|
@@ -133,38 +133,30 @@ typedef struct {
|
|
|
void *base_addr;
|
|
|
int got_regions;
|
|
|
short allocatedBuf;
|
|
|
- uint8_t ai_cmd_running; // ai_cmd is running
|
|
|
- uint8_t ai_continous; // continous aquisition
|
|
|
- int ai_sample_count; // number of samples to aquire
|
|
|
- unsigned int ai_sample_timer; // time between samples in
|
|
|
- // units of the timer
|
|
|
- int ai_convert_count; // conversion counter
|
|
|
- unsigned int ai_convert_timer; // time between conversion in
|
|
|
- // units of the timer
|
|
|
- uint16_t CounterIntEnabs; //Counter interrupt enable
|
|
|
- //mask for MISC2 register.
|
|
|
- uint8_t AdcItems; //Number of items in ADC poll
|
|
|
- //list.
|
|
|
- DMABUF RPSBuf; //DMA buffer used to hold ADC
|
|
|
- //(RPS1) program.
|
|
|
- DMABUF ANABuf; //DMA buffer used to receive
|
|
|
- //ADC data and hold DAC data.
|
|
|
- uint32_t *pDacWBuf; //Pointer to logical adrs of
|
|
|
- //DMA buffer used to hold DAC
|
|
|
- //data.
|
|
|
- uint16_t Dacpol; //Image of DAC polarity
|
|
|
- //register.
|
|
|
- uint8_t TrimSetpoint[12]; //Images of TrimDAC setpoints.
|
|
|
- //registers.
|
|
|
- uint16_t ChargeEnabled; //Image of MISC2 Battery
|
|
|
- //Charge Enabled (0 or
|
|
|
- //WRMISC2_CHARGE_ENABLE).
|
|
|
- uint16_t WDInterval; //Image of MISC2 watchdog
|
|
|
- //interval control bits.
|
|
|
- uint32_t I2CAdrs; //I2C device address for
|
|
|
- //onboard EEPROM (board rev
|
|
|
- //dependent).
|
|
|
- // short I2Cards;
|
|
|
+ uint8_t ai_cmd_running; /* ai_cmd is running */
|
|
|
+ uint8_t ai_continous; /* continous aquisition */
|
|
|
+ int ai_sample_count; /* number of samples to aquire */
|
|
|
+ unsigned int ai_sample_timer;
|
|
|
+ /* time between samples in units of the timer */
|
|
|
+ int ai_convert_count; /* conversion counter */
|
|
|
+ unsigned int ai_convert_timer;
|
|
|
+ /* time between conversion in units of the timer */
|
|
|
+ uint16_t CounterIntEnabs;
|
|
|
+ /* Counter interrupt enable mask for MISC2 register. */
|
|
|
+ uint8_t AdcItems; /* Number of items in ADC poll list. */
|
|
|
+ DMABUF RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */
|
|
|
+ DMABUF ANABuf;
|
|
|
+ /* DMA buffer used to receive ADC data and hold DAC data. */
|
|
|
+ uint32_t *pDacWBuf;
|
|
|
+ /* Pointer to logical adrs of DMA buffer used to hold DAC data. */
|
|
|
+ uint16_t Dacpol; /* Image of DAC polarity register. */
|
|
|
+ uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */
|
|
|
+ uint16_t ChargeEnabled; /* Image of MISC2 Battery */
|
|
|
+ /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
|
|
|
+ uint16_t WDInterval; /* Image of MISC2 watchdog interval control bits. */
|
|
|
+ uint32_t I2CAdrs;
|
|
|
+ /* I2C device address for onboard EEPROM (board rev dependent). */
|
|
|
+ /* short I2Cards; */
|
|
|
lsampl_t ao_readback[S626_DAC_CHANNELS];
|
|
|
} s626_private;
|
|
|
|
|
@@ -229,7 +221,7 @@ static dio_private *dio_private_word[]={
|
|
|
|
|
|
COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
|
|
|
|
|
|
-//ioctl routines
|
|
|
+/* ioctl routines */
|
|
|
static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
|
|
|
comedi_insn * insn, lsampl_t * data);
|
|
|
/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */
|
|
@@ -265,9 +257,9 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
|
|
|
static lsampl_t s626_ai_reg_to_uint(int data);
|
|
|
/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */
|
|
|
|
|
|
-//end ioctl routines
|
|
|
+/* end ioctl routines */
|
|
|
|
|
|
-//internal routines
|
|
|
+/* internal routines */
|
|
|
static void s626_dio_init(comedi_device * dev);
|
|
|
static void ResetADC(comedi_device * dev, uint8_t * ppl);
|
|
|
static void LoadTrimDACs(comedi_device * dev);
|
|
@@ -285,30 +277,30 @@ static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
|
|
|
uint16_t wdata);
|
|
|
static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize);
|
|
|
|
|
|
-// COUNTER OBJECT ------------------------------------------------
|
|
|
+/* COUNTER OBJECT ------------------------------------------------ */
|
|
|
typedef struct enc_private_struct {
|
|
|
- // Pointers to functions that differ for A and B counters:
|
|
|
- uint16_t(*GetEnable) (comedi_device * dev, struct enc_private_struct *); //Return clock enable.
|
|
|
- uint16_t(*GetIntSrc) (comedi_device * dev, struct enc_private_struct *); //Return interrupt source.
|
|
|
- uint16_t(*GetLoadTrig) (comedi_device * dev, struct enc_private_struct *); //Return preload trigger source.
|
|
|
- uint16_t(*GetMode) (comedi_device * dev, struct enc_private_struct *); //Return standardized operating mode.
|
|
|
- void (*PulseIndex) (comedi_device * dev, struct enc_private_struct *); //Generate soft index strobe.
|
|
|
- void (*SetEnable) (comedi_device * dev, struct enc_private_struct *, uint16_t enab); //Program clock enable.
|
|
|
- void (*SetIntSrc) (comedi_device * dev, struct enc_private_struct *, uint16_t IntSource); //Program interrupt source.
|
|
|
- void (*SetLoadTrig) (comedi_device * dev, struct enc_private_struct *, uint16_t Trig); //Program preload trigger source.
|
|
|
- void (*SetMode) (comedi_device * dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc); //Program standardized operating mode.
|
|
|
- void (*ResetCapFlags) (comedi_device * dev, struct enc_private_struct *); //Reset event capture flags.
|
|
|
-
|
|
|
- uint16_t MyCRA; // Address of CRA register.
|
|
|
- uint16_t MyCRB; // Address of CRB register.
|
|
|
- uint16_t MyLatchLsw; // Address of Latch least-significant-word
|
|
|
- // register.
|
|
|
- uint16_t MyEventBits[4]; // Bit translations for IntSrc -->RDMISC2.
|
|
|
-} enc_private; //counter object
|
|
|
+ /* Pointers to functions that differ for A and B counters: */
|
|
|
+ uint16_t(*GetEnable) (comedi_device * dev, struct enc_private_struct *); /* Return clock enable. */
|
|
|
+ uint16_t(*GetIntSrc) (comedi_device * dev, struct enc_private_struct *); /* Return interrupt source. */
|
|
|
+ uint16_t(*GetLoadTrig) (comedi_device * dev, struct enc_private_struct *); /* Return preload trigger source. */
|
|
|
+ uint16_t(*GetMode) (comedi_device * dev, struct enc_private_struct *); /* Return standardized operating mode. */
|
|
|
+ void (*PulseIndex) (comedi_device * dev, struct enc_private_struct *); /* Generate soft index strobe. */
|
|
|
+ void (*SetEnable) (comedi_device * dev, struct enc_private_struct *, uint16_t enab); /* Program clock enable. */
|
|
|
+ void (*SetIntSrc) (comedi_device * dev, struct enc_private_struct *, uint16_t IntSource); /* Program interrupt source. */
|
|
|
+ void (*SetLoadTrig) (comedi_device * dev, struct enc_private_struct *, uint16_t Trig); /* Program preload trigger source. */
|
|
|
+ void (*SetMode) (comedi_device * dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */
|
|
|
+ void (*ResetCapFlags) (comedi_device * dev, struct enc_private_struct *); /* Reset event capture flags. */
|
|
|
+
|
|
|
+ uint16_t MyCRA; /* Address of CRA register. */
|
|
|
+ uint16_t MyCRB; /* Address of CRB register. */
|
|
|
+ uint16_t MyLatchLsw; /* Address of Latch least-significant-word */
|
|
|
+ /* register. */
|
|
|
+ uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */
|
|
|
+} enc_private; /* counter object */
|
|
|
|
|
|
#define encpriv ((enc_private *)(dev->subdevices+5)->private)
|
|
|
|
|
|
-//counters routines
|
|
|
+/* counters routines */
|
|
|
static void s626_timer_load(comedi_device * dev, enc_private * k, int tick);
|
|
|
static uint32_t ReadLatch(comedi_device * dev, enc_private * k);
|
|
|
static void ResetCapFlags_A(comedi_device * dev, enc_private * k);
|
|
@@ -348,19 +340,17 @@ static void PulseIndex_A(comedi_device * dev, enc_private * k);
|
|
|
static void PulseIndex_B(comedi_device * dev, enc_private * k);
|
|
|
static void Preload(comedi_device * dev, enc_private * k, uint32_t value);
|
|
|
static void CountersInit(comedi_device * dev);
|
|
|
-//end internal routines
|
|
|
+/* end internal routines */
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////////
|
|
|
-// Counter objects constructor.
|
|
|
+/* Counter objects constructor. */
|
|
|
|
|
|
-// Counter overflow/index event flag masks for RDMISC2.
|
|
|
+/* Counter overflow/index event flag masks for RDMISC2. */
|
|
|
#define INDXMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 - 1 ) : ( (C) * 2 + 4 ) ) )
|
|
|
#define OVERMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 + 5 ) : ( (C) * 2 + 10 ) ) )
|
|
|
#define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
|
|
|
|
|
|
-// Translation table to map IntSrc into equivalent RDMISC2 event flag
|
|
|
-// bits.
|
|
|
-//static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) };
|
|
|
+/* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
|
|
|
+/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
|
|
|
|
|
|
/* enc_private; */
|
|
|
static enc_private enc_private_data[] = {
|
|
@@ -462,8 +452,8 @@ static enc_private enc_private_data[] = {
|
|
|
},
|
|
|
};
|
|
|
|
|
|
-// enab/disable a function or test status bit(s) that are accessed
|
|
|
-// through Main Control Registers 1 or 2.
|
|
|
+/* enab/disable a function or test status bit(s) that are accessed */
|
|
|
+/* through Main Control Registers 1 or 2. */
|
|
|
#define MC_ENABLE( REGADRS, CTRLWORD ) writel( ( (uint32_t)( CTRLWORD ) << 16 ) | (uint32_t)( CTRLWORD ),devpriv->base_addr+( REGADRS ) )
|
|
|
|
|
|
#define MC_DISABLE( REGADRS, CTRLWORD ) writel( (uint32_t)( CTRLWORD ) << 16 , devpriv->base_addr+( REGADRS ) )
|
|
@@ -480,11 +470,11 @@ static enc_private enc_private_data[] = {
|
|
|
|
|
|
#define BUGFIX_STREG(REGADRS) ( REGADRS - 4 )
|
|
|
|
|
|
-// Write a time slot control record to TSL2.
|
|
|
+/* Write a time slot control record to TSL2. */
|
|
|
#define VECTPORT( VECTNUM ) (P_TSL2 + ( (VECTNUM) << 2 ))
|
|
|
#define SETVECT( VECTNUM, VECTVAL ) WR7146(VECTPORT( VECTNUM ), (VECTVAL))
|
|
|
|
|
|
-// Code macros used for constructing I2C command bytes.
|
|
|
+/* Code macros used for constructing I2C command bytes. */
|
|
|
#define I2C_B2(ATTR,VAL) ( ( (ATTR) << 6 ) | ( (VAL) << 24 ) )
|
|
|
#define I2C_B1(ATTR,VAL) ( ( (ATTR) << 4 ) | ( (VAL) << 16 ) )
|
|
|
#define I2C_B0(ATTR,VAL) ( ( (ATTR) << 2 ) | ( (VAL) << 8 ) )
|
|
@@ -550,16 +540,16 @@ static int s626_attach(comedi_device * dev, comedi_devconfig * it)
|
|
|
}
|
|
|
|
|
|
if (devpriv->base_addr) {
|
|
|
- //disable master interrupt
|
|
|
+ /* disable master interrupt */
|
|
|
writel(0, devpriv->base_addr + P_IER);
|
|
|
|
|
|
- //soft reset
|
|
|
+ /* soft reset */
|
|
|
writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
|
|
|
|
|
|
- //DMA FIXME DMA//
|
|
|
+ /* DMA FIXME DMA// */
|
|
|
DEBUG("s626_attach: DMA ALLOCATION\n");
|
|
|
|
|
|
- //adc buffer allocation
|
|
|
+ /* adc buffer allocation */
|
|
|
devpriv->allocatedBuf = 0;
|
|
|
|
|
|
if ((devpriv->ANABuf.LogicalBase =
|
|
@@ -599,7 +589,7 @@ static int s626_attach(comedi_device * dev, comedi_devconfig * it)
|
|
|
dev->iobase = (unsigned long)devpriv->base_addr;
|
|
|
dev->irq = devpriv->pdev->irq;
|
|
|
|
|
|
- //set up interrupt handler
|
|
|
+ /* set up interrupt handler */
|
|
|
if (dev->irq == 0) {
|
|
|
printk(" unknown irq (bad)\n");
|
|
|
} else {
|
|
@@ -689,119 +679,119 @@ static int s626_attach(comedi_device * dev, comedi_devconfig * it)
|
|
|
s->maxdata = 0xffffff;
|
|
|
s->range_table = &range_unknown;
|
|
|
|
|
|
- //stop ai_command
|
|
|
+ /* stop ai_command */
|
|
|
devpriv->ai_cmd_running = 0;
|
|
|
|
|
|
if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
|
|
|
dma_addr_t pPhysBuf;
|
|
|
uint16_t chan;
|
|
|
|
|
|
- // enab DEBI and audio pins, enable I2C interface.
|
|
|
+ /* enab DEBI and audio pins, enable I2C interface. */
|
|
|
MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
|
|
|
- // Configure DEBI operating mode.
|
|
|
- WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 // Local bus is 16
|
|
|
- // bits wide.
|
|
|
- | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) // Declare DEBI
|
|
|
- // transfer timeout
|
|
|
- // interval.
|
|
|
- | DEBI_SWAP // Set up byte lane
|
|
|
- // steering.
|
|
|
- | DEBI_CFG_INTEL); // Intel-compatible
|
|
|
- // local bus (DEBI
|
|
|
- // never times out).
|
|
|
+ /* Configure DEBI operating mode. */
|
|
|
+ WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 /* Local bus is 16 */
|
|
|
+ /* bits wide. */
|
|
|
+ | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) /* Declare DEBI */
|
|
|
+ /* transfer timeout */
|
|
|
+ /* interval. */
|
|
|
+ | DEBI_SWAP /* Set up byte lane */
|
|
|
+ /* steering. */
|
|
|
+ | DEBI_CFG_INTEL); /* Intel-compatible */
|
|
|
+ /* local bus (DEBI */
|
|
|
+ /* never times out). */
|
|
|
DEBUG("s626_attach: %d debi init -- %d\n",
|
|
|
DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
|
|
|
DEBI_SWAP | DEBI_CFG_INTEL,
|
|
|
DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
|
|
|
DEBI_CFG_16Q);
|
|
|
|
|
|
- //DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ
|
|
|
- //| DEBI_CFG_INCQ| DEBI_CFG_16Q); //end
|
|
|
+ /* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
|
|
|
+ /* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
|
|
|
|
|
|
- // Paging is disabled.
|
|
|
- WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); // Disable MMU paging.
|
|
|
+ /* Paging is disabled. */
|
|
|
+ WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); /* Disable MMU paging. */
|
|
|
|
|
|
- // Init GPIO so that ADC Start* is negated.
|
|
|
+ /* Init GPIO so that ADC Start* is negated. */
|
|
|
WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
|
|
|
|
|
|
- //IsBoardRevA is a boolean that indicates whether the board is
|
|
|
- //RevA.
|
|
|
-
|
|
|
- // VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
|
|
|
- // EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
|
|
|
- // is used to access the onboard serial EEPROM. The EEPROM's I2C
|
|
|
- // DeviceAddress is hardwired to a value that is dependent on the
|
|
|
- // 626 board revision. On all board revisions, the EEPROM stores
|
|
|
- // TrimDAC calibration constants for analog I/O. On RevB and
|
|
|
- // higher boards, the DeviceAddress is hardwired to 0 to enable
|
|
|
- // the EEPROM to also store the PCI SubVendorID and SubDeviceID;
|
|
|
- // this is the address at which the SAA7146 expects a
|
|
|
- // configuration EEPROM to reside. On RevA boards, the EEPROM
|
|
|
- // device address, which is hardwired to 4, prevents the SAA7146
|
|
|
- // from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
|
|
|
- // default values, instead.
|
|
|
-
|
|
|
- // devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM
|
|
|
- // DeviceType (0xA0)
|
|
|
- // and DeviceAddress<<1.
|
|
|
-
|
|
|
- devpriv->I2CAdrs = 0xA0; // I2C device address for onboard
|
|
|
- // eeprom(revb)
|
|
|
-
|
|
|
- // Issue an I2C ABORT command to halt any I2C operation in
|
|
|
- //progress and reset BUSY flag.
|
|
|
- WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT); // Write I2C control:
|
|
|
- // abort any I2C
|
|
|
- // activity.
