浏览代码

Merge git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched

* git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched: (140 commits)
  sched: sync wakeups preempt too
  sched: affine sync wakeups
  sched: guest CPU accounting: maintain guest state in KVM
  sched: guest CPU accounting: maintain stats in account_system_time()
  sched: guest CPU accounting: add guest-CPU /proc/<pid>/stat fields
  sched: guest CPU accounting: add guest-CPU /proc/stat field
  sched: domain sysctl fixes: add terminator comment
  sched: domain sysctl fixes: do not crash on allocation failure
  sched: domain sysctl fixes: unregister the sysctl table before domains
  sched: domain sysctl fixes: use for_each_online_cpu()
  sched: domain sysctl fixes: use kcalloc()
  Make scheduler debug file operations const
  sched: enable wake-idle on CONFIG_SCHED_MC=y
  sched: reintroduce topology.h tunings
  sched: allow the immediate migration of cache-cold tasks
  sched: debug, improve migration statistics
  sched: debug: increase width of debug line
  sched: activate task_hot() only on fair-scheduled tasks
  sched: reintroduce cache-hot affinity
  sched: speed up context-switches a bit
  ...
Linus Torvalds 18 年之前
父节点
当前提交
b5869ce7f6

+ 67 - 0
Documentation/sched-design-CFS.txt

@@ -117,3 +117,70 @@ Some implementation details:
    iterators of the scheduling modules are used. The balancing code got
    quite a bit simpler as a result.
 
+
+Group scheduler extension to CFS
+================================
+
+Normally the scheduler operates on individual tasks and strives to provide
+fair CPU time to each task. Sometimes, it may be desirable to group tasks
+and provide fair CPU time to each such task group. For example, it may
+be desirable to first provide fair CPU time to each user on the system
+and then to each task belonging to a user.
+
+CONFIG_FAIR_GROUP_SCHED strives to achieve exactly that. It lets
+SCHED_NORMAL/BATCH tasks be be grouped and divides CPU time fairly among such
+groups. At present, there are two (mutually exclusive) mechanisms to group
+tasks for CPU bandwidth control purpose:
+
+	- Based on user id (CONFIG_FAIR_USER_SCHED)
+		In this option, tasks are grouped according to their user id.
+	- Based on "cgroup" pseudo filesystem (CONFIG_FAIR_CGROUP_SCHED)
+		This options lets the administrator create arbitrary groups
+		of tasks, using the "cgroup" pseudo filesystem. See
+		Documentation/cgroups.txt for more information about this
+		filesystem.
+
+Only one of these options to group tasks can be chosen and not both.
+
+Group scheduler tunables:
+
+When CONFIG_FAIR_USER_SCHED is defined, a directory is created in sysfs for
+each new user and a "cpu_share" file is added in that directory.
+
+	# cd /sys/kernel/uids
+	# cat 512/cpu_share		# Display user 512's CPU share
+	1024
+	# echo 2048 > 512/cpu_share	# Modify user 512's CPU share
+	# cat 512/cpu_share		# Display user 512's CPU share
+	2048
+	#
+
+CPU bandwidth between two users are divided in the ratio of their CPU shares.
+For ex: if you would like user "root" to get twice the bandwidth of user
+"guest", then set the cpu_share for both the users such that "root"'s
+cpu_share is twice "guest"'s cpu_share
+
+
+When CONFIG_FAIR_CGROUP_SCHED is defined, a "cpu.shares" file is created
+for each group created using the pseudo filesystem. See example steps
+below to create task groups and modify their CPU share using the "cgroups"
+pseudo filesystem
+
+	# mkdir /dev/cpuctl
+	# mount -t cgroup -ocpu none /dev/cpuctl
+	# cd /dev/cpuctl
+
+	# mkdir multimedia	# create "multimedia" group of tasks
+	# mkdir browser		# create "browser" group of tasks
+
+	# #Configure the multimedia group to receive twice the CPU bandwidth
+	# #that of browser group
+
+	# echo 2048 > multimedia/cpu.shares
+	# echo 1024 > browser/cpu.shares
+
+	# firefox &	# Launch firefox and move it to "browser" group
+	# echo <firefox_pid> > browser/tasks
+
+	# #Launch gmplayer (or your favourite movie player)
+	# echo <movie_player_pid> > multimedia/tasks

+ 11 - 0
arch/i386/Kconfig

@@ -214,6 +214,17 @@ config X86_ES7000
 
 endchoice
 
+config SCHED_NO_NO_OMIT_FRAME_POINTER
+	bool "Single-depth WCHAN output"
+	default y
+	help
+	  Calculate simpler /proc/<PID>/wchan values. If this option
+	  is disabled then wchan values will recurse back to the
+	  caller function. This provides more accurate wchan values,
+	  at the expense of slightly more scheduling overhead.
+
+	  If in doubt, say "Y".
+
 config PARAVIRT
 	bool "Paravirtualization support (EXPERIMENTAL)"
 	depends on EXPERIMENTAL

