|
@@ -57,6 +57,60 @@ static const struct cfp_udf_layout udf_tcpip4_layout = {
|
|
|
},
|
|
|
};
|
|
|
|
|
|
+/* UDF slices layout for a TCPv6/UDPv6 specification */
|
|
|
+static const struct cfp_udf_layout udf_tcpip6_layout = {
|
|
|
+ .udfs = {
|
|
|
+ [0] = {
|
|
|
+ .slices = {
|
|
|
+ /* End of L2, byte offset 8, src IP[0:15] */
|
|
|
+ CFG_UDF_EOL2 | 4,
|
|
|
+ /* End of L2, byte offset 10, src IP[16:31] */
|
|
|
+ CFG_UDF_EOL2 | 5,
|
|
|
+ /* End of L2, byte offset 12, src IP[32:47] */
|
|
|
+ CFG_UDF_EOL2 | 6,
|
|
|
+ /* End of L2, byte offset 14, src IP[48:63] */
|
|
|
+ CFG_UDF_EOL2 | 7,
|
|
|
+ /* End of L2, byte offset 16, src IP[64:79] */
|
|
|
+ CFG_UDF_EOL2 | 8,
|
|
|
+ /* End of L2, byte offset 18, src IP[80:95] */
|
|
|
+ CFG_UDF_EOL2 | 9,
|
|
|
+ /* End of L2, byte offset 20, src IP[96:111] */
|
|
|
+ CFG_UDF_EOL2 | 10,
|
|
|
+ /* End of L2, byte offset 22, src IP[112:127] */
|
|
|
+ CFG_UDF_EOL2 | 11,
|
|
|
+ /* End of L3, byte offset 0, src port */
|
|
|
+ CFG_UDF_EOL3 | 0,
|
|
|
+ },
|
|
|
+ .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
|
|
|
+ .base_offset = CORE_UDF_0_B_0_8_PORT_0,
|
|
|
+ },
|
|
|
+ [3] = {
|
|
|
+ .slices = {
|
|
|
+ /* End of L2, byte offset 24, dst IP[0:15] */
|
|
|
+ CFG_UDF_EOL2 | 12,
|
|
|
+ /* End of L2, byte offset 26, dst IP[16:31] */
|
|
|
+ CFG_UDF_EOL2 | 13,
|
|
|
+ /* End of L2, byte offset 28, dst IP[32:47] */
|
|
|
+ CFG_UDF_EOL2 | 14,
|
|
|
+ /* End of L2, byte offset 30, dst IP[48:63] */
|
|
|
+ CFG_UDF_EOL2 | 15,
|
|
|
+ /* End of L2, byte offset 32, dst IP[64:79] */
|
|
|
+ CFG_UDF_EOL2 | 16,
|
|
|
+ /* End of L2, byte offset 34, dst IP[80:95] */
|
|
|
+ CFG_UDF_EOL2 | 17,
|
|
|
+ /* End of L2, byte offset 36, dst IP[96:111] */
|
|
|
+ CFG_UDF_EOL2 | 18,
|
|
|
+ /* End of L2, byte offset 38, dst IP[112:127] */
|
|
|
+ CFG_UDF_EOL2 | 19,
|
|
|
+ /* End of L3, byte offset 2, dst port */
|
|
|
+ CFG_UDF_EOL3 | 1,
|
|
|
+ },
|
|
|
+ .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
|
|
|
+ .base_offset = CORE_UDF_0_D_0_11_PORT_0,
|
|
|
+ },
|
|
|
+ },
|
|
|
+};
|
|
|
+
|
|
|
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
|
|
|
{
|
|
|
unsigned int i, count = 0;
|
|
@@ -153,7 +207,8 @@ static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
|
|
|
static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
|
|
|
unsigned int rule_index,
|
|
|
unsigned int port_num,
|
|
|
- unsigned int queue_num)
|
|
|
+ unsigned int queue_num,
|
|
|
+ bool fwd_map_change)
|
|
|
{
|
|
|
int ret;
|
|
|
u32 reg;
|
|
@@ -161,14 +216,17 @@ static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
|
|
|
/* Replace ARL derived destination with DST_MAP derived, define
|
|
|
* which port and queue this should be forwarded to.
