rmid_rotate(void)
|
|
|
+{
|
|
|
+ struct perf_event *group, *rotor, *start = NULL;
|
|
|
+ unsigned int threshold_limit;
|
|
|
+ unsigned int nr_needed = 0;
|
|
|
+ unsigned int nr_available;
|
|
|
+ unsigned int rmid;
|
|
|
+ bool rotated = false;
|
|
|
+
|
|
|
+ mutex_lock(&cache_mutex);
|
|
|
+
|
|
|
+again:
|
|
|
+ /*
|
|
|
+ * Fast path through this function if there are no groups and no
|
|
|
+ * RMIDs that need cleaning.
|
|
|
+ */
|
|
|
+ if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
|
|
|
+ if (!__rmid_valid(group->hw.cqm_rmid)) {
|
|
|
+ if (!start)
|
|
|
+ start = group;
|
|
|
+ nr_needed++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We have some event groups, but they all have RMIDs assigned
|
|
|
+ * and no RMIDs need cleaning.
|
|
|
+ */
|
|
|
+ if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ if (!nr_needed)
|
|
|
+ goto stabilize;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We have more event groups without RMIDs than available RMIDs.
|
|
|
+ *
|
|
|
+ * We force deallocate the rmid of the group at the head of
|
|
|
+ * cache_groups. The first event group without an RMID then gets
|
|
|
+ * assigned intel_cqm_rotation_rmid. This ensures we always make
|
|
|
+ * forward progress.
|
|
|
+ *
|
|
|
+ * Rotate the cache_groups list so the previous head is now the
|
|
|
+ * tail.
|
|
|
+ */
|
|
|
+ rotor = __intel_cqm_pick_and_rotate();
|
|
|
+ rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The group at the front of the list should always have a valid
|
|
|
+ * RMID. If it doesn't then no groups have RMIDs assigned.
|
|
|
+ */
|
|
|
+ if (!__rmid_valid(rmid))
|
|
|
+ goto stabilize;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If the rotation is going to succeed, reduce the threshold so
|
|
|
+ * that we don't needlessly reuse dirty RMIDs.
|
|
|
+ */
|
|
|
+ if (__rmid_valid(intel_cqm_rotation_rmid)) {
|
|
|
+ intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
|
|
|
+ intel_cqm_rotation_rmid = INVALID_RMID;
|
|
|
+
|
|
|
+ if (__intel_cqm_threshold)
|
|
|
+ __intel_cqm_threshold--;
|
|
|
+ }
|
|
|
+
|
|
|
+ __put_rmid(rmid);
|
|
|
+
|
|
|
+ rotated = true;
|
|
|
+
|
|
|
+stabilize:
|
|
|
+ /*
|
|
|
+ * We now need to stablize the RMID we freed above (if any) to
|
|
|
+ * ensure that the next time we rotate we have an RMID with zero
|
|
|
+ * occupancy value.
|
|
|
+ *
|
|
|
+ * Alternatively, if we didn't need to perform any rotation,
|
|
|
+ * we'll have a bunch of RMIDs in limbo that need stabilizing.
|
|
|
+ */
|
|
|
+ threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
|
|
|
+
|
|
|
+ while (intel_cqm_rmid_stabilize(&nr_available) &&
|
|
|
+ __intel_cqm_threshold < threshold_limit) {
|
|
|
+ unsigned int steal_limit;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Don't spin if nobody is actively waiting for an RMID,
|
|
|
+ * the rotation worker will be kicked as soon as an
|
|
|
+ * event needs an RMID anyway.
|
|
|
+ */
|
|
|
+ if (!nr_needed)
|
|
|
+ break;
|
|
|
+
|
|
|
+ /* Allow max 25% of RMIDs to be in limbo. */
|
|
|
+ steal_limit = (cqm_max_rmid + 1) / 4;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We failed to stabilize any RMIDs so our rotation
|
|
|
+ * logic is now stuck. In order to make forward progress
|
|
|
+ * we have a few options:
|
|
|
+ *
|
|
|
+ * 1. rotate ("steal") another RMID
|
|
|
+ * 2. increase the threshold
|
|
|
+ * 3. do nothing
|
|
|
+ *
|
|
|
+ * We do both of 1. and 2. until we hit the steal limit.
|
|
|
+ *
|
|
|
+ * The steal limit prevents all RMIDs ending up on the
|
|
|
+ * limbo list. This can happen if every RMID has a
|
|
|
+ * non-zero occupancy above threshold_limit, and the
|
|
|
+ * occupancy values aren't dropping fast enough.