+ 10 - 0
drivers/kvm/kvm.h

@@ -624,6 +624,16 @@ void kvm_mmu_unload(struct kvm_vcpu *vcpu);
 
 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run);
 
+static inline void kvm_guest_enter(void)
+{
+	current->flags |= PF_VCPU;
+}
+
+static inline void kvm_guest_exit(void)
+{
+	current->flags &= ~PF_VCPU;
+}
+
 static inline int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
 				     u32 error_code)
 {

+ 2 - 0
drivers/kvm/kvm_main.c

@@ -2046,6 +2046,7 @@ again:
 		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
 
 	vcpu->guest_mode = 1;
+	kvm_guest_enter();
 
 	if (vcpu->requests)
 		if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
@@ -2053,6 +2054,7 @@ again:
 
 	kvm_x86_ops->run(vcpu, kvm_run);
 
+	kvm_guest_exit();
 	vcpu->guest_mode = 0;
 	local_irq_enable();
 

+ 4 - 5
fs/pipe.c

@@ -45,8 +45,7 @@ void pipe_wait(struct pipe_inode_info *pipe)
 	 * Pipes are system-local resources, so sleeping on them
 	 * is considered a noninteractive wait:
 	 */
-	prepare_to_wait(&pipe->wait, &wait,
-			TASK_INTERRUPTIBLE | TASK_NONINTERACTIVE);
+	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
 	if (pipe->inode)
 		mutex_unlock(&pipe->inode->i_mutex);
 	schedule();
@@ -383,7 +382,7 @@ redo:
 
 	/* Signal writers asynchronously that there is more room. */
 	if (do_wakeup) {
-		wake_up_interruptible(&pipe->wait);
+		wake_up_interruptible_sync(&pipe->wait);
 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 	}
 	if (ret > 0)
@@ -556,7 +555,7 @@ redo2:
 out:
 	mutex_unlock(&inode->i_mutex);
 	if (do_wakeup) {
-		wake_up_interruptible(&pipe->wait);
+		wake_up_interruptible_sync(&pipe->wait);
 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 	}
 	if (ret > 0)
@@ -650,7 +649,7 @@ pipe_release(struct inode *inode, int decr, int decw)
 	if (!pipe->readers && !pipe->writers) {
 		free_pipe_info(inode);
 	} else {
-		wake_up_interruptible(&pipe->wait);
+		wake_up_interruptible_sync(&pipe->wait);
 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 	}

+ 15 - 2
fs/proc/array.c

@@ -370,6 +370,11 @@ static cputime_t task_stime(struct task_struct *p)
 }
 #endif
 
+static cputime_t task_gtime(struct task_struct *p)
+{
+	return p->gtime;
+}
+
 static int do_task_stat(struct task_struct *task, char *buffer, int whole)
 {
 	unsigned long vsize, eip, esp, wchan = ~0UL;
@@ -385,6 +390,7 @@ static int do_task_stat(struct task_struct *task, char *buffer, int whole)
 	unsigned long cmin_flt = 0, cmaj_flt = 0;
 	unsigned long  min_flt = 0,  maj_flt = 0;
 	cputime_t cutime, cstime, utime, stime;
+	cputime_t cgtime, gtime;
 	unsigned long rsslim = 0;
 	char tcomm[sizeof(task->comm)];
 	unsigned long flags;
@@ -403,6 +409,7 @@ static int do_task_stat(struct task_struct *task, char *buffer, int whole)
 	sigemptyset(&sigign);
 	sigemptyset(&sigcatch);
 	cutime = cstime = utime = stime = cputime_zero;
+	cgtime = gtime = cputime_zero;
 
 	rcu_read_lock();
 	if (lock_task_sighand(task, &flags)) {
@@ -420,6 +427,7 @@ static int do_task_stat(struct task_struct *task, char *buffer, int whole)
 		cmaj_flt = sig->cmaj_flt;
 		cutime = sig->cutime;
 		cstime = sig->cstime;
+		cgtime = sig->cgtime;
 		rsslim = sig->rlim[RLIMIT_RSS].rlim_cur;
 
 		/* add up live thread stats at the group level */
@@ -430,6 +438,7 @@ static int do_task_stat(struct task_struct *task, char *buffer, int whole)
 				maj_flt += t->maj_flt;
 				utime = cputime_add(utime, task_utime(t));
 				stime = cputime_add(stime, task_stime(t));
+				gtime = cputime_add(gtime, task_gtime(t));
 				t = next_thread(t);
 			} while (t != task);
 