|
|
|
*/
|
|
|
- reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) |
|
|
|
- CHANGE_TC | queue_num << NEW_TC_SHIFT;
|
|
|
+ if (fwd_map_change)
|
|
|
+ reg = CHANGE_FWRD_MAP_IB_REP_ARL |
|
|
|
+ BIT(port_num + DST_MAP_IB_SHIFT) |
|
|
|
+ CHANGE_TC | queue_num << NEW_TC_SHIFT;
|
|
|
+ else
|
|
|
+ reg = 0;
|
|
|
|
|
|
core_writel(priv, reg, CORE_ACT_POL_DATA0);
|
|
|
|
|
|
/* Set classification ID that needs to be put in Broadcom tag */
|
|
|
- core_writel(priv, rule_index << CHAIN_ID_SHIFT,
|
|
|
- CORE_ACT_POL_DATA1);
|
|
|
+ core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
|
|
|
|
|
|
core_writel(priv, 0, CORE_ACT_POL_DATA2);
|
|
|
|
|
@@ -337,7 +395,8 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
|
|
|
}
|
|
|
|
|
|
/* Insert into Action and policer RAMs now */
|
|
|
- ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num, queue_num);
|
|
|
+ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
|
|
|
+ queue_num, true);
|
|
|
if (ret)
|
|
|
return ret;
|
|
|
|
|
@@ -348,17 +407,280 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
|
|
|
|
|
|
/* Flag the rule as being used and return it */
|
|
|
set_bit(rule_index, priv->cfp.used);
|
|
|
+ set_bit(rule_index, priv->cfp.unique);
|
|
|
fs->location = rule_index;
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
|
|
|
+ const __be32 *ip6_addr, const __be16 port,
|
|
|
+ unsigned int slice_num)
|
|
|
+{
|
|
|
+ u32 reg, tmp, val;
|
|
|
+
|
|
|
+ /* C-Tag [31:24]
|
|
|
+ * UDF_n_B8 [23:8] (port)
|
|
|
+ * UDF_n_B7 (upper) [7:0] (addr[15:8])
|
|
|
+ */
|
|
|
+ reg = be32_to_cpu(ip6_addr[3]);
|
|
|
+ val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
|
|
|
+ core_writel(priv, val, CORE_CFP_DATA_PORT(4));
|
|
|
+
|
|
|
+ /* UDF_n_B7 (lower) [31:24] (addr[7:0])
|
|
|
+ * UDF_n_B6 [23:8] (addr[31:16])
|
|
|
+ * UDF_n_B5 (upper) [7:0] (addr[47:40])
|
|
|
+ */
|
|
|
+ tmp = be32_to_cpu(ip6_addr[2]);
|
|
|
+ val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
|
|
|
+ ((tmp >> 8) & 0xff);
|
|
|
+ core_writel(priv, val, CORE_CFP_DATA_PORT(3));
|
|
|
+
|
|
|
+ /* UDF_n_B5 (lower) [31:24] (addr[39:32])
|
|
|
+ * UDF_n_B4 [23:8] (addr[63:48])
|
|
|
+ * UDF_n_B3 (upper) [7:0] (addr[79:72])
|
|
|
+ */
|
|
|
+ reg = be32_to_cpu(ip6_addr[1]);
|
|
|
+ val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
|
|
|
+ ((reg >> 8) & 0xff);
|
|
|
+ core_writel(priv, val, CORE_CFP_DATA_PORT(2));
|
|
|
+
|
|
|
+ /* UDF_n_B3 (lower) [31:24] (addr[71:64])
|
|
|
+ * UDF_n_B2 [23:8] (addr[95:80])
|
|
|
+ * UDF_n_B1 (upper) [7:0] (addr[111:104])
|
|
|
+ */
|
|
|
+ tmp = be32_to_cpu(ip6_addr[0]);
|
|
|
+ val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
|
|
|
+ ((tmp >> 8) & 0xff);
|
|
|
+ core_writel(priv, val, CORE_CFP_DATA_PORT(1));
|
|
|
+
|
|
|
+ /* UDF_n_B1 (lower) [31:24] (addr[103:96])