|
|
|
- MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command
|
|
|
- // upload
|
|
|
- while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ; // and wait for
|
|
|
- // upload to
|
|
|
- // complete.
|
|
|
-
|
|
|
- // Per SAA7146 data sheet, write to STATUS reg twice to reset all
|
|
|
- // I2C error flags.
|
|
|
+ /* IsBoardRevA is a boolean that indicates whether the board is RevA.
|
|
|
+ *
|
|
|
+ * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
|
|
|
+ * EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
|
|
|
+ * is used to access the onboard serial EEPROM. The EEPROM's I2C
|
|
|
+ * DeviceAddress is hardwired to a value that is dependent on the
|
|
|
+ * 626 board revision. On all board revisions, the EEPROM stores
|
|
|
+ * TrimDAC calibration constants for analog I/O. On RevB and
|
|
|
+ * higher boards, the DeviceAddress is hardwired to 0 to enable
|
|
|
+ * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
|
|
|
+ * this is the address at which the SAA7146 expects a
|
|
|
+ * configuration EEPROM to reside. On RevA boards, the EEPROM
|
|
|
+ * device address, which is hardwired to 4, prevents the SAA7146
|
|
|
+ * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
|
|
|
+ * default values, instead.
|
|
|
+ */
|
|
|
+
|
|
|
+ /* devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
|
|
|
+ /* DeviceType (0xA0) */
|
|
|
+ /* and DeviceAddress<<1. */
|
|
|
+
|
|
|
+ devpriv->I2CAdrs = 0xA0; /* I2C device address for onboard */
|
|
|
+ /* eeprom(revb) */
|
|
|
+
|
|
|
+ /* Issue an I2C ABORT command to halt any I2C operation in */
|
|
|
+ /* progress and reset BUSY flag. */
|
|
|
+ WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
|
|
|
+ /* Write I2C control: abort any I2C activity. */
|
|
|
+ MC_ENABLE(P_MC2, MC2_UPLD_IIC);
|
|
|
+ /* Invoke command upload */
|
|
|
+ while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0);
|
|
|
+ /* and wait for upload to complete. */
|
|
|
+
|
|
|
+ /* Per SAA7146 data sheet, write to STATUS reg twice to
|
|
|
+ * reset all I2C error flags. */
|
|
|
for (i = 0; i < 2; i++) {
|
|
|
- WR7146(P_I2CSTAT, I2C_CLKSEL); // Write I2C control: reset
|
|
|
- // error flags.
|
|
|
- MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command upload
|
|
|
- while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; // and wait for
|
|
|
- // upload to
|
|
|
- // complete.
|
|
|
+ WR7146(P_I2CSTAT, I2C_CLKSEL);
|
|
|
+ /* Write I2C control: reset error flags. */
|
|
|
+ MC_ENABLE(P_MC2, MC2_UPLD_IIC); /* Invoke command upload */
|
|
|
+ while (!MC_TEST(P_MC2, MC2_UPLD_IIC));
|
|
|
+ /* and wait for upload to complete. */
|
|
|
}
|
|
|
|
|
|
- // Init audio interface functional attributes: set DAC/ADC serial
|
|
|
- // clock rates, invert DAC serial clock so that DAC data setup
|
|
|
- // times are satisfied, enable DAC serial clock out.
|
|
|
+ /* Init audio interface functional attributes: set DAC/ADC
|
|
|
+ * serial clock rates, invert DAC serial clock so that
|
|
|
+ * DAC data setup times are satisfied, enable DAC serial
|
|
|
+ * clock out.
|
|
|
+ */
|
|
|
+
|
|
|
WR7146(P_ACON2, ACON2_INIT);
|
|
|
|
|
|
- // Set up TSL1 slot list, which is used to control the
|
|
|
- // accumulation of ADC data: RSD1 = shift data in on SD1. SIB_A1
|
|
|
- // = store data uint8_t at next available location in FB BUFFER1
|
|
|
- // register.
|
|
|
- WR7146(P_TSL1, RSD1 | SIB_A1); // Fetch ADC high data
|
|
|
- // uint8_t.
|
|
|
- WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS); // Fetch ADC low data
|
|
|
- // uint8_t; end of
|
|
|
- // TSL1.
|
|
|
-
|
|
|
- // enab TSL1 slot list so that it executes all the time.
|
|
|
+ /* Set up TSL1 slot list, which is used to control the
|
|
|
+ * accumulation of ADC data: RSD1 = shift data in on SD1.
|
|
|
+ * SIB_A1 = store data uint8_t at next available location in
|
|
|
+ * FB BUFFER1 register. */
|
|
|
+ WR7146(P_TSL1, RSD1 | SIB_A1);
|
|
|
+ /* Fetch ADC high data uint8_t. */
|
|
|
+ WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
|
|
|
+ /* Fetch ADC low data uint8_t; end of TSL1. */
|
|
|
+
|
|
|
+ /* enab TSL1 slot list so that it executes all the time. */
|
|
|
WR7146(P_ACON1, ACON1_ADCSTART);
|
|
|
|
|
|
- // Initialize RPS registers used for ADC.
|
|
|
+ /* Initialize RPS registers used for ADC. */
|
|
|
|
|
|
- //Physical start of RPS program.
|
|
|
+ /* Physical start of RPS program. */
|
|
|
WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
|
|
|
|
|
|
- WR7146(P_RPSPAGE1, 0); // RPS program performs no
|
|
|
- // explicit mem writes.
|
|
|
- WR7146(P_RPS1_TOUT, 0); // Disable RPS timeouts.
|
|
|
+ WR7146(P_RPSPAGE1, 0);
|
|
|
+ /* RPS program performs no explicit mem writes. */
|
|
|
+ WR7146(P_RPS1_TOUT, 0); /* Disable RPS timeouts. */
|
|
|
|
|
|
- // SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface to a
|
|
|
- // known state by invoking ADCs until FB BUFFER 1 register shows
|
|
|
- // that it is correctly receiving ADC data. This is necessary
|
|
|
- // because the SAA7146 ADC interface does not start up in a
|
|
|
- // defined state after a PCI reset.
|
|
|
+ /* SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface
|
|
|
+ * to a known state by invoking ADCs until FB BUFFER 1
|
|
|
+ * register shows that it is correctly receiving ADC data.
|
|
|
+ * This is necessary because the SAA7146 ADC interface does
|
|
|
+ * not start up in a defined state after a PCI reset.
|
|
|
+ */
|
|
|
|
|
|
/* PollList = EOPL; // Create a simple polling */
|
|
|
/* // list for analog input */
|
|
@@ -829,115 +819,123 @@ static int s626_attach(comedi_device * dev, comedi_devconfig * it)
|
|
|
/* break; */
|
|
|
/* } */
|
|
|
|
|
|
- // end initADC
|
|
|
+ /* end initADC */
|
|
|
|
|
|
- // init the DAC interface
|
|
|
+ /* init the DAC interface */
|
|
|
|
|
|
- // Init Audio2's output DMAC attributes: burst length = 1 DWORD,
|
|
|
- // threshold = 1 DWORD.
|
|
|
+ /* Init Audio2's output DMAC attributes: burst length = 1
|
|
|
+ * DWORD, threshold = 1 DWORD.
|
|
|
+ */
|
|
|
WR7146(P_PCI_BT_A, 0);
|
|
|
|
|
|
- // Init Audio2's output DMA physical addresses. The protection
|
|
|
- // address is set to 1 DWORD past the base address so that a
|
|
|
- // single DWORD will be transferred each time a DMA transfer is
|
|
|
- // enabled.
|
|
|
+ /* Init Audio2's output DMA physical addresses. The protection
|
|
|
+ * address is set to 1 DWORD past the base address so that a
|
|
|
+ * single DWORD will be transferred each time a DMA transfer is
|
|
|
+ * enabled. */
|
|
|
|
|
|
pPhysBuf =
|
|
|
devpriv->ANABuf.PhysicalBase +
|
|
|
(DAC_WDMABUF_OS * sizeof(uint32_t));
|
|
|
|
|
|
- WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); // Buffer base adrs.
|
|
|
- WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); // Protection address.
|
|
|
+ WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); /* Buffer base adrs. */
|
|
|
+ WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); /* Protection address. */
|
|
|
|
|
|
- // Cache Audio2's output DMA buffer logical address. This is
|
|
|
- // where DAC data is buffered for A2 output DMA transfers.
|
|
|
+ /* Cache Audio2's output DMA buffer logical address. This is
|
|
|
+ * where DAC data is buffered for A2 output DMA transfers. */
|
|
|
devpriv->pDacWBuf =
|
|
|
(uint32_t *) devpriv->ANABuf.LogicalBase +
|
|
|
DAC_WDMABUF_OS;
|
|
|
|
|
|
- // Audio2's output channels does not use paging. The protection
|
|
|
- // violation handling bit is set so that the DMAC will
|
|
|
- // automatically halt and its PCI address pointer will be reset
|
|
|
- // when the protection address is reached.
|
|
|
+ /* Audio2's output channels does not use paging. The protection
|
|
|
+ * violation handling bit is set so that the DMAC will
|
|
|
+ * automatically halt and its PCI address pointer will be reset
|
|
|
+ * when the protection address is reached. */
|
|
|
+
|
|
|
WR7146(P_PAGEA2_OUT, 8);
|
|
|
|
|
|
- // Initialize time slot list 2 (TSL2), which is used to control
|
|
|
- // the clock generation for and serialization of data to be sent
|
|
|
- // to the DAC devices. Slot 0 is a NOP that is used to trap TSL
|
|
|
- // execution; this permits other slots to be safely modified
|
|
|
- // without first turning off the TSL sequencer (which is
|
|
|
- // apparently impossible to do). Also, SD3 (which is driven by a
|
|
|
- // pull-up resistor) is shifted in and stored to the MSB of
|
|
|
- // FB_BUFFER2 to be used as evidence that the slot sequence has
|
|
|
- // not yet finished executing.
|
|
|
- SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS); // Slot 0: Trap TSL
|
|
|
- // execution, shift 0xFF
|
|
|
- // into FB_BUFFER2.
|
|
|
-
|
|
|
- // Initialize slot 1, which is constant. Slot 1 causes a DWORD to
|
|
|
- // be transferred from audio channel 2's output FIFO to the FIFO's
|
|
|
- // output buffer so that it can be serialized and sent to the DAC
|
|
|
- // during subsequent slots. All remaining slots are dynamically
|
|
|
- // populated as required by the target DAC device.
|
|
|
- SETVECT(1, LF_A2); // Slot 1: Fetch DWORD from Audio2's
|
|
|
- // output FIFO.
|
|
|
-
|
|
|
- // Start DAC's audio interface (TSL2) running.
|
|
|
+ /* Initialize time slot list 2 (TSL2), which is used to control
|
|
|
+ * the clock generation for and serialization of data to be sent
|
|
|
+ * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
|
|
|
+ * execution; this permits other slots to be safely modified
|
|
|
+ * without first turning off the TSL sequencer (which is
|
|
|
+ * apparently impossible to do). Also, SD3 (which is driven by a
|
|
|
+ * pull-up resistor) is shifted in and stored to the MSB of
|
|
|
+ * FB_BUFFER2 to be used as evidence that the slot sequence has
|
|
|
+ * not yet finished executing.
|
|
|
+ */
|
|
|
+
|
|
|
+ SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
|
|
|
+ /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
|
|
|
+
|
|
|
+ /* Initialize slot 1, which is constant. Slot 1 causes a
|
|
|
+ * DWORD to be transferred from audio channel 2's output FIFO
|
|
|
+ * to the FIFO's output buffer so that it can be serialized
|
|
|
+ * and sent to the DAC during subsequent slots. All remaining
|
|
|
+ * slots are dynamically populated as required by the target
|
|
|
+ * DAC device.
|
|
|
+ */
|
|
|
+ SETVECT(1, LF_A2);
|
|
|
+ /* Slot 1: Fetch DWORD from Audio2's output FIFO. */
|
|
|
+
|
|
|
+ /* Start DAC's audio interface (TSL2) running. */
|
|
|
WR7146(P_ACON1, ACON1_DACSTART);
|
|
|
|
|
|
- ////////////////////////////////////////////////////////
|
|
|
-
|
|
|
- // end init DAC interface
|
|
|
+ /* end init DAC interface */
|
|
|
|
|
|
- // Init Trim DACs to calibrated values. Do it twice because the
|
|
|
- // SAA7146 audio channel does not always reset properly and
|
|
|
- // sometimes causes the first few TrimDAC writes to malfunction.
|
|
|
+ /* Init Trim DACs to calibrated values. Do it twice because the
|
|
|
+ * SAA7146 audio channel does not always reset properly and
|
|
|
+ * sometimes causes the first few TrimDAC writes to malfunction.
|
|
|
+ */
|
|
|
|
|
|
LoadTrimDACs(dev);
|
|
|
- LoadTrimDACs(dev); // Insurance.
|
|
|
+ LoadTrimDACs(dev); /* Insurance. */
|
|
|
|
|
|
- //////////////////////////////////////////////////////////////////
|
|
|
- // Manually init all gate array hardware in case this is a soft
|
|
|
- // reset (we have no way of determining whether this is a warm or
|
|
|
- // cold start). This is necessary because the gate array will
|
|
|
- // reset only in response to a PCI hard reset; there is no soft
|
|
|
- // reset function.
|
|
|
+ /* Manually init all gate array hardware in case this is a soft
|
|
|
+ * reset (we have no way of determining whether this is a warm
|
|
|
+ * or cold start). This is necessary because the gate array will
|
|
|
+ * reset only in response to a PCI hard reset; there is no soft
|
|
|
+ * reset function. */
|
|
|
|
|
|
- // Init all DAC outputs to 0V and init all DAC setpoint and
|
|
|
- // polarity images.
|
|
|
+ /* Init all DAC outputs to 0V and init all DAC setpoint and
|
|
|
+ * polarity images.
|
|
|
+ */
|
|
|
for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
|
|
|
SetDAC(dev, chan, 0);
|
|
|
|
|
|
- // Init image of WRMISC2 Battery Charger Enabled control bit.
|
|
|
- // This image is used when the state of the charger control bit,
|
|
|
- // which has no direct hardware readback mechanism, is queried.
|
|
|
+ /* Init image of WRMISC2 Battery Charger Enabled control bit.
|
|
|
+ * This image is used when the state of the charger control bit,
|
|
|
+ * which has no direct hardware readback mechanism, is queried.
|
|
|
+ */
|
|
|
devpriv->ChargeEnabled = 0;
|
|
|
|
|
|
- // Init image of watchdog timer interval in WRMISC2. This image
|
|
|
- // maintains the value of the control bits of MISC2 are
|
|
|
- // continuously reset to zero as long as the WD timer is disabled.
|
|
|
+ /* Init image of watchdog timer interval in WRMISC2. This image
|
|
|
+ * maintains the value of the control bits of MISC2 are
|
|
|
+ * continuously reset to zero as long as the WD timer is disabled.
|
|
|
+ */
|
|
|
devpriv->WDInterval = 0;
|
|
|
|
|
|
- // Init Counter Interrupt enab mask for RDMISC2. This mask is
|
|
|
- // applied against MISC2 when testing to determine which timer
|
|
|
- // events are requesting interrupt service.
|
|
|
+ /* Init Counter Interrupt enab mask for RDMISC2. This mask is
|
|
|
+ * applied against MISC2 when testing to determine which timer
|
|
|
+ * events are requesting interrupt service.
|
|
|
+ */
|
|
|
devpriv->CounterIntEnabs = 0;
|
|
|
|
|
|
- // Init counters.
|
|
|
+ /* Init counters. */
|
|
|
CountersInit(dev);
|
|
|
|
|
|
- // Without modifying the state of the Battery Backup enab, disable
|
|
|
- // the watchdog timer, set DIO channels 0-5 to operate in the
|
|
|
- // standard DIO (vs. counter overflow) mode, disable the battery
|
|
|
- // charger, and reset the watchdog interval selector to zero.
|
|
|
+ /* Without modifying the state of the Battery Backup enab, disable
|
|
|
+ * the watchdog timer, set DIO channels 0-5 to operate in the
|
|
|
+ * standard DIO (vs. counter overflow) mode, disable the battery
|
|
|
+ * charger, and reset the watchdog interval selector to zero.
|
|
|
+ */
|
|
|
WriteMISC2(dev, (uint16_t) (DEBIread(dev,
|
|
|
LP_RDMISC2) & MISC2_BATT_ENABLE));
|
|
|
|
|
|
- // Initialize the digital I/O subsystem.
