|
@@ -0,0 +1,211 @@
|
|
|
|
+Open Firmware Device Tree Selftest
|
|
|
|
+----------------------------------
|
|
|
|
+
|
|
|
|
+Author: Gaurav Minocha <gaurav.minocha.os@gmail.com>
|
|
|
|
+
|
|
|
|
+1. Introduction
|
|
|
|
+
|
|
|
|
+This document explains how the test data required for executing OF selftest
|
|
|
|
+is attached to the live tree dynamically, independent of the machine's
|
|
|
|
+architecture.
|
|
|
|
+
|
|
|
|
+It is recommended to read the following documents before moving ahead.
|
|
|
|
+
|
|
|
|
+[1] Documentation/devicetree/usage-model.txt
|
|
|
|
+[2] http://www.devicetree.org/Device_Tree_Usage
|
|
|
|
+
|
|
|
|
+OF Selftest has been designed to test the interface (include/linux/of.h)
|
|
|
|
+provided to device driver developers to fetch the device information..etc.
|
|
|
|
+from the unflattened device tree data structure. This interface is used by
|
|
|
|
+most of the device drivers in various use cases.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+2. Test-data
|
|
|
|
+
|
|
|
|
+The Device Tree Source file (drivers/of/testcase-data/testcases.dts) contains
|
|
|
|
+the test data required for executing the unit tests automated in
|
|
|
|
+drivers/of/selftests.c. Currently, following Device Tree Source Include files
|
|
|
|
+(.dtsi) are included in testcase.dts:
|
|
|
|
+
|
|
|
|
+drivers/of/testcase-data/tests-interrupts.dtsi
|
|
|
|
+drivers/of/testcase-data/tests-platform.dtsi
|
|
|
|
+drivers/of/testcase-data/tests-phandle.dtsi
|
|
|
|
+drivers/of/testcase-data/tests-match.dtsi
|
|
|
|
+
|
|
|
|
+When the kernel is build with OF_SELFTEST enabled, then the following make rule
|
|
|
|
+
|
|
|
|
+$(obj)/%.dtb: $(src)/%.dts FORCE
|
|
|
|
+ $(call if_changed_dep, dtc)
|
|
|
|
+
|
|
|
|
+is used to compile the DT source file (testcase.dts) into a binary blob
|
|
|
|
+(testcase.dtb), also referred as flattened DT.
|
|
|
|
+
|
|
|
|
+After that, using the following rule the binary blob above is wrapped as an
|
|
|
|
+assembly file (testcase.dtb.S).
|
|
|
|
+
|
|
|
|
+$(obj)/%.dtb.S: $(obj)/%.dtb
|
|
|
|
+ $(call cmd, dt_S_dtb)
|
|
|
|
+
|
|
|
|
+The assembly file is compiled into an object file (testcase.dtb.o), and is
|
|
|
|
+linked into the kernel image.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+2.1. Adding the test data
|
|
|
|
+
|
|
|
|
+Un-flattened device tree structure:
|
|
|
|
+
|
|
|
|
+Un-flattened device tree consists of connected device_node(s) in form of a tree
|
|
|
|
+structure described below.
|
|
|
|
+
|
|
|
|
+// following struct members are used to construct the tree
|
|
|
|
+struct device_node {
|
|
|
|
+ ...
|
|
|
|
+ struct device_node *parent;
|
|
|
|
+ struct device_node *child;
|
|
|
|
+ struct device_node *sibling;
|
|
|
|
+ struct device_node *allnext; /* next in list of all nodes */
|
|
|
|
+ ...
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+Figure 1, describes a generic structure of machine’s un-flattened device tree
|
|
|
|
+considering only child and sibling pointers. There exists another pointer,
|
|
|
|
+*parent, that is used to traverse the tree in the reverse direction. So, at
|
|
|
|
+a particular level the child node and all the sibling nodes will have a parent
|
|
|
|
+pointer pointing to a common node (e.g. child1, sibling2, sibling3, sibling4’s
|
|
|
|
+parent points to root node)
|
|
|
|
+
|
|
|
|
+root (‘/’)
|
|
|
|
+ |
|
|
|
|
+child1 -> sibling2 -> sibling3 -> sibling4 -> null
|
|
|
|
+ | | | |
|
|
|
|
+ | | | null
|
|
|
|
+ | | |
|
|
|
|
+ | | child31 -> sibling32 -> null
|
|
|
|
+ | | | |
|
|
|
|
+ | | null null
|
|
|
|
+ | |
|
|
|
|
+ | child21 -> sibling22 -> sibling23 -> null
|
|
|
|
+ | | | |
|
|
|
|
+ | null null null
|
|
|
|
+ |
|
|
|
|
+child11 -> sibling12 -> sibling13 -> sibling14 -> null
|
|
|
|
+ | | | |
|
|
|
|
+ | | | null
|
|
|
|
+ | | |
|
|
|
|
+ null null child131 -> null
|
|
|
|
+ |
|
|
|
|
+ null
|
|
|
|
+
|
|
|
|
+Figure 1: Generic structure of un-flattened device tree
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+*allnext: it is used to link all the nodes of DT into a list. So, for the
|
|
|
|
+ above tree the list would be as follows:
|
|
|
|
+
|
|
|
|
+root->child1->child11->sibling12->sibling13->child131->sibling14->sibling2->
|
|
|
|
+child21->sibling22->sibling23->sibling3->child31->sibling32->sibling4->null
|
|
|
|
+
|
|
|
|
+Before executing OF selftest, it is required to attach the test data to
|
|
|
|
+machine's device tree (if present). So, when selftest_data_add() is called,
|
|
|
|
+at first it reads the flattened device tree data linked into the kernel image
|
|
|
|
+via the following kernel symbols:
|
|
|
|
+
|
|
|
|
+__dtb_testcases_begin - address marking the start of test data blob
|
|
|
|
+__dtb_testcases_end - address marking the end of test data blob
|
|
|
|
+
|
|
|
|
+Secondly, it calls of_fdt_unflatten_device_tree() to unflatten the flattened
|
|
|
|
+blob. And finally, if the machine’s device tree (i.e live tree) is present,
|
|
|
|
+then it attaches the unflattened test data tree to the live tree, else it
|
|
|
|
+attaches itself as a live device tree.