|
|
|
+ *
|
|
|
+ * Note that there is prioritisation at work here - we'd
|
|
|
+ * rather increase the number of RMIDs on the limbo list
|
|
|
+ * than increase the threshold, because increasing the
|
|
|
+ * threshold skews the event data (because we reuse
|
|
|
+ * dirty RMIDs) - threshold bumps are a last resort.
|
|
|
+ */
|
|
|
+ if (nr_available < steal_limit)
|
|
|
+ goto again;
|
|
|
+
|
|
|
+ __intel_cqm_threshold++;
|
|
|
+ }
|
|
|
+
|
|
|
+out:
|
|
|
+ mutex_unlock(&cache_mutex);
|
|
|
+ return rotated;
|
|
|
+}
|
|
|
+
|
|
|
+static void intel_cqm_rmid_rotate(struct work_struct *work);
|
|
|
+
|
|
|
+static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
|
|
|
+
|
|
|
+static struct pmu intel_cqm_pmu;
|
|
|
+
|
|
|
+static void intel_cqm_rmid_rotate(struct work_struct *work)
|
|
|
+{
|
|
|
+ unsigned long delay;
|
|
|
+
|
|
|
+ __intel_cqm_rmid_rotate();
|
|
|
+
|
|
|
+ delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
|
|
|
+ schedule_delayed_work(&intel_cqm_rmid_work, delay);
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
* Find a group and setup RMID.
|
|
|
*
|
|
@@ -322,7 +798,6 @@ static int intel_cqm_setup_event(struct perf_event *event,
|
|
|
struct perf_event **group)
|
|
|
{
|
|
|
struct perf_event *iter;
|
|
|
- int rmid;
|
|
|
|
|
|
list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
|
|
|
if (__match_event(iter, event)) {
|
|
@@ -336,17 +811,14 @@ static int intel_cqm_setup_event(struct perf_event *event,
|
|
|
return -EBUSY;
|
|
|
}
|
|
|
|
|
|
- rmid = __get_rmid();
|
|
|
- if (rmid < 0)
|
|
|
- return rmid;
|
|
|
-
|
|
|
- event->hw.cqm_rmid = rmid;
|
|
|
+ event->hw.cqm_rmid = __get_rmid();
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
static void intel_cqm_event_read(struct perf_event *event)
|
|
|
{
|
|
|
- unsigned long rmid;
|
|
|
+ unsigned long flags;
|
|
|
+ unsigned int rmid;
|
|
|
u64 val;
|
|
|
|
|
|
/*
|
|
@@ -355,23 +827,25 @@ static void intel_cqm_event_read(struct perf_event *event)
|
|
|
if (event->cpu == -1)
|
|
|
return;
|
|
|
|
|
|
+ raw_spin_lock_irqsave(&cache_lock, flags);
|
|
|
rmid = event->hw.cqm_rmid;
|
|
|
+
|
|
|
+ if (!__rmid_valid(rmid))
|
|
|
+ goto out;
|
|
|
+
|
|
|
val = __rmid_read(rmid);
|
|
|
|
|
|
/*
|
|
|
* Ignore this reading on error states and do not update the value.
|
|
|
*/
|
|
|
if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
|
|
|
- return;
|
|
|
+ goto out;
|
|
|
|
|
|
local64_set(&event->count, val);
|
|
|
+out:
|
|
|
+ raw_spin_unlock_irqrestore(&cache_lock, flags);
|
|
|
}
|
|
|
|
|
|
-struct rmid_read {
|
|
|
- unsigned int rmid;
|
|
|
- atomic64_t value;
|
|
|
-};
|
|
|
-
|
|
|
static void __intel_cqm_event_count(void *info)
|
|
|
{
|
|
|
struct rmid_read *rr = info;
|
|
@@ -392,8 +866,8 @@ static inline bool cqm_group_leader(struct perf_event *event)
|
|
|
|
|
|
static u64 intel_cqm_event_count(struct perf_event *event)
|
|
|
{
|
|
|
+ unsigned long flags;
|
|
|
struct rmid_read rr = {
|
|
|
- .rmid = event->hw.cqm_rmid,
|
|
|
.value = ATOMIC64_INIT(0),
|
|
|
};
|
|
|
|
|
@@ -417,17 +891,36 @@ static u64 intel_cqm_event_count(struct perf_event *event)
|
|
|
if (!cqm_group_leader(event))
|
|
|
return 0;
|
|
|
|
|
|
- on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
|
|
|
+ /*
|
|
|
+ * Notice that we don't perform the reading of an RMID
|
|
|
+ * atomically, because we can't hold a spin lock across the
|
|
|
+ * IPIs.