|
|
|
+ /* Initialize the digital I/O subsystem. */
|
|
|
s626_dio_init(dev);
|
|
|
|
|
|
- //enable interrupt test
|
|
|
- // writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER);
|
|
|
+ /* enable interrupt test */
|
|
|
+ /* writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
|
|
|
}
|
|
|
|
|
|
DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
|
|
@@ -981,47 +979,48 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
|
|
|
if (dev->attached == 0)
|
|
|
return IRQ_NONE;
|
|
|
- // lock to avoid race with comedi_poll
|
|
|
+ /* lock to avoid race with comedi_poll */
|
|
|
comedi_spin_lock_irqsave(&dev->spinlock, flags);
|
|
|
|
|
|
- //save interrupt enable register state
|
|
|
+ /* save interrupt enable register state */
|
|
|
irqstatus = readl(devpriv->base_addr + P_IER);
|
|
|
|
|
|
- //read interrupt type
|
|
|
+ /* read interrupt type */
|
|
|
irqtype = readl(devpriv->base_addr + P_ISR);
|
|
|
|
|
|
- //disable master interrupt
|
|
|
+ /* disable master interrupt */
|
|
|
writel(0, devpriv->base_addr + P_IER);
|
|
|
|
|
|
- //clear interrupt
|
|
|
+ /* clear interrupt */
|
|
|
writel(irqtype, devpriv->base_addr + P_ISR);
|
|
|
|
|
|
- //do somethings
|
|
|
+ /* do somethings */
|
|
|
DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
|
|
|
|
|
|
switch (irqtype) {
|
|
|
- case IRQ_RPS1: // end_of_scan occurs
|
|
|
+ case IRQ_RPS1: /* end_of_scan occurs */
|
|
|
|
|
|
DEBUG("s626_irq_handler: RPS1 irq detected\n");
|
|
|
|
|
|
- // manage ai subdevice
|
|
|
+ /* manage ai subdevice */
|
|
|
s = dev->subdevices;
|
|
|
cmd = &(s->async->cmd);
|
|
|
|
|
|
- // Init ptr to DMA buffer that holds new ADC data. We skip the
|
|
|
- // first uint16_t in the buffer because it contains junk data from
|
|
|
- // the final ADC of the previous poll list scan.
|
|
|
+ /* Init ptr to DMA buffer that holds new ADC data. We skip the
|
|
|
+ * first uint16_t in the buffer because it contains junk data from
|
|
|
+ * the final ADC of the previous poll list scan.
|
|
|
+ */
|
|
|
readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
|
|
|
|
|
|
- // get the data and hand it over to comedi
|
|
|
+ /* get the data and hand it over to comedi */
|
|
|
for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
|
|
|
- // Convert ADC data to 16-bit integer values and copy to application
|
|
|
- // buffer.
|
|
|
+ /* Convert ADC data to 16-bit integer values and copy to application */
|
|
|
+ /* buffer. */
|
|
|
tempdata = s626_ai_reg_to_uint((int)*readaddr);
|
|
|
readaddr++;
|
|
|
|
|
|
- //put data into read buffer
|
|
|
- // comedi_buf_put(s->async, tempdata);
|
|
|
+ /* put data into read buffer */
|
|
|
+ /* comedi_buf_put(s->async, tempdata); */
|
|
|
if (cfc_write_to_buffer(s, tempdata) == 0)
|
|
|
printk("s626_irq_handler: cfc_write_to_buffer error!\n");
|
|
|
|
|
@@ -1029,7 +1028,7 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
i, tempdata);
|
|
|
}
|
|
|
|
|
|
- //end of scan occurs
|
|
|
+ /* end of scan occurs */
|
|
|
s->async->events |= COMEDI_CB_EOS;
|
|
|
|
|
|
if (!(devpriv->ai_continous))
|
|
@@ -1037,13 +1036,13 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
if (devpriv->ai_sample_count <= 0) {
|
|
|
devpriv->ai_cmd_running = 0;
|
|
|
|
|
|
- // Stop RPS program.
|
|
|
+ /* Stop RPS program. */
|
|
|
MC_DISABLE(P_MC1, MC1_ERPS1);
|
|
|
|
|
|
- //send end of acquisition
|
|
|
+ /* send end of acquisition */
|
|
|
s->async->events |= COMEDI_CB_EOA;
|
|
|
|
|
|
- //disable master interrupt
|
|
|
+ /* disable master interrupt */
|
|
|
irqstatus = 0;
|
|
|
}
|
|
|
|
|
@@ -1054,40 +1053,40 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
|
|
|
DEBUG("s626_irq_handler: External trigger is set!!!\n");
|
|
|
}
|
|
|
- // tell comedi that data is there
|
|
|
+ /* tell comedi that data is there */
|
|
|
DEBUG("s626_irq_handler: events %d\n", s->async->events);
|
|
|
comedi_event(dev, s);
|
|
|
break;
|
|
|
- case IRQ_GPIO3: //check dio and conter interrupt
|
|
|
+ case IRQ_GPIO3: /* check dio and conter interrupt */
|
|
|
|
|
|
DEBUG("s626_irq_handler: GPIO3 irq detected\n");
|
|
|
|
|
|
- // manage ai subdevice
|
|
|
+ /* manage ai subdevice */
|
|
|
s = dev->subdevices;
|
|
|
cmd = &(s->async->cmd);
|
|
|
|
|
|
- //s626_dio_clear_irq(dev);
|
|
|
+ /* s626_dio_clear_irq(dev); */
|
|
|
|
|
|
for (group = 0; group < S626_DIO_BANKS; group++) {
|
|
|
irqbit = 0;
|
|
|
- //read interrupt type
|
|
|
+ /* read interrupt type */
|
|
|
irqbit = DEBIread(dev,
|
|
|
((dio_private *) (dev->subdevices + 2 +
|
|
|
group)->private)->RDCapFlg);
|
|
|
|
|
|
- //check if interrupt is generated from dio channels
|
|
|
+ /* check if interrupt is generated from dio channels */
|
|
|
if (irqbit) {
|
|
|
s626_dio_reset_irq(dev, group, irqbit);
|
|
|
DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
|
|
|
if (devpriv->ai_cmd_running) {
|
|
|
- //check if interrupt is an ai acquisition start trigger
|
|
|
+ /* check if interrupt is an ai acquisition start trigger */
|
|
|
if ((irqbit >> (cmd->start_arg -
|
|
|
(16 * group)))
|
|
|
== 1
|
|
|
&& cmd->start_src == TRIG_EXT) {
|
|
|
DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
|
|
|
|
|
|
- // Start executing the RPS program.
|
|
|
+ /* Start executing the RPS program. */
|
|
|
MC_ENABLE(P_MC1, MC1_ERPS1);
|
|
|
|
|
|
DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
|
|
@@ -1110,7 +1109,7 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
TRIG_EXT) {
|
|
|
DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
|
|
|
|
|
|
- // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
|
|
|
MC_ENABLE(P_MC2, MC2_ADC_RPS);
|
|
|
|
|
|
DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
|
|
@@ -1151,7 +1150,7 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
TRIG_EXT) {
|
|
|
DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
|
|
|
|
|
|
- // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
|
|
|
MC_ENABLE(P_MC2, MC2_ADC_RPS);
|
|
|
|
|
|
DEBUG("s626_irq_handler: adc convert triggered!!!\n");
|
|
@@ -1175,10 +1174,10 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- //read interrupt type
|
|
|
+ /* read interrupt type */
|
|
|
irqbit = DEBIread(dev, LP_RDMISC2);
|
|
|
|
|
|
- //check interrupt on counters
|
|
|
+ /* check interrupt on counters */
|
|
|
DEBUG("s626_irq_handler: check counters interrupt %d\n",
|
|
|
irqbit);
|
|
|
|
|
@@ -1186,35 +1185,35 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
|
|
|
k = &encpriv[0];
|
|
|
|
|
|
- //clear interrupt capture flag
|
|
|
+ /* clear interrupt capture flag */
|
|
|
k->ResetCapFlags(dev, k);
|
|
|
}
|
|
|
if (irqbit & IRQ_COINT2A) {
|
|
|
DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
|
|
|
k = &encpriv[1];
|
|
|
|
|
|
- //clear interrupt capture flag
|
|
|
+ /* clear interrupt capture flag */
|
|
|
k->ResetCapFlags(dev, k);
|
|
|
}
|
|
|
if (irqbit & IRQ_COINT3A) {
|
|
|
DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
|
|
|
k = &encpriv[2];
|
|
|
|
|
|
- //clear interrupt capture flag
|
|
|
+ /* clear interrupt capture flag */
|
|
|
k->ResetCapFlags(dev, k);
|
|
|
}
|
|
|
if (irqbit & IRQ_COINT1B) {
|
|
|
DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
|
|
|
k = &encpriv[3];
|
|
|
|
|
|
- //clear interrupt capture flag
|
|
|
+ /* clear interrupt capture flag */
|
|
|
k->ResetCapFlags(dev, k);
|
|
|
}
|
|
|
if (irqbit & IRQ_COINT2B) {
|
|
|
DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
|
|
|
k = &encpriv[4];
|
|
|
|
|
|
- //clear interrupt capture flag
|
|
|
+ /* clear interrupt capture flag */
|
|
|
k->ResetCapFlags(dev, k);
|
|
|
|
|
|
if (devpriv->ai_convert_count > 0) {
|
|
@@ -1225,7 +1224,7 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
if (cmd->convert_src == TRIG_TIMER) {
|
|
|
DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
|
|
|
|
|
|
- // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
|
|
|
MC_ENABLE(P_MC2, MC2_ADC_RPS);
|
|
|
}
|
|
|
}
|
|
@@ -1234,13 +1233,13 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
|
|
|
k = &encpriv[5];
|
|
|
|
|
|
- //clear interrupt capture flag
|
|
|
+ /* clear interrupt capture flag */
|
|
|
k->ResetCapFlags(dev, k);
|
|
|
|
|
|
if (cmd->scan_begin_src == TRIG_TIMER) {
|
|
|
DEBUG("s626_irq_handler: scan timer trigger!!!\n");
|
|
|
|
|
|
- // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
|
|
|
MC_ENABLE(P_MC2, MC2_ADC_RPS);
|
|
|
}
|
|
|
|
|
@@ -1253,7 +1252,7 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- //enable interrupt
|
|
|
+ /* enable interrupt */
|
|
|
writel(irqstatus, devpriv->base_addr + P_IER);
|
|
|
|
|
|
DEBUG("s626_irq_handler: exit interrupt service routine.\n");
|
|
@@ -1265,18 +1264,18 @@ static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
static int s626_detach(comedi_device * dev)
|
|
|
{
|
|
|
if (devpriv) {
|
|
|
- //stop ai_command
|
|
|
+ /* stop ai_command */
|
|
|
devpriv->ai_cmd_running = 0;
|
|
|
|
|
|
if (devpriv->base_addr) {
|
|
|
- //interrupt mask
|
|
|
- WR7146(P_IER, 0); // Disable master interrupt.
|
|
|
- WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); // Clear board's IRQ status flag.
|
|
|
+ /* interrupt mask */
|
|
|
+ WR7146(P_IER, 0); /* Disable master interrupt. */
|
|
|
+ WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
|
|
|
|
|
|
- // Disable the watchdog timer and battery charger.
|
|
|
+ /* Disable the watchdog timer and battery charger. */
|
|
|
WriteMISC2(dev, 0);
|
|
|
|
|
|
- // Close all interfaces on 7146 device.
|
|
|
+ /* Close all interfaces on 7146 device. */
|
|
|
WR7146(P_MC1, MC1_SHUTDOWN);
|
|
|
WR7146(P_ACON1, ACON1_BASE);
|
|
|
|
|
@@ -1317,174 +1316,186 @@ void ResetADC(comedi_device * dev, uint8_t * ppl)
|
|
|
uint32_t LocalPPL;
|
|
|
comedi_cmd *cmd = &(dev->subdevices->async->cmd);
|
|
|
|
|
|
- // Stop RPS program in case it is currently running.
|
|
|
+ /* Stop RPS program in case it is currently running. */
|
|
|
MC_DISABLE(P_MC1, MC1_ERPS1);
|
|
|
|
|
|
- // Set starting logical address to write RPS commands.
|
|
|
+ /* Set starting logical address to write RPS commands. */
|
|
|
pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
|
|
|
|
|
|
- // Initialize RPS instruction pointer.
|
|
|
+ /* Initialize RPS instruction pointer. */
|
|
|
WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
|
|
|
|
|
|
- // Construct RPS program in RPSBuf DMA buffer
|
|
|
+ /* Construct RPS program in RPSBuf DMA buffer */
|
|
|
|
|
|
if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
|
|
|
DEBUG("ResetADC: scan_begin pause inserted\n");
|
|
|
- // Wait for Start trigger.
|
|
|
+ /* Wait for Start trigger. */
|
|
|
*pRPS++ = RPS_PAUSE | RPS_SIGADC;
|
|
|
*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
|
|
|
}
|
|
|
- // SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
|
|
|
- // because the first RPS DEBI Write following a non-RPS DEBI write
|
|
|
- // seems to always fail. If we don't do this dummy write, the ADC
|
|
|
- // gain might not be set to the value required for the first slot in
|
|
|
- // the poll list; the ADC gain would instead remain unchanged from
|
|
|
- // the previously programmed value.
|
|
|
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI Write command
|
|
|
- // and address to shadow RAM.
|
|
|
+
|
|
|
+ /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
|
|
|
+ * because the first RPS DEBI Write following a non-RPS DEBI write
|
|
|
+ * seems to always fail. If we don't do this dummy write, the ADC
|
|
|
+ * gain might not be set to the value required for the first slot in
|
|
|
+ * the poll list; the ADC gain would instead remain unchanged from
|
|
|
+ * the previously programmed value.
|
|
|
+ */
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
|
|
|
+ /* Write DEBI Write command and address to shadow RAM. */
|
|
|
+
|
|
|
*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
|
|
|
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI immediate data
|
|
|
- // to shadow RAM:
|
|
|
- *pRPS++ = GSEL_BIPOLAR5V; // arbitrary immediate data
|
|
|
- // value.
|
|
|
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM
|
|
|
- // uploaded" flag.
|
|
|
- *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
|
|
|
- *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to finish.
|
|
|
-
|
|
|
- // Digitize all slots in the poll list. This is implemented as a
|
|
|
- // for loop to limit the slot count to 16 in case the application
|
|
|
- // forgot to set the EOPL flag in the final slot.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
|
|
|
+ /* Write DEBI immediate data to shadow RAM: */
|
|
|
+
|
|
|
+ *pRPS++ = GSEL_BIPOLAR5V;
|
|
|
+ /* arbitrary immediate data value. */
|
|
|
+
|
|
|
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
|
|
|
+ /* Reset "shadow RAM uploaded" flag. */
|
|
|
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
|
|
|
+
|
|
|
+ /* Digitize all slots in the poll list. This is implemented as a
|
|
|
+ * for loop to limit the slot count to 16 in case the application
|
|
|
+ * forgot to set the EOPL flag in the final slot.
|
|
|
+ */
|
|
|
for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
|
|
|
- // Convert application's poll list item to private board class
|
|
|
- // format. Each app poll list item is an uint8_t with form
|
|
|
- // (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
|
|
|
- // +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
|
|
|
+ /* Convert application's poll list item to private board class
|
|
|
+ * format. Each app poll list item is an uint8_t with form
|
|
|
+ * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
|
|
|
+ * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
|
|
|
+ */
|
|
|
LocalPPL =
|
|
|
(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
|
|
|
GSEL_BIPOLAR10V);
|
|
|
|
|
|
- // Switch ADC analog gain.
|
|
|
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command
|
|
|
- // and address to
|
|
|
- // shadow RAM.
|
|
|
+ /* Switch ADC analog gain. */
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
|
|
|
+ /* and address to */
|
|
|
+ /* shadow RAM. */
|
|
|
*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
|
|
|
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI
|
|
|
- // immediate data to
|
|
|
- // shadow RAM.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
|
|
|
+ /* immediate data to */
|
|
|
+ /* shadow RAM. */
|
|
|
*pRPS++ = LocalPPL;
|
|
|
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded"
|
|
|
- // flag.
|
|
|
- *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
|
|
|
- *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to
|
|
|
- // finish.
|
|
|
-
|
|
|
- // Select ADC analog input channel.
|
|
|
- *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command
|
|
|
- // and address to
|
|
|
- // shadow RAM.
|
|
|
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
|
|
|
+ /* flag. */
|
|
|
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
|
|
|
+ /* finish. */
|
|
|
+
|
|
|
+ /* Select ADC analog input channel. */
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
|
|
|
+ /* Write DEBI command and address to shadow RAM. */
|
|
|
*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
|
|
|
- *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI
|
|
|
- // immediate data to
|
|
|
- // shadow RAM.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
|
|
|
+ /* Write DEBI immediate data to shadow RAM. */
|
|
|
*pRPS++ = LocalPPL;
|
|
|
- *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded"
|
|
|
- // flag.
|
|
|
- *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
|
|
|
- *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to
|
|
|
- // finish.
|
|
|
-
|
|
|
- // Delay at least 10 microseconds for analog input settling.
|
|
|
- // Instead of padding with NOPs, we use RPS_JUMP instructions
|
|
|
- // here; this allows us to produce a longer delay than is
|
|
|
- // possible with NOPs because each RPS_JUMP flushes the RPS'
|
|
|
- // instruction prefetch pipeline.
|
|
|
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
|
|
|
+ /* Reset "shadow RAM uploaded" flag. */
|
|
|
+
|
|
|
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI;
|
|
|
+ /* Invoke shadow RAM upload. */
|
|
|
+
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_DEBI;
|
|
|
+ /* Wait for shadow upload to finish. */
|
|
|
+
|
|
|
+ /* Delay at least 10 microseconds for analog input settling.
|
|
|
+ * Instead of padding with NOPs, we use RPS_JUMP instructions
|
|
|
+ * here; this allows us to produce a longer delay than is
|
|
|
+ * possible with NOPs because each RPS_JUMP flushes the RPS'
|
|
|
+ * instruction prefetch pipeline.
|
|
|
+ */
|
|
|
JmpAdrs =
|
|
|
(uint32_t) devpriv->RPSBuf.PhysicalBase +
|
|
|
(uint32_t) ((unsigned long)pRPS -
|
|
|
(unsigned long)devpriv->RPSBuf.LogicalBase);
|
|
|
for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
|
|
|
- JmpAdrs += 8; // Repeat to implement time delay:
|
|
|
- *pRPS++ = RPS_JUMP; // Jump to next RPS instruction.