|
|
|
+ * UDF_n_B0 [23:8] (addr[127:112])
|
|
|
+ * Reserved [7:4]
|
|
|
+ * Slice ID [3:2]
|
|
|
+ * Slice valid [1:0]
|
|
|
+ */
|
|
|
+ reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
|
|
|
+ SLICE_NUM(slice_num) | SLICE_VALID;
|
|
|
+ core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
|
|
|
+
|
|
|
+ /* All other UDFs should be matched with the filter */
|
|
|
+ core_writel(priv, 0x00ffffff, CORE_CFP_MASK_PORT(4));
|
|
|
+ core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(3));
|
|
|
+ core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(2));
|
|
|
+ core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(1));
|
|
|
+ core_writel(priv, 0xffffff0f, CORE_CFP_MASK_PORT(0));
|
|
|
+}
|
|
|
+
|
|
|
+static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
|
|
|
+ unsigned int port_num,
|
|
|
+ unsigned int queue_num,
|
|
|
+ struct ethtool_rx_flow_spec *fs)
|
|
|
+{
|
|
|
+ unsigned int slice_num, rule_index[2];
|
|
|
+ struct ethtool_tcpip6_spec *v6_spec;
|
|
|
+ const struct cfp_udf_layout *layout;
|
|
|
+ u8 ip_proto, ip_frag;
|
|
|
+ int ret = 0;
|
|
|
+ u8 num_udf;
|
|
|
+ u32 reg;
|
|
|
+
|
|
|
+ switch (fs->flow_type & ~FLOW_EXT) {
|
|
|
+ case TCP_V6_FLOW:
|
|
|
+ ip_proto = IPPROTO_TCP;
|
|
|
+ v6_spec = &fs->h_u.tcp_ip6_spec;
|
|
|
+ break;
|
|
|
+ case UDP_V6_FLOW:
|
|
|
+ ip_proto = IPPROTO_UDP;
|
|
|
+ v6_spec = &fs->h_u.udp_ip6_spec;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ ip_frag = be32_to_cpu(fs->m_ext.data[0]);
|
|
|
+
|
|
|
+ layout = &udf_tcpip6_layout;
|
|
|
+ slice_num = bcm_sf2_get_slice_number(layout, 0);
|
|
|
+ if (slice_num == UDF_NUM_SLICES)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
|
|
|
+
|
|
|
+ /* Negotiate two indexes, one for the second half which we are chained
|
|
|
+ * from, which is what we will return to user-space, and a second one
|
|
|
+ * which is used to store its first half. That first half does not
|
|
|
+ * allow any choice of placement, so it just needs to find the next
|
|
|
+ * available bit. We return the second half as fs->location because
|
|
|
+ * that helps with the rule lookup later on since the second half is
|
|
|
+ * chained from its first half, we can easily identify IPv6 CFP rules
|
|
|
+ * by looking whether they carry a CHAIN_ID.
|
|
|
+ *
|
|
|
+ * We also want the second half to have a lower rule_index than its
|
|
|
+ * first half because the HW search is by incrementing addresses.
|
|
|
+ */
|
|
|
+ if (fs->location == RX_CLS_LOC_ANY)
|
|
|
+ rule_index[0] = find_first_zero_bit(priv->cfp.used,
|
|
|
+ bcm_sf2_cfp_rule_size(priv));
|
|
|
+ else
|
|
|
+ rule_index[0] = fs->location;
|
|
|
+
|
|
|
+ /* Flag it as used (cleared on error path) such that we can immediately
|
|
|
+ * obtain a second one to chain from.