|
|
|
+ *
|
|
|
+ * Speculatively perform the read, since @event might be
|
|
|
+ * assigned a different (possibly invalid) RMID while we're
|
|
|
+ * busying performing the IPI calls. It's therefore necessary to
|
|
|
+ * check @event's RMID afterwards, and if it has changed,
|
|
|
+ * discard the result of the read.
|
|
|
+ */
|
|
|
+ rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
|
|
|
|
|
|
- local64_set(&event->count, atomic64_read(&rr.value));
|
|
|
+ if (!__rmid_valid(rr.rmid))
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
|
|
|
|
|
|
+ raw_spin_lock_irqsave(&cache_lock, flags);
|
|
|
+ if (event->hw.cqm_rmid == rr.rmid)
|
|
|
+ local64_set(&event->count, atomic64_read(&rr.value));
|
|
|
+ raw_spin_unlock_irqrestore(&cache_lock, flags);
|
|
|
+out:
|
|
|
return __perf_event_count(event);
|
|
|
}
|
|
|
|
|
|
static void intel_cqm_event_start(struct perf_event *event, int mode)
|
|
|
{
|
|
|
struct intel_cqm_state *state = this_cpu_ptr(&cqm_state);
|
|
|
- unsigned long rmid = event->hw.cqm_rmid;
|
|
|
+ unsigned int rmid = event->hw.cqm_rmid;
|
|
|
unsigned long flags;
|
|
|
|
|
|
if (!(event->hw.cqm_state & PERF_HES_STOPPED))
|
|
@@ -473,15 +966,19 @@ static void intel_cqm_event_stop(struct perf_event *event, int mode)
|
|
|
|
|
|
static int intel_cqm_event_add(struct perf_event *event, int mode)
|
|
|
{
|
|
|
- int rmid;
|
|
|
+ unsigned long flags;
|
|
|
+ unsigned int rmid;
|
|
|
+
|
|
|
+ raw_spin_lock_irqsave(&cache_lock, flags);
|
|
|
|
|
|
event->hw.cqm_state = PERF_HES_STOPPED;
|
|
|
rmid = event->hw.cqm_rmid;
|
|
|
- WARN_ON_ONCE(!rmid);
|
|
|
|
|
|
- if (mode & PERF_EF_START)
|
|
|
+ if (__rmid_valid(rmid) && (mode & PERF_EF_START))
|
|
|
intel_cqm_event_start(event, mode);
|
|
|
|
|
|
+ raw_spin_unlock_irqrestore(&cache_lock, flags);
|
|
|
+
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -518,9 +1015,10 @@ static void intel_cqm_event_destroy(struct perf_event *event)
|
|
|
list_replace(&event->hw.cqm_groups_entry,
|
|
|
&group_other->hw.cqm_groups_entry);
|
|
|
} else {
|
|
|
- int rmid = event->hw.cqm_rmid;
|
|
|
+ unsigned int rmid = event->hw.cqm_rmid;
|
|
|
|
|
|
- __put_rmid(rmid);
|
|
|
+ if (__rmid_valid(rmid))
|
|
|
+ __put_rmid(rmid);
|
|
|
list_del(&event->hw.cqm_groups_entry);
|
|
|
}
|
|
|
}
|
|
@@ -528,11 +1026,10 @@ static void intel_cqm_event_destroy(struct perf_event *event)
|
|
|
mutex_unlock(&cache_mutex);
|
|
|
}
|
|
|
|
|
|
-static struct pmu intel_cqm_pmu;
|
|
|
-
|
|
|
static int intel_cqm_event_init(struct perf_event *event)
|
|
|
{
|
|
|
struct perf_event *group = NULL;
|
|
|
+ bool rotate = false;
|
|
|
int err;
|
|
|
|
|
|
if (event->attr.type != intel_cqm_pmu.type)
|
|
@@ -569,10 +1066,24 @@ static int intel_cqm_event_init(struct perf_event *event)
|
|
|
} else {
|
|
|
list_add_tail(&event->hw.cqm_groups_entry,
|
|
|
&cache_groups);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * All RMIDs are either in use or have recently been
|
|
|
+ * used. Kick the rotation worker to clean/free some.
|
|
|
+ *
|
|
|
+ * We only do this for the group leader, rather than for
|
|
|
+ * every event in a group to save on needless work.