|
|
|
+ JmpAdrs += 8; /* Repeat to implement time delay: */
|
|
|
+ *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
|
|
|
*pRPS++ = JmpAdrs;
|
|
|
}
|
|
|
|
|
|
if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
|
|
|
DEBUG("ResetADC: convert pause inserted\n");
|
|
|
- // Wait for Start trigger.
|
|
|
+ /* Wait for Start trigger. */
|
|
|
*pRPS++ = RPS_PAUSE | RPS_SIGADC;
|
|
|
*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
|
|
|
}
|
|
|
- // Start ADC by pulsing GPIO1.
|
|
|
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse.
|
|
|
+ /* Start ADC by pulsing GPIO1. */
|
|
|
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
|
|
|
*pRPS++ = GPIO_BASE | GPIO1_LO;
|
|
|
*pRPS++ = RPS_NOP;
|
|
|
- // VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
|
|
|
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse.
|
|
|
+ /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
|
|
|
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
|
|
|
*pRPS++ = GPIO_BASE | GPIO1_HI;
|
|
|
|
|
|
- // Wait for ADC to complete (GPIO2 is asserted high when ADC not
|
|
|
- // busy) and for data from previous conversion to shift into FB
|
|
|
- // BUFFER 1 register.
|
|
|
- *pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done.
|
|
|
+ /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
|
|
|
+ * busy) and for data from previous conversion to shift into FB
|
|
|
+ * BUFFER 1 register.
|
|
|
+ */
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
|
|
|
|
|
|
- // Transfer ADC data from FB BUFFER 1 register to DMA buffer.
|
|
|
+ /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
|
|
|
*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
|
|
|
*pRPS++ =
|
|
|
(uint32_t) devpriv->ANABuf.PhysicalBase +
|
|
|
(devpriv->AdcItems << 2);
|
|
|
|
|
|
- // If this slot's EndOfPollList flag is set, all channels have
|
|
|
- // now been processed.
|
|
|
+ /* If this slot's EndOfPollList flag is set, all channels have */
|
|
|
+ /* now been processed. */
|
|
|
if (*ppl++ & EOPL) {
|
|
|
- devpriv->AdcItems++; // Adjust poll list item count.
|
|
|
- break; // Exit poll list processing loop.
|
|
|
+ devpriv->AdcItems++; /* Adjust poll list item count. */
|
|
|
+ break; /* Exit poll list processing loop. */
|
|
|
}
|
|
|
}
|
|
|
DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
|
|
|
|
|
|
- // VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
|
|
|
- // ADC to stabilize for 2 microseconds before starting the final
|
|
|
- // (dummy) conversion. This delay is necessary to allow sufficient
|
|
|
- // time between last conversion finished and the start of the dummy
|
|
|
- // conversion. Without this delay, the last conversion's data value
|
|
|
- // is sometimes set to the previous conversion's data value.
|
|
|
+ /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
|
|
|
+ * ADC to stabilize for 2 microseconds before starting the final
|
|
|
+ * (dummy) conversion. This delay is necessary to allow sufficient
|
|
|
+ * time between last conversion finished and the start of the dummy
|
|
|
+ * conversion. Without this delay, the last conversion's data value
|
|
|
+ * is sometimes set to the previous conversion's data value.
|
|
|
+ */
|
|
|
for (n = 0; n < (2 * RPSCLK_PER_US); n++)
|
|
|
*pRPS++ = RPS_NOP;
|
|
|
|
|
|
- // Start a dummy conversion to cause the data from the last
|
|
|
- // conversion of interest to be shifted in.
|
|
|
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse.
|
|
|
+ /* Start a dummy conversion to cause the data from the last
|
|
|
+ * conversion of interest to be shifted in.
|
|
|
+ */
|
|
|
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
|
|
|
*pRPS++ = GPIO_BASE | GPIO1_LO;
|
|
|
*pRPS++ = RPS_NOP;
|
|
|
- // VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
|
|
|
- *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse.
|
|
|
+ /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
|
|
|
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
|
|
|
*pRPS++ = GPIO_BASE | GPIO1_HI;
|
|
|
|
|
|
- // Wait for the data from the last conversion of interest to arrive
|
|
|
- // in FB BUFFER 1 register.
|
|
|
- *pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done.
|
|
|
+ /* Wait for the data from the last conversion of interest to arrive
|
|
|
+ * in FB BUFFER 1 register.
|
|
|
+ */
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
|
|
|
|
|
|
- // Transfer final ADC data from FB BUFFER 1 register to DMA buffer.
|
|
|
- *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); //
|
|
|
+ /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
|
|
|
+ *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
|
|
|
*pRPS++ =
|
|
|
(uint32_t) devpriv->ANABuf.PhysicalBase +
|
|
|
(devpriv->AdcItems << 2);
|
|
|
|
|
|
- // Indicate ADC scan loop is finished.
|
|
|
- // *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done.
|
|
|
+ /* Indicate ADC scan loop is finished. */
|
|
|
+ /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
|
|
|
|
|
|
- //invoke interrupt
|
|
|
+ /* invoke interrupt */
|
|
|
if (devpriv->ai_cmd_running == 1) {
|
|
|
DEBUG("ResetADC: insert irq in ADC RPS task\n");
|
|
|
*pRPS++ = RPS_IRQ;
|
|
|
}
|
|
|
- // Restart RPS program at its beginning.
|
|
|
- *pRPS++ = RPS_JUMP; // Branch to start of RPS program.
|
|
|
+ /* Restart RPS program at its beginning. */
|
|
|
+ *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
|
|
|
*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
|
|
|
|
|
|
- // End of RPS program build
|
|
|
- // ------------------------------------------------------------
|
|
|
+ /* End of RPS program build */
|
|
|
}
|
|
|
|
|
|
/* TO COMPLETE, IF NECESSARY */
|
|
@@ -1502,19 +1513,19 @@ static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
|
|
|
|
|
|
/* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */
|
|
|
|
|
|
-/* // Trigger ADC scan loop start by setting RPS Signal 0. */
|
|
|
+/* Trigger ADC scan loop start by setting RPS Signal 0. */
|
|
|
/* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
|
|
|
|
|
|
-/* // Wait until ADC scan loop is finished (RPS Signal 0 reset). */
|
|
|
+/* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
|
|
|
/* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
|
|
|
|
|
|
-/* // Init ptr to DMA buffer that holds new ADC data. We skip the */
|
|
|
-/* // first uint16_t in the buffer because it contains junk data from */
|
|
|
-/* // the final ADC of the previous poll list scan. */
|
|
|
+/* Init ptr to DMA buffer that holds new ADC data. We skip the
|
|
|
+ * first uint16_t in the buffer because it contains junk data from
|
|
|
+ * the final ADC of the previous poll list scan.
|
|
|
+ */
|
|
|
/* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
|
|
|
|
|
|
-/* // Convert ADC data to 16-bit integer values and copy to application */
|
|
|
-/* // buffer. */
|
|
|
+/* Convert ADC data to 16-bit integer values and copy to application buffer. */
|
|
|
/* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
|
|
|
/* *data = s626_ai_reg_to_uint( *readaddr++ ); */
|
|
|
/* DEBUG("s626_ai_rinsn: data %d \n",*data); */
|
|
@@ -1534,86 +1545,85 @@ static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
|
|
|
uint32_t GpioImage;
|
|
|
int n;
|
|
|
|
|
|
-/* //interrupt call test */
|
|
|
-/* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); //Writing a logical 1 */
|
|
|
-/* //into any of the RPS_PSR */
|
|
|
-/* //bits causes the */
|
|
|
-/* //corresponding interrupt */
|
|
|
-/* //to be generated if */
|
|
|
-/* //enabled */
|
|
|
+ /* interrupt call test */
|
|
|
+/* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
|
|
|
+ /* Writing a logical 1 into any of the RPS_PSR bits causes the
|
|
|
+ * corresponding interrupt to be generated if enabled
|
|
|
+ */
|
|
|
|
|
|
DEBUG("s626_ai_insn_read: entering\n");
|
|
|
|
|
|
- // Convert application's ADC specification into form
|
|
|
- // appropriate for register programming.
|
|
|
+ /* Convert application's ADC specification into form
|
|
|
+ * appropriate for register programming.
|
|
|
+ */
|
|
|
if (range == 0)
|
|
|
AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
|
|
|
else
|
|
|
AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
|
|
|
|
|
|
- // Switch ADC analog gain.
|
|
|
- DEBIwrite(dev, LP_GSEL, AdcSpec); // Set gain.
|
|
|
+ /* Switch ADC analog gain. */
|
|
|
+ DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
|
|
|
|
|
|
- // Select ADC analog input channel.
|
|
|
- DEBIwrite(dev, LP_ISEL, AdcSpec); // Select channel.
|
|
|
+ /* Select ADC analog input channel. */
|
|
|
+ DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
|
|
|
|
|
|
for (n = 0; n < insn->n; n++) {
|
|
|
|
|
|
- // Delay 10 microseconds for analog input settling.
|
|
|
+ /* Delay 10 microseconds for analog input settling. */
|
|
|
comedi_udelay(10);
|
|
|
|
|
|
- // Start ADC by pulsing GPIO1 low.
|
|
|
+ /* Start ADC by pulsing GPIO1 low. */
|
|
|
GpioImage = RR7146(P_GPIO);
|
|
|
- // Assert ADC Start command
|
|
|
+ /* Assert ADC Start command */
|
|
|
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
- // and stretch it out.
|
|
|
+ /* and stretch it out. */
|
|
|
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
- // Negate ADC Start command.
|
|
|
+ /* Negate ADC Start command. */
|
|
|
WR7146(P_GPIO, GpioImage | GPIO1_HI);
|
|
|
|
|
|
- // Wait for ADC to complete (GPIO2 is asserted high when
|
|
|
- // ADC not busy) and for data from previous conversion to
|
|
|
- // shift into FB BUFFER 1 register.
|
|
|
+ /* Wait for ADC to complete (GPIO2 is asserted high when */
|
|
|
+ /* ADC not busy) and for data from previous conversion to */
|
|
|
+ /* shift into FB BUFFER 1 register. */
|
|
|
|
|
|
- // Wait for ADC done.
|
|
|
+ /* Wait for ADC done. */
|
|
|
while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
|
|
|
|
|
|
- // Fetch ADC data.
|
|
|
+ /* Fetch ADC data. */
|
|
|
if (n != 0)
|
|
|
data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
|
|
|
|
|
|
- // Allow the ADC to stabilize for 4 microseconds before
|
|
|
- // starting the next (final) conversion. This delay is
|
|
|
- // necessary to allow sufficient time between last
|
|
|
- // conversion finished and the start of the next
|
|
|
- // conversion. Without this delay, the last conversion's
|
|
|
- // data value is sometimes set to the previous
|
|
|
- // conversion's data value.
|
|
|
+ /* Allow the ADC to stabilize for 4 microseconds before
|
|
|
+ * starting the next (final) conversion. This delay is
|
|
|
+ * necessary to allow sufficient time between last
|
|
|
+ * conversion finished and the start of the next
|
|
|
+ * conversion. Without this delay, the last conversion's
|
|
|
+ * data value is sometimes set to the previous
|
|
|
+ * conversion's data value.
|
|
|
+ */
|
|
|
comedi_udelay(4);
|
|
|
}
|
|
|
|
|
|
- // Start a dummy conversion to cause the data from the
|
|
|
- // previous conversion to be shifted in.
|
|
|
+ /* Start a dummy conversion to cause the data from the
|
|
|
+ * previous conversion to be shifted in. */
|
|
|
GpioImage = RR7146(P_GPIO);
|
|
|
|
|
|
- //Assert ADC Start command
|
|
|
+ /* Assert ADC Start command */
|
|
|
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
- // and stretch it out.
|
|
|
+ /* and stretch it out. */
|
|
|
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
- // Negate ADC Start command.
|
|
|
+ /* Negate ADC Start command. */
|
|
|
WR7146(P_GPIO, GpioImage | GPIO1_HI);
|
|
|
|
|
|
- // Wait for the data to arrive in FB BUFFER 1 register.
|
|
|
+ /* Wait for the data to arrive in FB BUFFER 1 register. */
|
|
|
|
|
|
- // Wait for ADC done.
|
|
|
+ /* Wait for ADC done. */
|
|
|
while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
|
|
|
|
|
|
- // Fetch ADC data from audio interface's input shift
|
|
|
- // register.
|
|
|
+ /* Fetch ADC data from audio interface's input shift register. */
|
|
|
|
|
|
- // Fetch ADC data.
|
|
|
+ /* Fetch ADC data. */
|
|
|
if (n != 0)
|
|
|
data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
|
|
|
|
|
@@ -1646,7 +1656,7 @@ static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
|
|
|
|
|
|
DEBUG("s626_ai_inttrig: trigger adc start...");
|
|
|
|
|
|
- // Start executing the RPS program.
|
|
|
+ /* Start executing the RPS program. */
|
|
|
MC_ENABLE(P_MC1, MC1_ERPS1);
|
|
|
|
|
|
s->async->inttrig = NULL;
|
|
@@ -1672,20 +1682,20 @@ static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
|
|
|
dev->minor);
|
|
|
return -EBUSY;
|
|
|
}
|
|
|
- //disable interrupt
|
|
|
+ /* disable interrupt */
|
|
|
writel(0, devpriv->base_addr + P_IER);
|
|
|
|
|
|
- //clear interrupt request
|
|
|
+ /* clear interrupt request */
|
|
|
writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
|
|
|
|
|
|
- //clear any pending interrupt
|
|
|
+ /* clear any pending interrupt */
|
|
|
s626_dio_clear_irq(dev);
|
|
|
- // s626_enc_clear_irq(dev);
|
|
|
+ /* s626_enc_clear_irq(dev); */
|
|
|
|
|
|
- //reset ai_cmd_running flag
|
|
|
+ /* reset ai_cmd_running flag */
|
|
|
devpriv->ai_cmd_running = 0;
|
|
|
|
|
|
- // test if cmd is valid
|
|
|
+ /* test if cmd is valid */
|
|
|
if (cmd == NULL) {
|
|
|
DEBUG("s626_ai_cmd: NULL command\n");
|
|
|
return -EINVAL;
|
|
@@ -1707,12 +1717,12 @@ static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
|
|
|
case TRIG_FOLLOW:
|
|
|
break;
|
|
|
case TRIG_TIMER:
|
|
|
- // set a conter to generate adc trigger at scan_begin_arg interval
|
|
|
+ /* set a conter to generate adc trigger at scan_begin_arg interval */
|
|
|
k = &encpriv[5];
|
|
|
tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
|
|
|
cmd->flags & TRIG_ROUND_MASK);
|
|
|
|
|
|
- //load timer value and enable interrupt
|
|
|
+ /* load timer value and enable interrupt */
|
|
|
s626_timer_load(dev, k, tick);
|
|
|
k->SetEnable(dev, k, CLKENAB_ALWAYS);
|
|
|
|
|
@@ -1721,7 +1731,7 @@ static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
|
|
|
|
|
|
break;
|
|
|
case TRIG_EXT:
|
|
|
- // set the digital line and interrupt for scan trigger
|
|
|
+ /* set the digital line and interrupt for scan trigger */
|
|
|
if (cmd->start_src != TRIG_EXT)
|
|
|
s626_dio_set_irq(dev, cmd->scan_begin_arg);
|
|
|
|
|
@@ -1734,19 +1744,19 @@ static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
|
|
|
case TRIG_NOW:
|
|
|
break;
|
|
|
case TRIG_TIMER:
|
|
|
- // set a conter to generate adc trigger at convert_arg interval
|
|
|
+ /* set a conter to generate adc trigger at convert_arg interval */
|
|
|
k = &encpriv[4];
|
|
|
tick = s626_ns_to_timer((int *)&cmd->convert_arg,
|
|
|
cmd->flags & TRIG_ROUND_MASK);
|
|
|
|
|
|
- //load timer value and enable interrupt
|
|
|
+ /* load timer value and enable interrupt */
|
|
|
s626_timer_load(dev, k, tick);
|
|
|
k->SetEnable(dev, k, CLKENAB_INDEX);
|
|
|
|
|
|
DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
|
|
|
break;
|
|
|
case TRIG_EXT:
|
|
|
- // set the digital line and interrupt for convert trigger
|
|
|
+ /* set the digital line and interrupt for convert trigger */
|
|
|
if (cmd->scan_begin_src != TRIG_EXT
|
|
|
&& cmd->start_src == TRIG_EXT)
|
|
|
s626_dio_set_irq(dev, cmd->convert_arg);
|
|
@@ -1758,12 +1768,12 @@ static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
|
|
|
|
|
|
switch (cmd->stop_src) {
|
|
|
case TRIG_COUNT:
|
|
|
- // data arrives as one packet
|
|
|
+ /* data arrives as one packet */
|
|
|
devpriv->ai_sample_count = cmd->stop_arg;
|
|
|
devpriv->ai_continous = 0;
|
|
|
break;
|
|
|
case TRIG_NONE:
|
|
|
- // continous aquisition
|
|
|
+ /* continous aquisition */
|
|
|
devpriv->ai_continous = 1;
|
|
|
devpriv->ai_sample_count = 0;
|
|
|
break;
|
|
@@ -1773,17 +1783,17 @@ static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
|
|
|
|
|
|
switch (cmd->start_src) {
|
|
|
case TRIG_NOW:
|
|
|
- // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
- // MC_ENABLE( P_MC2, MC2_ADC_RPS );
|
|
|
+ /* Trigger ADC scan loop start by setting RPS Signal 0. */
|
|
|
+ /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
|
|
|
|
|
|
- // Start executing the RPS program.