|
|
|
+ */
|
|
|
+ set_bit(rule_index[0], priv->cfp.used);
|
|
|
+
|
|
|
+ rule_index[1] = find_first_zero_bit(priv->cfp.used,
|
|
|
+ bcm_sf2_cfp_rule_size(priv));
|
|
|
+ if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) {
|
|
|
+ ret = -ENOSPC;
|
|
|
+ goto out_err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Apply the UDF layout for this filter */
|
|
|
+ bcm_sf2_cfp_udf_set(priv, layout, slice_num);
|
|
|
+
|
|
|
+ /* Apply to all packets received through this port */
|
|
|
+ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
|
|
|
+
|
|
|
+ /* Source port map match */
|
|
|
+ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
|
|
|
+
|
|
|
+ /* S-Tag status [31:30]
|
|
|
+ * C-Tag status [29:28]
|
|
|
+ * L2 framing [27:26]
|
|
|
+ * L3 framing [25:24]
|
|
|
+ * IP ToS [23:16]
|
|
|
+ * IP proto [15:08]
|
|
|
+ * IP Fragm [7]
|
|
|
+ * Non 1st frag [6]
|
|
|
+ * IP Authen [5]
|
|
|
+ * TTL range [4:3]
|
|
|
+ * PPPoE session [2]
|
|
|
+ * Reserved [1]
|
|
|
+ * UDF_Valid[8] [0]
|
|
|
+ */
|
|
|
+ reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
|
|
|
+ ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
|
|
|
+ core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
|
|
|
+
|
|
|
+ /* Mask with the specific layout for IPv6 packets including
|
|
|
+ * UDF_Valid[8]
|
|
|
+ */
|
|
|
+ reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
|
|
|
+ core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
|
|
|
+
|
|
|
+ /* UDF_Valid[7:0] [31:24]
|
|
|
+ * S-Tag [23:8]
|
|
|
+ * C-Tag [7:0]
|
|
|
+ */
|
|
|
+ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
|
|
|
+
|
|
|
+ /* Mask all but valid UDFs */
|
|
|
+ core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
|
|
|
+
|
|
|
+ /* Slice the IPv6 source address and port */
|
|
|
+ bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc, slice_num);
|
|
|
+
|
|
|
+ /* Insert into TCAM now because we need to insert a second rule */
|
|
|
+ bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
|
|
|
+
|
|
|
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
|
|
|
+ goto out_err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Insert into Action and policer RAMs now */
|
|
|
+ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
|
|
|
+ queue_num, false);
|
|
|
+ if (ret)
|
|
|
+ goto out_err;
|
|
|
+
|
|
|
+ /* Now deal with the second slice to chain this rule */
|
|
|
+ slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
|
|
|
+ if (slice_num == UDF_NUM_SLICES) {
|
|
|
+ ret = -EINVAL;
|
|
|
+ goto out_err;
|
|
|
+ }
|
|
|
+
|
|
|
+ num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
|
|
|
+
|
|
|
+ /* Apply the UDF layout for this filter */
|
|
|
+ bcm_sf2_cfp_udf_set(priv, layout, slice_num);
|
|
|
+
|
|
|
+ /* Chained rule, source port match is coming from the rule we are
|
|
|
+ * chained from.
|
|
|
+ */
|
|
|
+ core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
|
|
|
+ core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
|
|
|
+
|
|
|
+ /*
|
|
|
+ * CHAIN ID [31:24] chain to previous slice
|
|
|
+ * Reserved [23:20]
|
|
|
+ * UDF_Valid[11:8] [19:16]
|
|
|
+ * UDF_Valid[7:0] [15:8]
|
|
|
+ * UDF_n_D11 [7:0]
|
|
|
+ */
|
|
|
+ reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
|
|
|
+ udf_lower_bits(num_udf) << 8;
|
|
|
+ core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
|
|
|
+
|
|
|
+ /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
|
|
|
+ reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
|
|
|
+ udf_lower_bits(num_udf) << 8;
|
|
|
+ core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
|
|
|
+
|
|
|
+ /* Don't care */
|
|
|
+ core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
|
|
|
+
|
|
|
+ /* Mask all */
|
|
|
+ core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