|
|
|
|
+
|
|
|
|
+attach_node_and_children() uses of_attach_node() to attach the nodes into the
|
|
|
|
+live tree as explained below. To explain the same, the test data tree described
|
|
|
|
+ in Figure 2 is attached to the live tree described in Figure 1.
|
|
|
|
+
|
|
|
|
+root (‘/’)
|
|
|
|
+ |
|
|
|
|
+ testcase-data
|
|
|
|
+ |
|
|
|
|
+ test-child0 -> test-sibling1 -> test-sibling2 -> test-sibling3 -> null
|
|
|
|
+ | | | |
|
|
|
|
+ test-child01 null null null
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+allnext list:
|
|
|
|
+
|
|
|
|
+root->testcase-data->test-child0->test-child01->test-sibling1->test-sibling2
|
|
|
|
+->test-sibling3->null
|
|
|
|
+
|
|
|
|
+Figure 2: Example test data tree to be attached to live tree.
|
|
|
|
+
|
|
|
|
+According to the scenario above, the live tree is already present so it isn’t
|
|
|
|
+required to attach the root(‘/’) node. All other nodes are attached by calling
|
|
|
|
+of_attach_node() on each node.
|
|
|
|
+
|
|
|
|
+In the function of_attach_node(), the new node is attached as the child of the
|
|
|
|
+given parent in live tree. But, if parent already has a child then the new node
|
|
|
|
+replaces the current child and turns it into its sibling. So, when the testcase
|
|
|
|
+data node is attached to the live tree above (Figure 1), the final structure is
|
|
|
|
+ as shown in Figure 3.
|
|
|
|
+
|
|
|
|
+root (‘/’)
|
|
|
|
+ |
|
|
|
|
+testcase-data -> child1 -> sibling2 -> sibling3 -> sibling4 -> null
|
|
|
|
+ | | | | |
|
|
|
|
+ (...) | | | null
|
|
|
|
+ | | child31 -> sibling32 -> null
|
|
|
|
+ | | | |
|
|
|
|
+ | | null null
|
|
|
|
+ | |
|
|
|
|
+ | child21 -> sibling22 -> sibling23 -> null
|
|
|
|
+ | | | |
|
|
|
|
+ | null null null
|
|
|
|
+ |
|
|
|
|
+ child11 -> sibling12 -> sibling13 -> sibling14 -> null
|
|
|
|
+ | | | |
|
|
|
|
+ null null | null
|
|
|
|
+ |
|
|
|
|
+ child131 -> null
|
|
|
|
+ |
|
|
|
|
+ null
|
|
|
|
+-----------------------------------------------------------------------
|
|
|
|
+
|
|
|
|
+root (‘/’)
|
|
|
|
+ |
|
|
|
|
+testcase-data -> child1 -> sibling2 -> sibling3 -> sibling4 -> null
|
|
|
|
+ | | | | |
|
|
|
|
+ | (...) (...) (...) null
|
|
|
|
+ |
|
|
|
|
+test-sibling3 -> test-sibling2 -> test-sibling1 -> test-child0 -> null
|
|
|
|
+ | | | |
|
|
|
|
+ null null null test-child01
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Figure 3: Live device tree structure after attaching the testcase-data.
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+Astute readers would have noticed that test-child0 node becomes the last
|
|
|
|
+sibling compared to the earlier structure (Figure 2). After attaching first
|
|
|
|
+test-child0 the test-sibling1 is attached that pushes the child node
|
|
|
|
+(i.e. test-child0) to become a sibling and makes itself a child node,
|
|
|
|
+ as mentioned above.
|
|
|
|
+
|
|
|
|
+If a duplicate node is found (i.e. if a node with same full_name property is
|
|
|
|
+already present in the live tree), then the node isn’t attached rather its
|
|
|
|
+properties are updated to the live tree’s node by calling the function
|
|
|
|
+update_node_properties().
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+2.2. Removing the test data
|
|
|
|
+
|
|
|
|
+Once the test case execution is complete, selftest_data_remove is called in
|
|
|
|
+order to remove the device nodes attached initially (first the leaf nodes are
|
|
|
|
+detached and then moving up the parent nodes are removed, and eventually the
|
|
|
|
+whole tree). selftest_data_remove() calls detach_node_and_children() that uses
|
|
|
|
+of_detach_node() to detach the nodes from the live device tree.
|
|
|
|
+
|
|
|
|
+To detach a node, of_detach_node() first updates all_next linked list, by
|
|
|
|
+attaching the previous node’s allnext to current node’s allnext pointer. And
|
|
|
|
+then, it either updates the child pointer of given node’s parent to its
|
|
|
|
+sibling or attaches the previous sibling to the given node’s sibling, as
|
|
|
|
+appropriate. That is it :)
|