|
|
|
+ /* Start executing the RPS program. */
|
|
|
MC_ENABLE(P_MC1, MC1_ERPS1);
|
|
|
|
|
|
DEBUG("s626_ai_cmd: ADC triggered\n");
|
|
|
s->async->inttrig = NULL;
|
|
|
break;
|
|
|
case TRIG_EXT:
|
|
|
- //configure DIO channel for acquisition trigger
|
|
|
+ /* configure DIO channel for acquisition trigger */
|
|
|
s626_dio_set_irq(dev, cmd->start_arg);
|
|
|
|
|
|
DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
|
|
@@ -1795,7 +1805,7 @@ static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
- //enable interrupt
|
|
|
+ /* enable interrupt */
|
|
|
writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
|
|
|
|
|
|
DEBUG("s626_ai_cmd: command function terminated\n");
|
|
@@ -1990,10 +2000,10 @@ static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
|
|
|
|
|
|
static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s)
|
|
|
{
|
|
|
- // Stop RPS program in case it is currently running.
|
|
|
+ /* Stop RPS program in case it is currently running. */
|
|
|
MC_DISABLE(P_MC1, MC1_ERPS1);
|
|
|
|
|
|
- //disable master interrupt
|
|
|
+ /* disable master interrupt */
|
|
|
writel(0, devpriv->base_addr + P_IER);
|
|
|
|
|
|
devpriv->ai_cmd_running = 0;
|
|
@@ -2010,7 +2020,7 @@ static int s626_ns_to_timer(int *nanosec, int round_mode)
|
|
|
{
|
|
|
int divider, base;
|
|
|
|
|
|
- base = 500; //2MHz internal clock
|
|
|
+ base = 500; /* 2MHz internal clock */
|
|
|
|
|
|
switch (round_mode) {
|
|
|
case TRIG_ROUND_NEAREST:
|
|
@@ -2060,33 +2070,31 @@ static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
|
|
|
return i;
|
|
|
}
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////
|
|
|
-/////////////// DIGITAL I/O FUNCTIONS /////////////////////////////
|
|
|
-/////////////////////////////////////////////////////////////////////
|
|
|
-// All DIO functions address a group of DIO channels by means of
|
|
|
-// "group" argument. group may be 0, 1 or 2, which correspond to DIO
|
|
|
-// ports A, B and C, respectively.
|
|
|
-/////////////////////////////////////////////////////////////////////
|
|
|
+/* *************** DIGITAL I/O FUNCTIONS ***************
|
|
|
+ * All DIO functions address a group of DIO channels by means of
|
|
|
+ * "group" argument. group may be 0, 1 or 2, which correspond to DIO
|
|
|
+ * ports A, B and C, respectively.
|
|
|
+ */
|
|
|
|
|
|
static void s626_dio_init(comedi_device * dev)
|
|
|
{
|
|
|
uint16_t group;
|
|
|
comedi_subdevice *s;
|
|
|
|
|
|
- // Prepare to treat writes to WRCapSel as capture disables.
|
|
|
+ /* Prepare to treat writes to WRCapSel as capture disables. */
|
|
|
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
|
|
|
|
|
|
- // For each group of sixteen channels ...
|
|
|
+ /* For each group of sixteen channels ... */
|
|
|
for (group = 0; group < S626_DIO_BANKS; group++) {
|
|
|
s = dev->subdevices + 2 + group;
|
|
|
- DEBIwrite(dev, diopriv->WRIntSel, 0); // Disable all interrupts.
|
|
|
- DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); // Disable all event
|
|
|
- // captures.
|
|
|
- DEBIwrite(dev, diopriv->WREdgSel, 0); // Init all DIOs to
|
|
|
- // default edge
|
|
|
- // polarity.
|
|
|
- DEBIwrite(dev, diopriv->WRDOut, 0); // Program all outputs
|
|
|
- // to inactive state.
|
|
|
+ DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
|
|
|
+ DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
|
|
|
+ /* captures. */
|
|
|
+ DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
|
|
|
+ /* default edge */
|
|
|
+ /* polarity. */
|
|
|
+ DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
|
|
|
+ /* to inactive state. */
|
|
|
}
|
|
|
DEBUG("s626_dio_init: DIO initialized \n");
|
|
|
}
|
|
@@ -2166,13 +2174,13 @@ static int s626_dio_set_irq(comedi_device * dev, unsigned int chan)
|
|
|
unsigned int bitmask;
|
|
|
unsigned int status;
|
|
|
|
|
|
- //select dio bank
|
|
|
+ /* select dio bank */
|
|
|
group = chan / 16;
|
|
|
bitmask = 1 << (chan - (16 * group));
|
|
|
DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
|
|
|
chan - (16 * group), group);
|
|
|
|
|
|
- //set channel to capture positive edge
|
|
|
+ /* set channel to capture positive edge */
|
|
|
status = DEBIread(dev,
|
|
|
((dio_private *) (dev->subdevices + 2 +
|
|
|
group)->private)->RDEdgSel);
|
|
@@ -2180,7 +2188,7 @@ static int s626_dio_set_irq(comedi_device * dev, unsigned int chan)
|
|
|
((dio_private *) (dev->subdevices + 2 +
|
|
|
group)->private)->WREdgSel, bitmask | status);
|
|
|
|
|
|
- //enable interrupt on selected channel
|
|
|
+ /* enable interrupt on selected channel */
|
|
|
status = DEBIread(dev,
|
|
|
((dio_private *) (dev->subdevices + 2 +
|
|
|
group)->private)->RDIntSel);
|
|
@@ -2188,10 +2196,10 @@ static int s626_dio_set_irq(comedi_device * dev, unsigned int chan)
|
|
|
((dio_private *) (dev->subdevices + 2 +
|
|
|
group)->private)->WRIntSel, bitmask | status);
|
|
|
|
|
|
- //enable edge capture write command
|
|
|
+ /* enable edge capture write command */
|
|
|
DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
|
|
|
|
|
|
- //enable edge capture on selected channel
|
|
|
+ /* enable edge capture on selected channel */
|
|
|
status = DEBIread(dev,
|
|
|
((dio_private *) (dev->subdevices + 2 +
|
|
|
group)->private)->RDCapSel);
|
|
@@ -2207,10 +2215,10 @@ static int s626_dio_reset_irq(comedi_device * dev, unsigned int group,
|
|
|
{
|
|
|
DEBUG("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n", mask, group);
|
|
|
|
|
|
- //disable edge capture write command
|
|
|
+ /* disable edge capture write command */
|
|
|
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
|
|
|
|
|
|
- //enable edge capture on selected channel
|
|
|
+ /* enable edge capture on selected channel */
|
|
|
DEBIwrite(dev,
|
|
|
((dio_private *) (dev->subdevices + 2 +
|
|
|
group)->private)->WRCapSel, mask);
|
|
@@ -2222,11 +2230,11 @@ static int s626_dio_clear_irq(comedi_device * dev)
|
|
|
{
|
|
|
unsigned int group;
|
|
|
|
|
|
- //disable edge capture write command
|
|
|
+ /* disable edge capture write command */
|
|
|
DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
|
|
|
|
|
|
for (group = 0; group < S626_DIO_BANKS; group++) {
|
|
|
- //clear pending events and interrupt
|
|
|
+ /* clear pending events and interrupt */
|
|
|
DEBIwrite(dev,
|
|
|
((dio_private *) (dev->subdevices + 2 +
|
|
|
group)->private)->WRCapSel, 0xffff);
|
|
@@ -2241,23 +2249,23 @@ static int s626_dio_clear_irq(comedi_device * dev)
|
|
|
static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
|
|
|
comedi_insn * insn, lsampl_t * data)
|
|
|
{
|
|
|
- uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
|
|
|
- // index.
|
|
|
- (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
|
|
|
- (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is Counter.
|
|
|
- (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
|
|
|
- //( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down.
|
|
|
- (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
|
|
|
+ uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
|
|
|
+ /* index. */
|
|
|
+ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
|
|
|
+ (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
|
|
|
+ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
|
|
|
+ /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
|
|
|
+ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
|
|
|
(CLKENAB_INDEX << BF_CLKENAB);
|
|
|
/* uint16_t DisableIntSrc=TRUE; */
|
|
|
- // uint32_t Preloadvalue; //Counter initial value
|
|
|
+ /* uint32_t Preloadvalue; //Counter initial value */
|
|
|
uint16_t valueSrclatch = LATCHSRC_AB_READ;
|
|
|
uint16_t enab = CLKENAB_ALWAYS;
|
|
|
enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
|
|
|
|
|
|
DEBUG("s626_enc_insn_config: encoder config\n");
|
|
|
|
|
|
- // (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]);
|
|
|
+ /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
|
|
|
|
|
|
k->SetMode(dev, k, Setup, TRUE);
|
|
|
Preload(dev, k, *(insn->data));
|
|
@@ -2295,11 +2303,11 @@ static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
|
|
|
DEBUG("s626_enc_insn_write: encoder write channel %d \n",
|
|
|
CR_CHAN(insn->chanspec));
|
|
|
|
|
|
- // Set the preload register
|
|
|
+ /* Set the preload register */
|
|
|
Preload(dev, k, data[0]);
|
|
|
|
|
|
- // Software index pulse forces the preload register to load
|
|
|
- // into the counter
|
|
|
+ /* Software index pulse forces the preload register to load */
|
|
|
+ /* into the counter */
|
|
|
k->SetLoadTrig(dev, k, 0);
|
|
|
k->PulseIndex(dev, k);
|
|
|
k->SetLoadTrig(dev, k, 2);
|
|
@@ -2311,50 +2319,47 @@ static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
|
|
|
|
|
|
static void s626_timer_load(comedi_device * dev, enc_private * k, int tick)
|
|
|
{
|
|
|
- uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
|
|
|
- // index.
|
|
|
- (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
|
|
|
- (CLKSRC_TIMER << BF_CLKSRC) | // Operating mode is Timer.
|
|
|
- (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
|
|
|
- (CNTDIR_DOWN << BF_CLKPOL) | // Count direction is Down.
|
|
|
- (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
|
|
|
+ uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
|
|
|
+ /* index. */
|
|
|
+ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
|
|
|
+ (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
|
|
|
+ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
|
|
|
+ (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
|
|
|
+ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
|
|
|
(CLKENAB_INDEX << BF_CLKENAB);
|
|
|
uint16_t valueSrclatch = LATCHSRC_A_INDXA;
|
|
|
- // uint16_t enab=CLKENAB_ALWAYS;
|
|
|
+ /* uint16_t enab=CLKENAB_ALWAYS; */
|
|
|
|
|
|
k->SetMode(dev, k, Setup, FALSE);
|
|
|
|
|
|
- // Set the preload register
|
|
|
+ /* Set the preload register */
|
|
|
Preload(dev, k, tick);
|
|
|
|
|
|
- // Software index pulse forces the preload register to load
|
|
|
- // into the counter
|
|
|
+ /* Software index pulse forces the preload register to load */
|
|
|
+ /* into the counter */
|
|
|
k->SetLoadTrig(dev, k, 0);
|
|
|
k->PulseIndex(dev, k);
|
|
|
|
|
|
- //set reload on counter overflow
|
|
|
+ /* set reload on counter overflow */
|
|
|
k->SetLoadTrig(dev, k, 1);
|
|
|
|
|
|
- //set interrupt on overflow
|
|
|
+ /* set interrupt on overflow */
|
|
|
k->SetIntSrc(dev, k, INTSRC_OVER);
|
|
|
|
|
|
SetLatchSource(dev, k, valueSrclatch);
|
|
|
- // k->SetEnable(dev,k,(uint16_t)(enab != 0));
|
|
|
+ /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
|
|
|
}
|
|
|
|
|
|
-///////////////////////////////////////////////////////////////////////
|
|
|
-///////////////////// DAC FUNCTIONS /////////////////////////////////
|
|
|
-///////////////////////////////////////////////////////////////////////
|
|
|
+/* *********** DAC FUNCTIONS *********** */
|
|
|
|
|
|
-// Slot 0 base settings.
|
|
|
-#define VECT0 ( XSD2 | RSD3 | SIB_A2 ) // Slot 0 always shifts in
|
|
|
- // 0xFF and store it to
|
|
|
- // FB_BUFFER2.
|
|
|
+/* Slot 0 base settings. */
|
|
|
+#define VECT0 ( XSD2 | RSD3 | SIB_A2 )
|
|
|
+/* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
|
|
|
|
|
|
-// TrimDac LogicalChan-to-PhysicalChan mapping table.
|
|
|
+/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
|
|
|
static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
|
|
|
|
|
|
-// TrimDac LogicalChan-to-EepromAdrs mapping table.
|
|
|
+/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
|
|
|
static uint8_t trimadrs[] =
|
|
|
{ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
|
|
|
|
|
@@ -2362,7 +2367,7 @@ static void LoadTrimDACs(comedi_device * dev)
|
|
|
{
|
|
|
register uint8_t i;
|
|
|
|
|
|
- // Copy TrimDac setpoint values from EEPROM to TrimDacs.
|
|
|
+ /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
|
|
|
for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
|
|
|
WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
|
|
|
}
|
|
@@ -2372,112 +2377,105 @@ static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
|
|
|
{
|
|
|
uint32_t chan;
|
|
|
|
|
|
- // Save the new setpoint in case the application needs to read it back later.
|
|
|
+ /* Save the new setpoint in case the application needs to read it back later. */
|
|
|
devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
|
|
|
|
|
|
- // Map logical channel number to physical channel number.
|
|
|
+ /* Map logical channel number to physical channel number. */
|
|
|
chan = (uint32_t) trimchan[LogicalChan];
|
|
|
|
|
|
- // Set up TSL2 records for TrimDac write operation. All slots shift
|
|
|
- // 0xFF in from pulled-up SD3 so that the end of the slot sequence
|
|
|
- // can be detected.
|
|
|
- SETVECT(2, XSD2 | XFIFO_1 | WS3); // Slot 2: Send high uint8_t
|
|
|
- // to target TrimDac.
|
|
|
- SETVECT(3, XSD2 | XFIFO_0 | WS3); // Slot 3: Send low uint8_t to
|
|
|
- // target TrimDac.
|
|
|
- SETVECT(4, XSD2 | XFIFO_3 | WS1); // Slot 4: Send NOP high
|
|
|
- // uint8_t to DAC0 to keep
|
|
|
- // clock running.
|
|
|
- SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS); // Slot 5: Send NOP low
|
|
|
- // uint8_t to DAC0.
|
|
|
-
|
|
|
- // Construct and transmit target DAC's serial packet: ( 0000 AAAA
|
|
|
- // ),( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the DAC
|
|
|
- // channel's address, and D<7:0> is the DAC setpoint. Append a WORD
|
|
|
- // value (that writes a channel 0 NOP command to a non-existent main
|
|
|
- // DAC channel) that serves to keep the clock running after the
|
|
|
- // packet has been sent to the target DAC.
|
|
|
-
|
|
|
- SendDAC(dev, ((uint32_t) chan << 8) // Address the DAC channel
|
|
|
- // within the trimdac device.
|
|
|
- | (uint32_t) DacData); // Include DAC setpoint data.
|
|
|
-}
|
|
|
+ /* Set up TSL2 records for TrimDac write operation. All slots shift
|
|
|
+ * 0xFF in from pulled-up SD3 so that the end of the slot sequence
|
|
|
+ * can be detected.
|
|
|
+ */
|
|
|
+
|
|
|
+ SETVECT(2, XSD2 | XFIFO_1 | WS3);
|
|
|
+ /* Slot 2: Send high uint8_t to target TrimDac. */
|
|
|
+ SETVECT(3, XSD2 | XFIFO_0 | WS3);
|
|
|
+ /* Slot 3: Send low uint8_t to target TrimDac. */
|
|
|
+ SETVECT(4, XSD2 | XFIFO_3 | WS1);
|
|
|
+ /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
|
|
|
+ SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
|
|
|
+ /* Slot 5: Send NOP low uint8_t to DAC0. */
|
|
|
+
|
|
|
+ /* Construct and transmit target DAC's serial packet:
|
|
|
+ * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
|
|
|
+ * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
|
|
|
+ * WORD value (that writes a channel 0 NOP command to a non-existent
|
|
|
+ * main DAC channel) that serves to keep the clock running after the
|
|
|
+ * packet has been sent to the target DAC.
|
|
|
+ */
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////////
|
|
|
-//////////////// EEPROM ACCESS FUNCTIONS //////////////////////////////
|
|
|
-/////////////////////////////////////////////////////////////////////////
|
|
|
+ /* Address the DAC channel within the trimdac device. */
|
|
|
+ SendDAC(dev, ((uint32_t) chan << 8)
|
|
|
+ | (uint32_t) DacData); /* Include DAC setpoint data. */
|
|
|
+}
|
|
|
|
|
|
-///////////////////////////////////////////
|
|
|
-// Read uint8_t from EEPROM.
|
|
|
+/* ************** EEPROM ACCESS FUNCTIONS ************** */
|
|
|
+/* Read uint8_t from EEPROM. */
|
|
|
|
|
|
static uint8_t I2Cread(comedi_device * dev, uint8_t addr)
|
|
|
{
|
|
|
uint8_t rtnval;
|
|
|
|
|
|
- // Send EEPROM target address.
|
|
|
- if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW) // Byte2 = I2C
|
|
|
- // command:
|
|
|
- // write to
|
|
|
- // I2C EEPROM
|
|
|
- // device.
|
|
|
- | I2C_B1(I2C_ATTRSTOP, addr) // Byte1 = EEPROM
|
|
|
- // internal target
|
|
|
- // address.