|
|
|
+ */
|
|
|
+ if (!__rmid_valid(event->hw.cqm_rmid))
|
|
|
+ rotate = true;
|
|
|
}
|
|
|
|
|
|
out:
|
|
|
mutex_unlock(&cache_mutex);
|
|
|
+
|
|
|
+ if (rotate)
|
|
|
+ schedule_delayed_work(&intel_cqm_rmid_work, 0);
|
|
|
+
|
|
|
return err;
|
|
|
}
|
|
|
|
|
@@ -607,22 +1118,76 @@ static struct attribute_group intel_cqm_format_group = {
|
|
|
.attrs = intel_cqm_formats_attr,
|
|
|
};
|
|
|
|
|
|
+static ssize_t
|
|
|
+max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
|
|
|
+ char *page)
|
|
|
+{
|
|
|
+ ssize_t rv;
|
|
|
+
|
|
|
+ mutex_lock(&cache_mutex);
|
|
|
+ rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
|
|
|
+ mutex_unlock(&cache_mutex);
|
|
|
+
|
|
|
+ return rv;
|
|
|
+}
|
|
|
+
|
|
|
+static ssize_t
|
|
|
+max_recycle_threshold_store(struct device *dev,
|
|
|
+ struct device_attribute *attr,
|
|
|
+ const char *buf, size_t count)
|
|
|
+{
|
|
|
+ unsigned int bytes, cachelines;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ ret = kstrtouint(buf, 0, &bytes);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ mutex_lock(&cache_mutex);
|
|
|
+
|
|
|
+ __intel_cqm_max_threshold = bytes;
|
|
|
+ cachelines = bytes / cqm_l3_scale;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The new maximum takes effect immediately.
|
|
|
+ */
|
|
|
+ if (__intel_cqm_threshold > cachelines)
|
|
|
+ __intel_cqm_threshold = cachelines;
|
|
|
+
|
|
|
+ mutex_unlock(&cache_mutex);
|
|
|
+
|
|
|
+ return count;
|
|
|
+}
|
|
|
+
|
|
|
+static DEVICE_ATTR_RW(max_recycle_threshold);
|
|
|
+
|
|
|
+static struct attribute *intel_cqm_attrs[] = {
|
|
|
+ &dev_attr_max_recycle_threshold.attr,
|
|
|
+ NULL,
|
|
|
+};
|
|
|
+
|
|
|
+static const struct attribute_group intel_cqm_group = {
|
|
|
+ .attrs = intel_cqm_attrs,
|
|
|
+};
|
|
|
+
|
|
|
static const struct attribute_group *intel_cqm_attr_groups[] = {
|
|
|
&intel_cqm_events_group,
|
|
|
&intel_cqm_format_group,
|
|
|
+ &intel_cqm_group,
|
|
|
NULL,
|
|
|
};
|
|
|
|
|
|
static struct pmu intel_cqm_pmu = {
|
|
|
- .attr_groups = intel_cqm_attr_groups,
|
|
|
- .task_ctx_nr = perf_sw_context,
|
|
|
- .event_init = intel_cqm_event_init,
|
|
|
- .add = intel_cqm_event_add,
|
|
|
- .del = intel_cqm_event_del,
|
|
|
- .start = intel_cqm_event_start,
|
|
|
- .stop = intel_cqm_event_stop,
|
|
|
- .read = intel_cqm_event_read,
|
|
|
- .count = intel_cqm_event_count,
|
|
|
+ .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
|
|
|
+ .attr_groups = intel_cqm_attr_groups,
|
|
|
+ .task_ctx_nr = perf_sw_context,
|
|
|
+ .event_init = intel_cqm_event_init,
|
|
|
+ .add = intel_cqm_event_add,
|
|
|
+ .del = intel_cqm_event_del,
|
|
|
+ .start = intel_cqm_event_start,
|
|
|
+ .stop = intel_cqm_event_stop,
|
|
|
+ .read = intel_cqm_event_read,
|
|
|
+ .count = intel_cqm_event_count,
|
|
|
};
|
|
|
|
|
|
static inline void cqm_pick_event_reader(int cpu)
|
|
@@ -732,6 +1297,16 @@ static int __init intel_cqm_init(void)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ /*
|
|
|
+ * A reasonable upper limit on the max threshold is the number
|
|
|
+ * of lines tagged per RMID if all RMIDs have the same number of
|
|
|
+ * lines tagged in the LLC.
|
|
|
+ *
|
|
|
+ * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
|
|
|
+ */
|
|
|
+ __intel_cqm_max_threshold =
|
|
|
+ boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
|
|
|
+
|
|
|
snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
|
|
|
str = kstrdup(scale, GFP_KERNEL);
|
|
|
if (!str) {
|