|
|
|
+
|
|
|
+ bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num);
|
|
|
+
|
|
|
+ /* Insert into TCAM now */
|
|
|
+ bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
|
|
|
+
|
|
|
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
|
|
|
+ goto out_err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Insert into Action and policer RAMs now, set chain ID to
|
|
|
+ * the one we are chained to
|
|
|
+ */
|
|
|
+ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
|
|
|
+ queue_num, true);
|
|
|
+ if (ret)
|
|
|
+ goto out_err;
|
|
|
+
|
|
|
+ /* Turn on CFP for this rule now */
|
|
|
+ reg = core_readl(priv, CORE_CFP_CTL_REG);
|
|
|
+ reg |= BIT(port);
|
|
|
+ core_writel(priv, reg, CORE_CFP_CTL_REG);
|
|
|
+
|
|
|
+ /* Flag the second half rule as being used now, return it as the
|
|
|
+ * location, and flag it as unique while dumping rules
|
|
|
+ */
|
|
|
+ set_bit(rule_index[1], priv->cfp.used);
|
|
|
+ set_bit(rule_index[1], priv->cfp.unique);
|
|
|
+ fs->location = rule_index[1];
|
|
|
+
|
|
|
+ return ret;
|
|
|
+
|
|
|
+out_err:
|
|
|
+ clear_bit(rule_index[0], priv->cfp.used);
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
|
|
|
struct ethtool_rx_flow_spec *fs)
|
|
|
{
|
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
|
unsigned int queue_num, port_num;
|
|
|
- int ret;
|
|
|
+ int ret = -EINVAL;
|
|
|
|
|
|
/* Check for unsupported extensions */
|
|
|
if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
|
|
@@ -391,15 +713,26 @@ static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
|
|
|
if (port_num >= 7)
|
|
|
port_num -= 1;
|
|
|
|
|
|
- ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, queue_num, fs);
|
|
|
- if (ret)
|
|
|
- return ret;
|
|
|
+ switch (fs->flow_type & ~FLOW_EXT) {
|
|
|
+ case TCP_V4_FLOW:
|
|
|
+ case UDP_V4_FLOW:
|
|
|
+ ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
|
|
|
+ queue_num, fs);
|
|
|
+ break;
|
|
|
+ case TCP_V6_FLOW:
|
|
|
+ case UDP_V6_FLOW:
|
|
|
+ ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
|
|
|
+ queue_num, fs);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
|
|
|
- return 0;
|
|
|
+ return ret;
|
|
|
}
|
|
|
|
|
|
-static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
|
|
|
- u32 loc)
|
|
|
+static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
|
|
|
+ u32 loc, u32 *next_loc)
|
|
|
{
|
|
|
int ret;
|
|
|
u32 reg;
|
|
@@ -415,6 +748,14 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
|
|
|
if (ret)
|
|
|
return ret;
|
|
|
|
|
|
+ /* Check if this is possibly an IPv6 rule that would
|
|
|
+ * indicate we need to delete its companion rule
|
|
|
+ * as well
|
|
|
+ */
|
|
|
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
|
|
+ if (next_loc)
|
|
|
+ *next_loc = (reg >> 24) & CHAIN_ID_MASK;
|
|
|
+
|
|
|
/* Clear its valid bits */
|
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
|
|
|
reg &= ~SLICE_VALID;
|
|
@@ -426,10 +767,28 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
|
|
|
return ret;
|
|
|
|
|
|
clear_bit(loc, priv->cfp.used);
|
|
|
+ clear_bit(loc, priv->cfp.unique);
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
|
|
|
+ u32 loc)
|
|
|
+{
|
|
|
+ u32 next_loc = 0;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ /* If this was an IPv6 rule, delete is companion rule too */
|
|
|
+ if (next_loc)
|
|
|
+ ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
|
|
|
{
|
|
|
unsigned int i;
|
|
@@ -444,12 +803,32 @@ static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
|
|
|
}
|
|
|
|
|
|
static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
|
|
|
- struct ethtool_tcpip4_spec *v4_spec,
|
|
|
- struct ethtool_tcpip4_spec *v4_m_spec)
|
|
|
+ struct ethtool_rx_flow_spec *fs)
|
|
|
{
|
|
|
+ struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