|
|
|
- | I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not
|
|
|
- // sent.
|
|
|
+ /* Send EEPROM target address. */
|
|
|
+ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
|
|
|
+ /* Byte2 = I2C command: write to I2C EEPROM device. */
|
|
|
+ | I2C_B1(I2C_ATTRSTOP, addr)
|
|
|
+ /* Byte1 = EEPROM internal target address. */
|
|
|
+ | I2C_B0(I2C_ATTRNOP, 0))) /* Byte0 = Not sent. */
|
|
|
{
|
|
|
- // Abort function and declare error if handshake failed.
|
|
|
+ /* Abort function and declare error if handshake failed. */
|
|
|
DEBUG("I2Cread: error handshake I2Cread a\n");
|
|
|
return 0;
|
|
|
}
|
|
|
- // Execute EEPROM read.
|
|
|
- if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) // Byte2 = I2C
|
|
|
- // command: read
|
|
|
- // from I2C EEPROM
|
|
|
- // device.
|
|
|
- | I2C_B1(I2C_ATTRSTOP, 0) // Byte1 receives
|
|
|
- // uint8_t from
|
|
|
- // EEPROM.
|
|
|
- | I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not
|
|
|
- // sent.
|
|
|
+ /* Execute EEPROM read. */
|
|
|
+ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) /* Byte2 = I2C */
|
|
|
+ /* command: read */
|
|
|
+ /* from I2C EEPROM */
|
|
|
+ /* device. */
|
|
|
+ | I2C_B1(I2C_ATTRSTOP, 0) /* Byte1 receives */
|
|
|
+ /* uint8_t from */
|
|
|
+ /* EEPROM. */
|
|
|
+ | I2C_B0(I2C_ATTRNOP, 0))) /* Byte0 = Not */
|
|
|
+ /* sent. */
|
|
|
{
|
|
|
- // Abort function and declare error if handshake failed.
|
|
|
+ /* Abort function and declare error if handshake failed. */
|
|
|
DEBUG("I2Cread: error handshake I2Cread b\n");
|
|
|
return 0;
|
|
|
}
|
|
|
- // Return copy of EEPROM value.
|
|
|
+ /* Return copy of EEPROM value. */
|
|
|
rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
|
|
|
return rtnval;
|
|
|
}
|
|
|
|
|
|
static uint32_t I2Chandshake(comedi_device * dev, uint32_t val)
|
|
|
{
|
|
|
- // Write I2C command to I2C Transfer Control shadow register.
|
|
|
+ /* Write I2C command to I2C Transfer Control shadow register. */
|
|
|
WR7146(P_I2CCTRL, val);
|
|
|
|
|
|
- // Upload I2C shadow registers into working registers and wait for
|
|
|
- // upload confirmation.
|
|
|
+ /* Upload I2C shadow registers into working registers and wait for */
|
|
|
+ /* upload confirmation. */
|
|
|
|
|
|
MC_ENABLE(P_MC2, MC2_UPLD_IIC);
|
|
|
while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
|
|
|
|
|
|
- // Wait until I2C bus transfer is finished or an error occurs.
|
|
|
+ /* Wait until I2C bus transfer is finished or an error occurs. */
|
|
|
while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;
|
|
|
|
|
|
- // Return non-zero if I2C error occured.
|
|
|
+ /* Return non-zero if I2C error occured. */
|
|
|
return RR7146(P_I2CCTRL) & I2C_ERR;
|
|
|
|
|
|
}
|
|
|
|
|
|
-// Private helper function: Write setpoint to an application DAC channel.
|
|
|
+/* Private helper function: Write setpoint to an application DAC channel. */
|
|
|
|
|
|
static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata)
|
|
|
{
|
|
|
register uint16_t signmask;
|
|
|
register uint32_t WSImage;
|
|
|
|
|
|
- // Adjust DAC data polarity and set up Polarity Control Register
|
|
|
- // image.
|
|
|
+ /* Adjust DAC data polarity and set up Polarity Control Register */
|
|
|
+ /* image. */
|
|
|
signmask = 1 << chan;
|
|
|
if (dacdata < 0) {
|
|
|
dacdata = -dacdata;
|
|
@@ -2485,234 +2483,243 @@ static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata)
|
|
|
} else
|
|
|
devpriv->Dacpol &= ~signmask;
|
|
|
|
|
|
- // Limit DAC setpoint value to valid range.
|
|
|
+ /* Limit DAC setpoint value to valid range. */
|
|
|
if ((uint16_t) dacdata > 0x1FFF)
|
|
|
dacdata = 0x1FFF;
|
|
|
|
|
|
- // Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
|
|
|
- // and V3 transmit the setpoint to the target DAC. V4 and V5 send
|
|
|
- // data to a non-existent TrimDac channel just to keep the clock
|
|
|
- // running after sending data to the target DAC. This is necessary
|
|
|
- // to eliminate the clock glitch that would otherwise occur at the
|
|
|
- // end of the target DAC's serial data stream. When the sequence
|
|
|
- // restarts at V0 (after executing V5), the gate array automatically
|
|
|
- // disables gating for the DAC clock and all DAC chip selects.
|
|
|
- WSImage = (chan & 2) ? WS1 : WS2; // Choose DAC chip select to
|
|
|
- // be asserted.
|
|
|
- SETVECT(2, XSD2 | XFIFO_1 | WSImage); // Slot 2: Transmit high
|
|
|
- // data byte to target DAC.
|
|
|
- SETVECT(3, XSD2 | XFIFO_0 | WSImage); // Slot 3: Transmit low data
|
|
|
- // byte to target DAC.
|
|
|
- SETVECT(4, XSD2 | XFIFO_3 | WS3); // Slot 4: Transmit to
|
|
|
- // non-existent TrimDac
|
|
|
- // channel to keep clock
|
|
|
- SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS); // Slot 5: running after
|
|
|
- // writing target DAC's
|
|
|
- // low data byte.
|
|
|
-
|
|
|
- // Construct and transmit target DAC's serial packet: ( A10D DDDD
|
|
|
- // ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>, and D<12:0>
|
|
|
- // is the DAC setpoint. Append a WORD value (that writes to a
|
|
|
- // non-existent TrimDac channel) that serves to keep the clock
|
|
|
- // running after the packet has been sent to the target DAC.
|
|
|
- SendDAC(dev, 0x0F000000 //Continue clock after target DAC
|
|
|
- //data (write to non-existent
|
|
|
- //trimdac).
|
|
|
- | 0x00004000 // Address the two main dual-DAC
|
|
|
- // devices (TSL's chip select enables
|
|
|
- // target device).
|
|
|
- | ((uint32_t) (chan & 1) << 15) // Address the DAC
|
|
|
- // channel within the
|
|
|
- // device.
|
|
|
- | (uint32_t) dacdata); // Include DAC setpoint data.
|
|
|
+ /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
|
|
|
+ * and V3 transmit the setpoint to the target DAC. V4 and V5 send
|
|
|
+ * data to a non-existent TrimDac channel just to keep the clock
|
|
|
+ * running after sending data to the target DAC. This is necessary
|
|
|
+ * to eliminate the clock glitch that would otherwise occur at the
|
|
|
+ * end of the target DAC's serial data stream. When the sequence
|
|
|
+ * restarts at V0 (after executing V5), the gate array automatically
|
|
|
+ * disables gating for the DAC clock and all DAC chip selects.
|
|
|
+ */
|
|
|
+
|
|
|
+ WSImage = (chan & 2) ? WS1 : WS2;
|
|
|
+ /* Choose DAC chip select to be asserted. */
|
|
|
+ SETVECT(2, XSD2 | XFIFO_1 | WSImage);
|
|
|
+ /* Slot 2: Transmit high data byte to target DAC. */
|
|
|
+ SETVECT(3, XSD2 | XFIFO_0 | WSImage);
|
|
|
+ /* Slot 3: Transmit low data byte to target DAC. */
|
|
|
+ SETVECT(4, XSD2 | XFIFO_3 | WS3);
|
|
|
+ /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
|
|
|
+ SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
|
|
|
+ /* Slot 5: running after writing target DAC's low data byte. */
|
|
|
+
|
|
|
+ /* Construct and transmit target DAC's serial packet:
|
|
|
+ * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
|
|
|
+ * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
|
|
|
+ * to a non-existent TrimDac channel) that serves to keep the clock
|
|
|
+ * running after the packet has been sent to the target DAC.
|
|
|
+ */
|
|
|
+ SendDAC(dev, 0x0F000000
|
|
|
+ /* Continue clock after target DAC data (write to non-existent trimdac). */
|
|
|
+ | 0x00004000
|
|
|
+ /* Address the two main dual-DAC devices (TSL's chip select enables
|
|
|
+ * target device). */
|
|
|
+ | ((uint32_t) (chan & 1) << 15)
|
|
|
+ /* Address the DAC channel within the device. */
|
|
|
+ | (uint32_t) dacdata); /* Include DAC setpoint data. */
|
|
|
|
|
|
}
|
|
|
|
|
|
-////////////////////////////////////////////////////////
|
|
|
-// Private helper function: Transmit serial data to DAC via Audio
|
|
|
-// channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
|
|
|
-// Dacpol contains valid target image.
|
|
|
+/* Private helper function: Transmit serial data to DAC via Audio
|
|
|
+ * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
|
|
|
+ * Dacpol contains valid target image.
|
|
|
+ */
|
|
|
|
|
|
static void SendDAC(comedi_device * dev, uint32_t val)
|
|
|
{
|
|
|
|
|
|
- // START THE SERIAL CLOCK RUNNING -------------
|
|
|
+ /* START THE SERIAL CLOCK RUNNING ------------- */
|
|
|
|
|
|
- // Assert DAC polarity control and enable gating of DAC serial clock
|
|
|
- // and audio bit stream signals. At this point in time we must be
|
|
|
- // assured of being in time slot 0. If we are not in slot 0, the
|
|
|
- // serial clock and audio stream signals will be disabled; this is
|
|
|
- // because the following DEBIwrite statement (which enables signals
|
|
|
- // to be passed through the gate array) would execute before the
|
|
|
- // trailing edge of WS1/WS3 (which turns off the signals), thus
|
|
|
- // causing the signals to be inactive during the DAC write.
|
|
|
+ /* Assert DAC polarity control and enable gating of DAC serial clock
|
|
|
+ * and audio bit stream signals. At this point in time we must be
|
|
|
+ * assured of being in time slot 0. If we are not in slot 0, the
|
|
|
+ * serial clock and audio stream signals will be disabled; this is
|
|
|
+ * because the following DEBIwrite statement (which enables signals
|
|
|
+ * to be passed through the gate array) would execute before the
|
|
|
+ * trailing edge of WS1/WS3 (which turns off the signals), thus
|
|
|
+ * causing the signals to be inactive during the DAC write.
|
|
|
+ */
|
|
|
DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
|
|
|
|
|
|
- // TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ----------------
|
|
|
+ /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
|
|
|
|
|
|
- // Copy DAC setpoint value to DAC's output DMA buffer.
|
|
|
+ /* Copy DAC setpoint value to DAC's output DMA buffer. */
|
|
|
|
|
|
- //WR7146( (uint32_t)devpriv->pDacWBuf, val );
|
|
|
+ /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
|
|
|
*devpriv->pDacWBuf = val;
|
|
|
|
|
|
- // enab the output DMA transfer. This will cause the DMAC to copy
|
|
|
- // the DAC's data value to A2's output FIFO. The DMA transfer will
|
|
|
- // then immediately terminate because the protection address is
|
|
|
- // reached upon transfer of the first DWORD value.
|
|
|
+ /* enab the output DMA transfer. This will cause the DMAC to copy
|
|
|
+ * the DAC's data value to A2's output FIFO. The DMA transfer will
|
|
|
+ * then immediately terminate because the protection address is
|
|
|
+ * reached upon transfer of the first DWORD value.
|
|
|
+ */
|
|
|
MC_ENABLE(P_MC1, MC1_A2OUT);
|
|
|
|
|
|
- // While the DMA transfer is executing ...
|
|
|
+ /* While the DMA transfer is executing ... */
|
|
|
|
|
|
- // Reset Audio2 output FIFO's underflow flag (along with any other
|
|
|
- // FIFO underflow/overflow flags). When set, this flag will
|
|
|
- // indicate that we have emerged from slot 0.
|
|
|
+ /* Reset Audio2 output FIFO's underflow flag (along with any other
|
|
|
+ * FIFO underflow/overflow flags). When set, this flag will
|
|
|
+ * indicate that we have emerged from slot 0.
|
|
|
+ */
|
|
|
WR7146(P_ISR, ISR_AFOU);
|
|
|
|
|
|
- // Wait for the DMA transfer to finish so that there will be data
|
|
|
- // available in the FIFO when time slot 1 tries to transfer a DWORD
|
|
|
- // from the FIFO to the output buffer register. We test for DMA
|
|
|
- // Done by polling the DMAC enable flag; this flag is automatically
|
|
|
- // cleared when the transfer has finished.
|
|
|
+ /* Wait for the DMA transfer to finish so that there will be data
|
|
|
+ * available in the FIFO when time slot 1 tries to transfer a DWORD
|
|
|
+ * from the FIFO to the output buffer register. We test for DMA
|
|
|
+ * Done by polling the DMAC enable flag; this flag is automatically
|
|
|
+ * cleared when the transfer has finished.
|
|
|
+ */
|
|
|
while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;
|
|
|
|
|
|
- // START THE OUTPUT STREAM TO THE TARGET DAC --------------------
|
|
|
+ /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
|
|
|
|
|
|
- // FIFO data is now available, so we enable execution of time slots
|
|
|
- // 1 and higher by clearing the EOS flag in slot 0. Note that SD3
|
|
|
- // will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
|
|
|
- // detection.
|
|
|
+ /* FIFO data is now available, so we enable execution of time slots
|
|
|
+ * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
|
|
|
+ * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
|
|
|
+ * detection.
|
|
|
+ */
|
|
|
SETVECT(0, XSD2 | RSD3 | SIB_A2);
|
|
|
|
|
|
- // Wait for slot 1 to execute to ensure that the Packet will be
|
|
|
- // transmitted. This is detected by polling the Audio2 output FIFO
|
|
|
- // underflow flag, which will be set when slot 1 execution has
|
|
|
- // finished transferring the DAC's data DWORD from the output FIFO
|
|
|
- // to the output buffer register.
|
|
|
+ /* Wait for slot 1 to execute to ensure that the Packet will be
|
|
|
+ * transmitted. This is detected by polling the Audio2 output FIFO
|
|
|
+ * underflow flag, which will be set when slot 1 execution has
|
|
|
+ * finished transferring the DAC's data DWORD from the output FIFO
|
|
|
+ * to the output buffer register.
|
|
|
+ */
|
|
|
while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;
|
|
|
|
|
|
- // Set up to trap execution at slot 0 when the TSL sequencer cycles
|
|
|
- // back to slot 0 after executing the EOS in slot 5. Also,
|
|
|
- // simultaneously shift out and in the 0x00 that is ALWAYS the value
|
|
|
- // stored in the last byte to be shifted out of the FIFO's DWORD
|
|
|
- // buffer register.
|
|
|
+ /* Set up to trap execution at slot 0 when the TSL sequencer cycles
|
|
|
+ * back to slot 0 after executing the EOS in slot 5. Also,
|
|
|
+ * simultaneously shift out and in the 0x00 that is ALWAYS the value
|
|
|
+ * stored in the last byte to be shifted out of the FIFO's DWORD
|
|
|
+ * buffer register.
|
|
|
+ */
|
|
|
SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
|
|
|
|
|
|
- // WAIT FOR THE TRANSACTION TO FINISH -----------------------
|
|
|
-
|
|
|
- // Wait for the TSL to finish executing all time slots before
|
|
|
- // exiting this function. We must do this so that the next DAC
|
|
|
- // write doesn't start, thereby enabling clock/chip select signals:
|
|
|
- // 1. Before the TSL sequence cycles back to slot 0, which disables
|
|
|
- // the clock/cs signal gating and traps slot // list execution. If
|
|
|
- // we have not yet finished slot 5 then the clock/cs signals are
|
|
|
- // still gated and we have // not finished transmitting the stream.
|
|
|
- // 2. While slots 2-5 are executing due to a late slot 0 trap. In
|
|
|
- // this case, the slot sequence is currently // repeating, but with
|
|
|
- // clock/cs signals disabled. We must wait for slot 0 to trap
|
|
|
- // execution before setting // up the next DAC setpoint DMA transfer
|
|
|
- // and enabling the clock/cs signals. To detect the end of slot 5,
|
|
|
- // we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
|
|
|
- // the TSL has not yet finished executing slot 5 ...
|
|
|
+ /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
|
|
|
+
|
|
|
+ /* Wait for the TSL to finish executing all time slots before
|
|
|
+ * exiting this function. We must do this so that the next DAC
|
|
|
+ * write doesn't start, thereby enabling clock/chip select signals:
|
|
|
+ *
|
|
|
+ * 1. Before the TSL sequence cycles back to slot 0, which disables
|
|
|
+ * the clock/cs signal gating and traps slot // list execution.
|
|
|
+ * we have not yet finished slot 5 then the clock/cs signals are
|
|
|
+ * still gated and we have not finished transmitting the stream.
|
|
|
+ *
|
|
|
+ * 2. While slots 2-5 are executing due to a late slot 0 trap. In
|
|
|
+ * this case, the slot sequence is currently repeating, but with
|
|
|
+ * clock/cs signals disabled. We must wait for slot 0 to trap
|
|
|
+ * execution before setting up the next DAC setpoint DMA transfer
|
|
|
+ * and enabling the clock/cs signals. To detect the end of slot 5,
|
|
|
+ * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
|
|
|
+ * the TSL has not yet finished executing slot 5 ...