|
|
|
u16 src_dst_port;
|
|
|
u32 reg, ipv4;
|
|
|
|
|
|
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
|
|
+
|
|
|
+ switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
|
|
|
+ case IPPROTO_TCP:
|
|
|
+ fs->flow_type = TCP_V4_FLOW;
|
|
|
+ v4_spec = &fs->h_u.tcp_ip4_spec;
|
|
|
+ v4_m_spec = &fs->m_u.tcp_ip4_spec;
|
|
|
+ break;
|
|
|
+ case IPPROTO_UDP:
|
|
|
+ fs->flow_type = UDP_V4_FLOW;
|
|
|
+ v4_spec = &fs->h_u.udp_ip4_spec;
|
|
|
+ v4_m_spec = &fs->m_u.udp_ip4_spec;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
|
|
|
+ v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
|
|
|
+
|
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
|
|
|
/* src port [15:8] */
|
|
|
src_dst_port = reg << 8;
|
|
@@ -490,12 +869,128 @@ static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
|
|
|
+ __be32 *ip6_addr, __be16 *port,
|
|
|
+ __be32 *ip6_mask, __be16 *port_mask)
|
|
|
+{
|
|
|
+ u32 reg, tmp;
|
|
|
+
|
|
|
+ /* C-Tag [31:24]
|
|
|
+ * UDF_n_B8 [23:8] (port)
|
|
|
+ * UDF_n_B7 (upper) [7:0] (addr[15:8])
|
|
|
+ */
|
|
|
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(4));
|
|
|
+ *port = cpu_to_be32(reg) >> 8;
|
|
|
+ *port_mask = cpu_to_be16(~0);
|
|
|
+ tmp = (u32)(reg & 0xff) << 8;
|
|
|
+
|
|
|
+ /* UDF_n_B7 (lower) [31:24] (addr[7:0])
|
|
|
+ * UDF_n_B6 [23:8] (addr[31:16])
|
|
|
+ * UDF_n_B5 (upper) [7:0] (addr[47:40])
|
|
|
+ */
|
|
|
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
|
|
|
+ tmp |= (reg >> 24) & 0xff;
|
|
|
+ tmp |= (u32)((reg >> 8) << 16);
|
|
|
+ ip6_mask[3] = cpu_to_be32(~0);
|
|
|
+ ip6_addr[3] = cpu_to_be32(tmp);
|
|
|
+ tmp = (u32)(reg & 0xff) << 8;
|
|
|
+
|
|
|
+ /* UDF_n_B5 (lower) [31:24] (addr[39:32])
|
|
|
+ * UDF_n_B4 [23:8] (addr[63:48])
|
|
|
+ * UDF_n_B3 (upper) [7:0] (addr[79:72])
|
|
|
+ */
|
|
|
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(2));
|
|
|
+ tmp |= (reg >> 24) & 0xff;
|
|
|
+ tmp |= (u32)((reg >> 8) << 16);
|
|
|
+ ip6_mask[2] = cpu_to_be32(~0);
|
|
|
+ ip6_addr[2] = cpu_to_be32(tmp);
|
|
|
+ tmp = (u32)(reg & 0xff) << 8;
|
|
|
+
|
|
|
+ /* UDF_n_B3 (lower) [31:24] (addr[71:64])
|
|
|
+ * UDF_n_B2 [23:8] (addr[95:80])
|
|
|
+ * UDF_n_B1 (upper) [7:0] (addr[111:104])
|
|
|
+ */
|
|
|
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(1));
|
|
|
+ tmp |= (reg >> 24) & 0xff;
|
|
|
+ tmp |= (u32)((reg >> 8) << 16);
|
|
|
+ ip6_mask[1] = cpu_to_be32(~0);
|
|
|
+ ip6_addr[1] = cpu_to_be32(tmp);
|
|
|
+ tmp = (u32)(reg & 0xff) << 8;
|
|
|
+
|
|
|
+ /* UDF_n_B1 (lower) [31:24] (addr[103:96])
|
|
|
+ * UDF_n_B0 [23:8] (addr[127:112])
|
|
|
+ * Reserved [7:4]
|
|
|
+ * Slice ID [3:2]
|
|
|
+ * Slice valid [1:0]
|
|
|
+ */
|
|
|
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
|
|
|
+ tmp |= (reg >> 24) & 0xff;
|
|
|
+ tmp |= (u32)((reg >> 8) << 16);
|
|
|
+ ip6_mask[0] = cpu_to_be32(~0);
|
|
|
+ ip6_addr[0] = cpu_to_be32(tmp);
|
|
|
+
|
|
|
+ if (!(reg & SLICE_VALID))
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
|
|
|
+ struct ethtool_rx_flow_spec *fs,
|
|
|
+ u32 next_loc)
|
|
|
+{
|
|
|
+ struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
|
|
|
+ u32 reg;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ /* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
|
|
|
+ * assuming tcp_ip6_spec here being an union.
|
|
|
+ */
|
|
|
+ v6_spec = &fs->h_u.tcp_ip6_spec;
|
|
|
+ v6_m_spec = &fs->m_u.tcp_ip6_spec;
|
|
|
+
|
|
|
+ /* Read the second half first */
|
|
|
+ ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
|
|
|
+ v6_m_spec->ip6dst, &v6_m_spec->pdst);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ /* Read last to avoid next entry clobbering the results during search
|
|
|
+ * operations. We would not have the port enabled for this rule, so
|
|
|
+ * don't bother checking it.
|
|
|
+ */
|
|
|
+ (void)core_readl(priv, CORE_CFP_DATA_PORT(7));
|
|
|
+
|
|
|
+ /* The slice number is valid, so read the rule we are chained from now
|
|
|
+ * which is our first half.
|
|
|
+ */
|
|
|
+ bcm_sf2_cfp_rule_addr_set(priv, next_loc);
|
|
|
+ ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
|
|
+
|
|
|
+ switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
|
|
|
+ case IPPROTO_TCP:
|
|
|
+ fs->flow_type = TCP_V6_FLOW;
|
|
|
+ break;
|
|
|
+ case IPPROTO_UDP:
|
|
|
+ fs->flow_type = UDP_V6_FLOW;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ return bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
|
|
|
+ v6_m_spec->ip6src, &v6_m_spec->psrc);
|
|
|
+}
|
|
|
+
|
|
|
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
|
|
|
struct ethtool_rxnfc *nfc)
|
|
|
{
|
|
|
- struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec;
|
|
|
+ u32 reg, ipv4_or_chain_id;
|
|
|
unsigned int queue_num;
|
|
|
- u32 reg;
|
|
|
int ret;
|
|
|
|
|
|
bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
|
|
@@ -523,29 +1018,19 @@ static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
|
|
|
queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
|
|
|
nfc->fs.ring_cookie += queue_num;
|
|
|
|
|
|
- /* Extract the IP protocol */
|
|
|
+ /* Extract the L3_FRAMING or CHAIN_ID */
|
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
|
|
- switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
|
|
|
- case IPPROTO_TCP:
|
|
|
- nfc->fs.flow_type = TCP_V4_FLOW;
|
|
|
- v4_spec = &nfc->fs.h_u.tcp_ip4_spec;
|
|
|
- v4_m_spec = &nfc->fs.m_u.tcp_ip4_spec;
|
|
|
- break;
|
|
|
- case IPPROTO_UDP:
|
|
|
- nfc->fs.flow_type = UDP_V4_FLOW;
|
|
|
- v4_spec = &nfc->fs.h_u.udp_ip4_spec;
|
|
|
- v4_m_spec = &nfc->fs.m_u.udp_ip4_spec;
|
|
|
- break;
|
|
|
- default:
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
-
|
|
|
- nfc->fs.m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
|
|
|
- if (v4_spec) {
|
|
|
- v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
|
|
|
- ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, v4_spec, v4_m_spec);
|
|
|
- }
|
|
|
|
|
|
+ /* With IPv6 rules this would contain a non-zero chain ID since
|
|
|
+ * we reserve entry 0 and it cannot be used. So if we read 0 here
|
|
|
+ * this means an IPv4 rule.
|
|
|
+ */
|
|
|
+ ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
|
|
|
+ if (ipv4_or_chain_id == 0)
|
|
|
+ ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
|
|
|
+ else
|
|
|
+ ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
|
|
|
+ ipv4_or_chain_id);
|
|
|
if (ret)
|
|
|
return ret;
|
|
|
|
|
@@ -571,7 +1056,7 @@ static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
|
|
|
{
|
|
|
unsigned int index = 1, rules_cnt = 0;
|
|
|
|
|
|
- for_each_set_bit_from(index, priv->cfp.used, priv->num_cfp_rules) {
|
|
|
+ for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
|
|
|
rule_locs[rules_cnt] = index;
|
|
|
rules_cnt++;
|
|
|
}
|
|
@@ -594,7 +1079,7 @@ int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
|
|
|
switch (nfc->cmd) {
|
|
|
case ETHTOOL_GRXCLSRLCNT:
|
|
|
/* Subtract the default, unusable rule */
|
|
|
- nfc->rule_cnt = bitmap_weight(priv->cfp.used,
|
|
|
+ nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
|
|
|
priv->num_cfp_rules) - 1;
|
|
|
/* We support specifying rule locations */
|
|
|
nfc->data |= RX_CLS_LOC_SPECIAL;
|