|
|
|
+ */
|
|
|
if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
|
|
|
- // The trap was set on time and we are still executing somewhere
|
|
|
- // in slots 2-5, so we now wait for slot 0 to execute and trap
|
|
|
- // TSL execution. This is detected when FB_BUFFER2 MSB changes
|
|
|
- // from 0xFF to 0x00, which slot 0 causes to happen by shifting
|
|
|
- // out/in on SD2 the 0x00 that is always referenced by slot 5.
|
|
|
- while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
|
|
|
+ /* The trap was set on time and we are still executing somewhere
|
|
|
+ * in slots 2-5, so we now wait for slot 0 to execute and trap
|
|
|
+ * TSL execution. This is detected when FB_BUFFER2 MSB changes
|
|
|
+ * from 0xFF to 0x00, which slot 0 causes to happen by shifting
|
|
|
+ * out/in on SD2 the 0x00 that is always referenced by slot 5.
|
|
|
+ */
|
|
|
+ while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
|
|
|
}
|
|
|
- // Either (1) we were too late setting the slot 0 trap; the TSL
|
|
|
- // sequencer restarted slot 0 before we could set the EOS trap flag,
|
|
|
- // or (2) we were not late and execution is now trapped at slot 0.
|
|
|
- // In either case, we must now change slot 0 so that it will store
|
|
|
- // value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
|
|
|
- // In order to do this, we reprogram slot 0 so that it will shift in
|
|
|
- // SD3, which is driven only by a pull-up resistor.
|
|
|
+ /* Either (1) we were too late setting the slot 0 trap; the TSL
|
|
|
+ * sequencer restarted slot 0 before we could set the EOS trap flag,
|
|
|
+ * or (2) we were not late and execution is now trapped at slot 0.
|
|
|
+ * In either case, we must now change slot 0 so that it will store
|
|
|
+ * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
|
|
|
+ * In order to do this, we reprogram slot 0 so that it will shift in
|
|
|
+ * SD3, which is driven only by a pull-up resistor.
|
|
|
+ */
|
|
|
SETVECT(0, RSD3 | SIB_A2 | EOS);
|
|
|
|
|
|
- // Wait for slot 0 to execute, at which time the TSL is setup for
|
|
|
- // the next DAC write. This is detected when FB_BUFFER2 MSB changes
|
|
|
- // from 0x00 to 0xFF.
|
|
|
+ /* Wait for slot 0 to execute, at which time the TSL is setup for
|
|
|
+ * the next DAC write. This is detected when FB_BUFFER2 MSB changes
|
|
|
+ * from 0x00 to 0xFF.
|
|
|
+ */
|
|
|
while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
|
|
|
}
|
|
|
|
|
|
static void WriteMISC2(comedi_device * dev, uint16_t NewImage)
|
|
|
{
|
|
|
- DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); // enab writes to
|
|
|
- // MISC2 register.
|
|
|
- DEBIwrite(dev, LP_WRMISC2, NewImage); // Write new image to MISC2.
|
|
|
- DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); // Disable writes to MISC2.
|
|
|
+ DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
|
|
|
+ /* MISC2 register. */
|
|
|
+ DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
|
|
|
+ DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
|
|
|
}
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////
|
|
|
-// Initialize the DEBI interface for all transfers.
|
|
|
+/* Initialize the DEBI interface for all transfers. */
|
|
|
|
|
|
static uint16_t DEBIread(comedi_device * dev, uint16_t addr)
|
|
|
{
|
|
|
uint16_t retval;
|
|
|
|
|
|
- // Set up DEBI control register value in shadow RAM.
|
|
|
+ /* Set up DEBI control register value in shadow RAM. */
|
|
|
WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
|
|
|
|
|
|
- // Execute the DEBI transfer.
|
|
|
+ /* Execute the DEBI transfer. */
|
|
|
DEBItransfer(dev);
|
|
|
|
|
|
- // Fetch target register value.
|
|
|
+ /* Fetch target register value. */
|
|
|
retval = (uint16_t) RR7146(P_DEBIAD);
|
|
|
|
|
|
- // Return register value.
|
|
|
+ /* Return register value. */
|
|
|
return retval;
|
|
|
}
|
|
|
|
|
|
-// Execute a DEBI transfer. This must be called from within a
|
|
|
-// critical section.
|
|
|
+/* Execute a DEBI transfer. This must be called from within a */
|
|
|
+/* critical section. */
|
|
|
static void DEBItransfer(comedi_device * dev)
|
|
|
{
|
|
|
- // Initiate upload of shadow RAM to DEBI control register.
|
|
|
+ /* Initiate upload of shadow RAM to DEBI control register. */
|
|
|
MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
|
|
|
|
|
|
- // Wait for completion of upload from shadow RAM to DEBI control
|
|
|
- // register.
|
|
|
+ /* Wait for completion of upload from shadow RAM to DEBI control */
|
|
|
+ /* register. */
|
|
|
while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;
|
|
|
|
|
|
- // Wait until DEBI transfer is done.
|
|
|
+ /* Wait until DEBI transfer is done. */
|
|
|
while (RR7146(P_PSR) & PSR_DEBI_S) ;
|
|
|
}
|
|
|
|
|
|
-// Write a value to a gate array register.
|
|
|
+/* Write a value to a gate array register. */
|
|
|
static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata)
|
|
|
{
|
|
|
|
|
|
- // Set up DEBI control register value in shadow RAM.
|
|
|
+ /* Set up DEBI control register value in shadow RAM. */
|
|
|
WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
|
|
|
WR7146(P_DEBIAD, wdata);
|
|
|
|
|
|
- // Execute the DEBI transfer.
|
|
|
+ /* Execute the DEBI transfer. */
|
|
|
DEBItransfer(dev);
|
|
|
}
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////////////
|
|
|
-// Replace the specified bits in a gate array register. Imports: mask
|
|
|
-// specifies bits that are to be preserved, wdata is new value to be
|
|
|
-// or'd with the masked original.
|
|
|
+/* Replace the specified bits in a gate array register. Imports: mask
|
|
|
+ * specifies bits that are to be preserved, wdata is new value to be
|
|
|
+ * or'd with the masked original.
|
|
|
+ */
|
|
|
static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
|
|
|
uint16_t wdata)
|
|
|
{
|
|
|
|
|
|
- // Copy target gate array register into P_DEBIAD register.
|
|
|
- WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); // Set up DEBI control
|
|
|
- // reg value in shadow
|
|
|
- // RAM.
|
|
|
- DEBItransfer(dev); // Execute the DEBI
|
|
|
- // Read transfer.
|
|
|
+ /* Copy target gate array register into P_DEBIAD register. */
|
|
|
+ WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
|
|
|
+ /* Set up DEBI control reg value in shadow RAM. */
|
|
|
+ DEBItransfer(dev); /* Execute the DEBI Read transfer. */
|
|
|
|
|
|
- // Write back the modified image.
|
|
|
- WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); // Set up DEBI control
|
|
|
- // reg value in shadow
|
|
|
- // RAM.
|
|
|
+ /* Write back the modified image. */
|
|
|
+ WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
|
|
|
+ /* Set up DEBI control reg value in shadow RAM. */
|
|
|
|
|
|
- WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask)); // Modify the register image.
|
|
|
- DEBItransfer(dev); // Execute the DEBI Write transfer.
|
|
|
+ WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
|
|
|
+ /* Modify the register image. */
|
|
|
+ DEBItransfer(dev); /* Execute the DEBI Write transfer. */
|
|
|
}
|
|
|
|
|
|
static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize)
|
|
@@ -2723,7 +2730,7 @@ static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize)
|
|
|
DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
|
|
|
if (pdma == NULL)
|
|
|
return;
|
|
|
- //find the matching allocation from the board struct
|
|
|
+ /* find the matching allocation from the board struct */
|
|
|
|
|
|
vbptr = pdma->LogicalBase;
|
|
|
vpptr = pdma->PhysicalBase;
|
|
@@ -2737,44 +2744,37 @@ static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-////////////////////////////////////////////////////////////////////////
|
|
|
-///////////////// COUNTER FUNCTIONS //////////////////////////////////
|
|
|
-////////////////////////////////////////////////////////////////////////
|
|
|
-// All counter functions address a specific counter by means of the
|
|
|
-// "Counter" argument, which is a logical counter number. The Counter
|
|
|
-// argument may have any of the following legal values: 0=0A, 1=1A,
|
|
|
-// 2=2A, 3=0B, 4=1B, 5=2B.
|
|
|
-////////////////////////////////////////////////////////////////////////
|
|
|
+/* ****** COUNTER FUNCTIONS ******* */
|
|
|
+/* All counter functions address a specific counter by means of the
|
|
|
+ * "Counter" argument, which is a logical counter number. The Counter
|
|
|
+ * argument may have any of the following legal values: 0=0A, 1=1A,
|
|
|
+ * 2=2A, 3=0B, 4=1B, 5=2B.
|
|
|
+ */
|
|
|
|
|
|
-// Forward declarations for functions that are common to both A and B
|
|
|
-// counters:
|
|
|
+/* Forward declarations for functions that are common to both A and B counters: */
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////
|
|
|
-//////////////////// PRIVATE COUNTER FUNCTIONS /////////////////////
|
|
|
-/////////////////////////////////////////////////////////////////////
|
|
|
+/* ****** PRIVATE COUNTER FUNCTIONS ****** */
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////
|
|
|
-// Read a counter's output latch.
|
|
|
+/* Read a counter's output latch. */
|
|
|
|
|
|
static uint32_t ReadLatch(comedi_device * dev, enc_private * k)
|
|
|
{
|
|
|
register uint32_t value;
|
|
|
- //DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n");
|
|
|
+ /* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
|
|
|
|
|
|
- // Latch counts and fetch LSW of latched counts value.
|
|
|
+ /* Latch counts and fetch LSW of latched counts value. */
|
|
|
value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
|
|
|
|
|
|
- // Fetch MSW of latched counts and combine with LSW.
|
|
|
+ /* Fetch MSW of latched counts and combine with LSW. */
|
|
|
value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
|
|
|
|
|
|
- // DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n");
|
|
|
+ /* DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
|
|
|
|
|
|
- // Return latched counts.
|
|
|
+ /* Return latched counts. */
|
|
|
return value;
|
|
|
}
|
|
|
|
|
|
-///////////////////////////////////////////////////////////////////
|
|
|
-// Reset a counter's index and overflow event capture flags.
|
|
|
+/* Reset a counter's index and overflow event capture flags. */
|
|
|
|
|
|
static void ResetCapFlags_A(comedi_device * dev, enc_private * k)
|
|
|
{
|
|
@@ -2788,9 +2788,8 @@ static void ResetCapFlags_B(comedi_device * dev, enc_private * k)
|
|
|
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
|
|
|
}
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////////
|
|
|
-// Return counter setup in a format (COUNTER_SETUP) that is consistent
|
|
|
-// for both A and B counters.
|
|
|
+/* Return counter setup in a format (COUNTER_SETUP) that is consistent */
|
|
|
+/* for both A and B counters. */
|
|
|
|
|
|
static uint16_t GetMode_A(comedi_device * dev, enc_private * k)
|
|
|
{
|
|
@@ -2798,35 +2797,35 @@ static uint16_t GetMode_A(comedi_device * dev, enc_private * k)
|
|
|
register uint16_t crb;
|
|
|
register uint16_t setup;
|
|
|
|
|
|
- // Fetch CRA and CRB register images.
|
|
|
+ /* Fetch CRA and CRB register images. */
|
|
|
cra = DEBIread(dev, k->MyCRA);
|
|
|
crb = DEBIread(dev, k->MyCRB);
|
|
|
|
|
|
- // Populate the standardized counter setup bit fields. Note:
|
|
|
- // IndexSrc is restricted to ENC_X or IndxPol.
|
|
|
- setup = ((cra & STDMSK_LOADSRC) // LoadSrc = LoadSrcA.
|
|
|
- | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcA.
|
|
|
- | ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) // IntSrc = IntSrcA.
|
|
|
- | ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) // IndxSrc = IndxSrcA<1>.
|
|
|
- | ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) // IndxPol = IndxPolA.
|
|
|
- | ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); // ClkEnab = ClkEnabA.
|
|
|
-
|
|
|
- // Adjust mode-dependent parameters.
|
|
|
- if (cra & (2 << CRABIT_CLKSRC_A)) // If Timer mode (ClkSrcA<1> == 1):
|
|
|
- setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode.
|
|
|
- | ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) // Set ClkPol to indicate count direction (ClkSrcA<0>).
|
|
|
- | (MULT_X1 << STDBIT_CLKMULT)); // ClkMult must be 1x in Timer mode.
|
|
|
-
|
|
|
- else // If Counter mode (ClkSrcA<1> == 0):
|
|
|
- setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Counter mode.
|
|
|
- | ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) // Pass through ClkPol.
|
|
|
- | (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? // Force ClkMult to 1x if not legal, else pass through.
|
|
|
+ /* Populate the standardized counter setup bit fields. Note: */
|
|
|
+ /* IndexSrc is restricted to ENC_X or IndxPol. */
|
|
|
+ setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
|
|
|
+ | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
|
|
|
+ | ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
|
|
|
+ | ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
|
|
|
+ | ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
|
|
|
+ | ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
|
|
|
+
|
|
|
+ /* Adjust mode-dependent parameters. */
|
|
|
+ if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
|
|
|
+ setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
|
|
|
+ | ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
|
|
|
+ | (MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
|
|
|
+
|
|
|
+ else /* If Counter mode (ClkSrcA<1> == 0): */
|
|
|
+ setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
|
|
|
+ | ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
|
|
|
+ | (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
|
|
|
(MULT_X1 << STDBIT_CLKMULT) :
|
|
|
((cra >> (CRABIT_CLKMULT_A -
|
|
|
STDBIT_CLKMULT)) &
|
|
|
STDMSK_CLKMULT)));
|
|
|
|
|
|
- // Return adjusted counter setup.
|
|
|
+ /* Return adjusted counter setup. */
|
|
|
return setup;
|
|
|
}
|
|
|
|
|
@@ -2836,98 +2835,99 @@ static uint16_t GetMode_B(comedi_device * dev, enc_private * k)
|
|
|
register uint16_t crb;
|
|
|
register uint16_t setup;
|
|
|
|
|
|
- // Fetch CRA and CRB register images.
|
|
|
+ /* Fetch CRA and CRB register images. */
|
|
|
cra = DEBIread(dev, k->MyCRA);
|
|
|
crb = DEBIread(dev, k->MyCRB);
|
|
|
|
|
|
- // Populate the standardized counter setup bit fields. Note:
|
|
|
- // IndexSrc is restricted to ENC_X or IndxPol.
|
|
|
- setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) // IntSrc = IntSrcB.
|
|
|
- | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcB.
|
|
|
- | ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) // LoadSrc = LoadSrcB.
|
|
|
- | ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) // IndxPol = IndxPolB.
|
|
|
- | ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) // ClkEnab = ClkEnabB.
|
|
|
- | ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); // IndxSrc = IndxSrcB<1>.
|
|
|
-
|
|
|
- // Adjust mode-dependent parameters.
|
|
|
- if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) // If Extender mode (ClkMultB == MULT_X0):
|
|
|
- setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) // Indicate Extender mode.
|
|
|
- | (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x.
|
|
|
- | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>).
|
|
|
-
|
|
|
- else if (cra & (2 << CRABIT_CLKSRC_B)) // If Timer mode (ClkSrcB<1> == 1):
|
|
|
- setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode.
|
|
|
- | (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x.
|
|
|
- | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>).
|
|
|
-
|
|
|
- else // If Counter mode (ClkSrcB<1> == 0):
|
|
|
- setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Timer mode.
|
|
|
- | ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) // Clock multiplier is passed through.
|
|
|
- | ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); // Clock polarity is passed through.
|
|
|
-
|
|
|
- // Return adjusted counter setup.
|
|
|
+ /* Populate the standardized counter setup bit fields. Note: */
|
|
|
+ /* IndexSrc is restricted to ENC_X or IndxPol. */
|
|
|
+ setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
|
|
|
+ | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
|
|
|
+ | ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
|
|
|
+ | ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
|
|
|
+ | ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
|
|
|
+ | ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
|
|
|
+
|
|
|
+ /* Adjust mode-dependent parameters. */
|
|
|
+ if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
|
|
|
+ setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
|
|
|
+ | (MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
|
|
|
+ | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
|
|
|
+
|
|
|
+ else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
|
|
|
+ setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
|
|
|
+ | (MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
|
|
|
+ | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
|
|
|
+
|
|
|
+ else /* If Counter mode (ClkSrcB<1> == 0): */
|
|
|
+ setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
|
|
|
+ | ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
|
|
|
+ | ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
|
|
|
+
|
|
|
+ /* Return adjusted counter setup. */
|
|
|
return setup;
|
|
|
}
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
-// Set the operating mode for the specified counter. The setup
|
|
|
-// parameter is treated as a COUNTER_SETUP data type. The following
|
|
|
-// parameters are programmable (all other parms are ignored): ClkMult,
|
|
|
-// ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
|
|
|
+/*
|
|
|
+ * Set the operating mode for the specified counter. The setup
|
|
|
+ * parameter is treated as a COUNTER_SETUP data type. The following
|
|
|
+ * parameters are programmable (all other parms are ignored): ClkMult,
|
|
|
+ * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
|
|
|
+ */
|
|
|
|
|
|
static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
|
|
|
uint16_t DisableIntSrc)
|
|
|
{
|
|
|
register uint16_t cra;
|
|
|
register uint16_t crb;
|
|
|
- register uint16_t setup = Setup; // Cache the Standard Setup.
|
|
|
+ register uint16_t setup = Setup; /* Cache the Standard Setup. */
|
|
|
|
|
|
- // Initialize CRA and CRB images.
|
|
|
- cra = ((setup & CRAMSK_LOADSRC_A) // Preload trigger is passed through.
|
|
|
- | ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); // IndexSrc is restricted to ENC_X or IndxPol.
|
|
|
+ /* Initialize CRA and CRB images. */
|
|
|
+ cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
|
|
|
+ | ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
|
|
|
|
|
|
- crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A // Reset any pending CounterA event captures.
|
|
|
- | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); // Clock enable is passed through.
|
|
|
+ crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
|
|
|
+ | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
|
|
|
|
|
|
- // Force IntSrc to Disabled if DisableIntSrc is asserted.
|
|
|
+ /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
|
|
|
if (!DisableIntSrc)
|
|
|
cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
|
|
|
CRABIT_INTSRC_A));
|
|
|
|
|
|
- // Populate all mode-dependent attributes of CRA & CRB images.
|
|
|
+ /* Populate all mode-dependent attributes of CRA & CRB images. */
|
|
|
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
|
|
|
- case CLKSRC_EXTENDER: // Extender Mode: Force to Timer mode
|
|
|
- // (Extender valid only for B counters).
|
|
|
-
|
|
|
- case CLKSRC_TIMER: // Timer Mode:
|
|
|
- cra |= ((2 << CRABIT_CLKSRC_A) // ClkSrcA<1> selects system clock
|
|
|
- | ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) // with count direction (ClkSrcA<0>) obtained from ClkPol.
|
|
|
- | (1 << CRABIT_CLKPOL_A) // ClkPolA behaves as always-on clock enable.
|
|
|
- | (MULT_X1 << CRABIT_CLKMULT_A)); // ClkMult must be 1x.
|
|
|
+ case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
|
|
|
+ /* (Extender valid only for B counters). */
|
|
|
+
|
|
|
+ case CLKSRC_TIMER: /* Timer Mode: */
|
|
|
+ cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
|
|
|
+ | ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
|
|
|
+ | (1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
|
|
|
+ | (MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
|
|
|
break;
|
|
|
|
|
|
- default: // Counter Mode:
|
|
|
- cra |= (CLKSRC_COUNTER // Select ENC_C and ENC_D as clock/direction inputs.
|
|
|
- | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) // Clock polarity is passed through.
|
|
|
- | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force multiplier to x1 if not legal, otherwise pass through.
|
|
|
+ default: /* Counter Mode: */
|
|
|
+ cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
|
|
|
+ | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
|
|
|
+ | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
|
|
|
(MULT_X1 << CRABIT_CLKMULT_A) :
|
|
|
((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
|
|
|
STDBIT_CLKMULT))));
|
|
|
}
|
|
|
|
|
|
- // Force positive index polarity if IndxSrc is software-driven only,
|
|
|
- // otherwise pass it through.
|
|
|
+ /* Force positive index polarity if IndxSrc is software-driven only, */
|
|
|
+ /* otherwise pass it through. */
|
|
|
if (~setup & STDMSK_INDXSRC)
|
|
|
cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
|
|
|
STDBIT_INDXPOL));
|
|
|
|
|
|
- // If IntSrc has been forced to Disabled, update the MISC2 interrupt
|
|
|
- // enable mask to indicate the counter interrupt is disabled.
|
|
|
+ /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
|
|
|
+ /* enable mask to indicate the counter interrupt is disabled. */
|
|
|
if (DisableIntSrc)
|
|
|
devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
|
|
|
|
|
|
- // While retaining CounterB and LatchSrc configurations, program the
|
|
|
- // new counter operating mode.
|
|
|
+ /* While retaining CounterB and LatchSrc configurations, program the */
|
|
|
+ /* new counter operating mode. */
|
|
|
DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
|
|
|
DEBIreplace(dev, k->MyCRB,
|
|
|
(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
|
|
@@ -2938,65 +2938,64 @@ static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
|
|
|
{
|
|
|
register uint16_t cra;
|
|
|
register uint16_t crb;
|
|
|
- register uint16_t setup = Setup; // Cache the Standard Setup.
|
|
|
+ register uint16_t setup = Setup; /* Cache the Standard Setup. */
|
|
|
|
|
|
- // Initialize CRA and CRB images.
|
|
|
- cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); // IndexSrc field is restricted to ENC_X or IndxPol.
|
|
|
+ /* Initialize CRA and CRB images. */
|
|
|
+ cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
|
|
|
|
|
|
- crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B // Reset event captures and disable interrupts.
|
|
|
- | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) // Clock enable is passed through.
|
|
|
- | ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); // Preload trigger source is passed through.
|
|
|
+ crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
|
|
|
+ | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
|
|
|
+ | ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
|
|
|
|
|
|
- // Force IntSrc to Disabled if DisableIntSrc is asserted.
|
|
|
+ /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
|
|
|
if (!DisableIntSrc)
|
|
|
crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
|
|
|
CRBBIT_INTSRC_B));
|
|
|
|
|
|
- // Populate all mode-dependent attributes of CRA & CRB images.
|
|
|
+ /* Populate all mode-dependent attributes of CRA & CRB images. */
|
|
|
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
|
|
|
- case CLKSRC_TIMER: // Timer Mode:
|
|
|
- cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB<1> selects system clock
|
|
|
- | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction (ClkSrcB<0>) obtained from ClkPol.
|
|
|
- crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB behaves as always-on clock enable.
|
|
|
- | (MULT_X1 << CRBBIT_CLKMULT_B)); // ClkMultB must be 1x.
|
|
|
+ case CLKSRC_TIMER: /* Timer Mode: */
|
|
|
+ cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
|
|
|
+ | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
|
|
|
+ crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
|
|
|
+ | (MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
|
|
|
break;
|
|
|
|
|
|
- case CLKSRC_EXTENDER: // Extender Mode:
|
|
|
- cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB source is OverflowA (same as "timer")
|
|
|
- | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction obtained from ClkPol.
|
|
|
- crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB controls IndexB -- always set to active.
|
|
|
- | (MULT_X0 << CRBBIT_CLKMULT_B)); // ClkMultB selects OverflowA as the clock source.
|
|
|
+ case CLKSRC_EXTENDER: /* Extender Mode: */
|
|
|
+ cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
|
|
|
+ | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
|
|
|
+ crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
|
|
|
+ | (MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
|
|
|
break;
|
|
|
|
|
|
- default: // Counter Mode:
|
|
|
- cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); // Select ENC_C and ENC_D as clock/direction inputs.
|
|
|
- crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) // ClkPol is passed through.
|
|
|
- | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force ClkMult to x1 if not legal, otherwise pass through.
|
|
|
+ default: /* Counter Mode: */
|
|
|
+ cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
|
|
|
+ crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
|
|
|
+ | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
|
|
|
(MULT_X1 << CRBBIT_CLKMULT_B) :
|
|
|
((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
|
|
|
STDBIT_CLKMULT))));
|
|
|
}
|
|
|
|
|
|
- // Force positive index polarity if IndxSrc is software-driven only,
|
|
|
- // otherwise pass it through.
|
|
|
+ /* Force positive index polarity if IndxSrc is software-driven only, */
|
|
|
+ /* otherwise pass it through. */
|
|
|
if (~setup & STDMSK_INDXSRC)
|
|
|
crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
|
|
|
CRBBIT_INDXPOL_B));
|
|
|
|
|
|
- // If IntSrc has been forced to Disabled, update the MISC2 interrupt
|
|
|
- // enable mask to indicate the counter interrupt is disabled.
|
|
|
+ /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
|
|
|
+ /* enable mask to indicate the counter interrupt is disabled. */
|
|
|
if (DisableIntSrc)
|
|
|
devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
|
|
|
|
|
|
- // While retaining CounterA and LatchSrc configurations, program the
|
|
|
- // new counter operating mode.
|
|
|
+ /* While retaining CounterA and LatchSrc configurations, program the */
|
|
|
+ /* new counter operating mode. */
|
|
|
DEBIreplace(dev, k->MyCRA,
|
|
|
(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
|
|
|
DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
|
|
|
}
|
|
|
|
|
|
-////////////////////////////////////////////////////////////////////////
|
|
|
-// Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
|
|
|
+/* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
|
|
|
|
|
|
static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab)
|
|
|
{
|
|
@@ -3023,10 +3022,10 @@ static uint16_t GetEnable_B(comedi_device * dev, enc_private * k)
|
|
|
return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
|
|
|
}
|
|
|
|
|
|
-////////////////////////////////////////////////////////////////////////
|
|
|
-// Return/set a counter pair's latch trigger source. 0: On read
|
|
|
-// access, 1: A index latches A, 2: B index latches B, 3: A overflow
|
|
|
-// latches B.
|
|
|
+/* Return/set a counter pair's latch trigger source. 0: On read
|
|
|
+ * access, 1: A index latches A, 2: B index latches B, 3: A overflow
|
|
|
+ * latches B.
|
|
|
+ */
|
|
|
|
|
|
static void SetLatchSource(comedi_device * dev, enc_private * k, uint16_t value)
|
|
|
{
|
|
@@ -3038,15 +3037,18 @@ static void SetLatchSource(comedi_device * dev, enc_private * k, uint16_t value)
|
|
|
DEBUG("SetLatchSource: SetLatchSource exit \n");
|
|
|
}
|
|
|
|
|
|
-/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ) */
|
|
|
-/* { */
|
|
|
-/* return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3; */
|
|
|
-/* } */
|
|
|
+/*
|
|
|
+ * static uint16_t GetLatchSource(comedi_device *dev, enc_private *k )
|
|
|
+ * {
|
|
|
+ * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
|
|
|
+ * }
|
|
|
+ */
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////////
|
|
|
-// Return/set the event that will trigger transfer of the preload
|
|
|
-// register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
|
|
|
-// 2=OverflowA (B counters only), 3=disabled.
|
|
|
+/*
|
|
|
+ * Return/set the event that will trigger transfer of the preload
|
|
|
+ * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
|
|
|
+ * 2=OverflowA (B counters only), 3=disabled.
|
|
|
+ */
|
|
|
|
|
|
static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig)
|
|
|
{
|
|
@@ -3071,23 +3073,23 @@ static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k)
|
|
|
return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
|
|
|
}
|
|
|
|
|
|
-////////////////////
|
|
|
-// Return/set counter interrupt source and clear any captured
|
|
|
-// index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
|
|
|
-// 2=IndexOnly, 3=IndexAndOverflow.
|
|
|
+/* Return/set counter interrupt source and clear any captured
|
|
|
+ * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
|
|
|
+ * 2=IndexOnly, 3=IndexAndOverflow.
|
|
|
+ */
|
|
|
|
|
|
static void SetIntSrc_A(comedi_device * dev, enc_private * k,
|
|
|
uint16_t IntSource)
|
|
|
{
|
|
|
- // Reset any pending counter overflow or index captures.
|
|
|
+ /* Reset any pending counter overflow or index captures. */
|
|
|
DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
|
|
|
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
|
|
|
|
|
|
- // Program counter interrupt source.
|
|
|
+ /* Program counter interrupt source. */
|
|
|
DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
|
|
|
(uint16_t) (IntSource << CRABIT_INTSRC_A));
|
|
|
|
|
|
- // Update MISC2 interrupt enable mask.
|
|
|
+ /* Update MISC2 interrupt enable mask. */
|
|
|
devpriv->CounterIntEnabs =
|
|
|
(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
|
|
|
MyEventBits[IntSource];
|
|
@@ -3098,19 +3100,19 @@ static void SetIntSrc_B(comedi_device * dev, enc_private * k,
|
|
|
{
|
|
|
uint16_t crb;
|
|
|
|
|
|
- // Cache writeable CRB register image.
|
|
|
+ /* Cache writeable CRB register image. */
|
|
|
crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
|
|
|
|
|
|
- // Reset any pending counter overflow or index captures.
|
|
|
+ /* Reset any pending counter overflow or index captures. */
|
|
|
DEBIwrite(dev, k->MyCRB,
|
|
|
(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
|
|
|
|
|
|
- // Program counter interrupt source.
|
|
|
+ /* Program counter interrupt source. */
|
|
|
DEBIwrite(dev, k->MyCRB,
|
|
|
(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
|
|
|
CRBBIT_INTSRC_B)));
|
|
|
|
|
|
- // Update MISC2 interrupt enable mask.
|
|
|
+ /* Update MISC2 interrupt enable mask. */
|
|
|
devpriv->CounterIntEnabs =
|
|
|
(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
|
|
|
MyEventBits[IntSource];
|
|
@@ -3126,8 +3128,7 @@ static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
|
|
|
return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
|
|
|
}
|
|
|
|
|
|
-/////////////////////////////////////////////////////////////////////////
|
|
|
-// Return/set the clock multiplier.
|
|
|
+/* Return/set the clock multiplier. */
|
|
|
|
|
|
/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) */
|
|
|
/* { */
|
|
@@ -3139,8 +3140,7 @@ static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
|
|
|
/* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
|
|
|
/* } */
|
|
|
|
|
|
-/* ////////////////////////////////////////////////////////////////////////// */
|
|
|
-/* // Return/set the clock polarity. */
|
|
|
+/* Return/set the clock polarity. */
|
|
|
|
|
|
/* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value ) */
|
|
|
/* { */
|
|
@@ -3152,8 +3152,7 @@ static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
|
|
|
/* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
|
|
|
/* } */
|
|
|
|
|
|
-/* /////////////////////////////////////////////////////////////////////// */
|
|
|
-/* // Return/set the clock source. */
|
|
|
+/* Return/set the clock source. */
|
|
|
|
|
|
/* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value ) */
|
|
|
/* { */
|
|
@@ -3165,8 +3164,7 @@ static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
|
|
|
/* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
|
|
|
/* } */
|
|
|
|
|
|
-/* //////////////////////////////////////////////////////////////////////// */
|
|
|
-/* // Return/set the index polarity. */
|
|
|
+/* Return/set the index polarity. */
|
|
|
|
|
|
/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ) */
|
|
|
/* { */
|
|
@@ -3178,8 +3176,7 @@ static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
|
|
|
/* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
|
|
|
/* } */
|
|
|
|
|
|
-/* //////////////////////////////////////////////////////////////////////// */
|
|
|
-/* // Return/set the index source. */
|
|
|
+/* Return/set the index source. */
|
|
|
|
|
|
/* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value ) */
|
|
|
/* { */
|
|
@@ -3192,8 +3189,7 @@ static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
|
|
|
/* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
|
|
|
/* } */
|
|
|
|
|
|
-///////////////////////////////////////////////////////////////////
|
|
|
-// Generate an index pulse.
|
|
|
+/* Generate an index pulse. */
|
|
|
|
|
|
static void PulseIndex_A(comedi_device * dev, enc_private * k)
|
|
|
{
|
|
@@ -3201,7 +3197,7 @@ static void PulseIndex_A(comedi_device * dev, enc_private * k)
|
|
|
|
|
|
DEBUG("PulseIndex_A: pulse index enter\n");
|
|
|
|
|
|
- cra = DEBIread(dev, k->MyCRA); // Pulse index.
|
|
|
+ cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
|
|
|
DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
|
|
|
DEBUG("PulseIndex_A: pulse index step1\n");
|
|
|
DEBIwrite(dev, k->MyCRA, cra);
|
|
@@ -3211,18 +3207,17 @@ static void PulseIndex_B(comedi_device * dev, enc_private * k)
|
|
|
{
|
|
|
register uint16_t crb;
|
|
|
|
|
|
- crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; // Pulse index.
|
|
|
+ crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
|
|
|
DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
|
|
|
DEBIwrite(dev, k->MyCRB, crb);
|
|
|
}
|
|
|
|
|
|
-/////////////////////////////////////////////////////////
|
|
|
-// Write value into counter preload register.
|
|
|
+/* Write value into counter preload register. */
|
|
|
|
|
|
static void Preload(comedi_device * dev, enc_private * k, uint32_t value)
|
|
|
{
|
|
|
DEBUG("Preload: preload enter\n");
|
|
|
- DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); // Write value to preload register.
|
|
|
+ DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); /* Write value to preload register. */
|
|
|
DEBUG("Preload: preload step 1\n");
|
|
|
DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
|
|
|
(uint16_t) (value >> 16));
|
|
@@ -3232,16 +3227,16 @@ static void CountersInit(comedi_device * dev)
|
|
|
{
|
|
|
int chan;
|
|
|
enc_private *k;
|
|
|
- uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
|
|
|
- // index.
|
|
|
- (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
|
|
|
- (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is counter.
|
|
|
- (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
|
|
|
- (CNTDIR_UP << BF_CLKPOL) | // Count direction is up.
|
|
|
- (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
|
|
|
- (CLKENAB_INDEX << BF_CLKENAB); // Enabled by index
|
|
|
-
|
|
|
- // Disable all counter interrupts and clear any captured counter events.
|
|
|
+ uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
|
|
|
+ /* index. */
|
|
|
+ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
|
|
|
+ (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
|
|
|
+ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
|
|
|
+ (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
|
|
|
+ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
|
|
|
+ (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
|
|
|
+
|
|
|
+ /* Disable all counter interrupts and clear any captured counter events. */
|
|
|
for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
|
|
|
k = &encpriv[chan];
|
|
|
k->SetMode(dev, k, Setup, TRUE);
|