@@ -437,6 +446,7 @@ static int do_task_stat(struct task_struct *task, char *buffer, int whole)
 			maj_flt += sig->maj_flt;
 			utime = cputime_add(utime, sig->utime);
 			stime = cputime_add(stime, sig->stime);
+			gtime += cputime_add(gtime, sig->gtime);
 		}
 
 		sid = signal_session(sig);
@@ -454,6 +464,7 @@ static int do_task_stat(struct task_struct *task, char *buffer, int whole)
 		maj_flt = task->maj_flt;
 		utime = task_utime(task);
 		stime = task_stime(task);
+		gtime = task_gtime(task);
 	}
 
 	/* scale priority and nice values from timeslices to -20..20 */
@@ -471,7 +482,7 @@ static int do_task_stat(struct task_struct *task, char *buffer, int whole)
 
 	res = sprintf(buffer, "%d (%s) %c %d %d %d %d %d %u %lu \
 %lu %lu %lu %lu %lu %ld %ld %ld %ld %d 0 %llu %lu %ld %lu %lu %lu %lu %lu \
-%lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu\n",
+%lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu %lu %ld\n",
 		task->pid,
 		tcomm,
 		state,
@@ -516,7 +527,9 @@ static int do_task_stat(struct task_struct *task, char *buffer, int whole)
 		task_cpu(task),
 		task->rt_priority,
 		task->policy,
-		(unsigned long long)delayacct_blkio_ticks(task));
+		(unsigned long long)delayacct_blkio_ticks(task),
+		cputime_to_clock_t(gtime),
+		cputime_to_clock_t(cgtime));
 	if (mm)
 		mmput(mm);
 	return res;

+ 1 - 1
fs/proc/base.c

@@ -304,7 +304,7 @@ static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 	return sprintf(buffer, "%llu %llu %lu\n",
 			task->sched_info.cpu_time,
 			task->sched_info.run_delay,
-			task->sched_info.pcnt);
+			task->sched_info.pcount);
 }
 #endif
 

+ 11 - 4
fs/proc/proc_misc.c

@@ -443,6 +443,7 @@ static int show_stat(struct seq_file *p, void *v)
 	int i;
 	unsigned long jif;
 	cputime64_t user, nice, system, idle, iowait, irq, softirq, steal;
+	cputime64_t guest;
 	u64 sum = 0;
 	struct timespec boottime;
 	unsigned int *per_irq_sum;
@@ -453,6 +454,7 @@ static int show_stat(struct seq_file *p, void *v)
 
 	user = nice = system = idle = iowait =
 		irq = softirq = steal = cputime64_zero;
+	guest = cputime64_zero;
 	getboottime(&boottime);
 	jif = boottime.tv_sec;
 
@@ -467,6 +469,7 @@ static int show_stat(struct seq_file *p, void *v)
 		irq = cputime64_add(irq, kstat_cpu(i).cpustat.irq);
 		softirq = cputime64_add(softirq, kstat_cpu(i).cpustat.softirq);
 		steal = cputime64_add(steal, kstat_cpu(i).cpustat.steal);
+		guest = cputime64_add(guest, kstat_cpu(i).cpustat.guest);
 		for (j = 0; j < NR_IRQS; j++) {
 			unsigned int temp = kstat_cpu(i).irqs[j];
 			sum += temp;
@@ -474,7 +477,7 @@ static int show_stat(struct seq_file *p, void *v)
 		}
 	}
 
-	seq_printf(p, "cpu  %llu %llu %llu %llu %llu %llu %llu %llu\n",
+	seq_printf(p, "cpu  %llu %llu %llu %llu %llu %llu %llu %llu %llu\n",
 		(unsigned long long)cputime64_to_clock_t(user),
 		(unsigned long long)cputime64_to_clock_t(nice),
 		(unsigned long long)cputime64_to_clock_t(system),
@@ -482,7 +485,8 @@ static int show_stat(struct seq_file *p, void *v)
 		(unsigned long long)cputime64_to_clock_t(iowait),
 		(unsigned long long)cputime64_to_clock_t(irq),
 		(unsigned long long)cputime64_to_clock_t(softirq),
-		(unsigned long long)cputime64_to_clock_t(steal));
+		(unsigned long long)cputime64_to_clock_t(steal),
+		(unsigned long long)cputime64_to_clock_t(guest));
 	for_each_online_cpu(i) {
 
 		/* Copy values here to work around gcc-2.95.3, gcc-2.96 */
@@ -494,7 +498,9 @@ static int show_stat(struct seq_file *p, void *v)
 		irq = kstat_cpu(i).cpustat.irq;
 		softirq = kstat_cpu(i).cpustat.softirq;
 		steal = kstat_cpu(i).cpustat.steal;
-		seq_printf(p, "cpu%d %llu %llu %llu %llu %llu %llu %llu %llu\n",
+		guest = kstat_cpu(i).cpustat.guest;
+		seq_printf(p,
+			"cpu%d %llu %llu %llu %llu %llu %llu %llu %llu %llu\n",
 			i,
 			(unsigned long long)cputime64_to_clock_t(user),
 			(unsigned long long)cputime64_to_clock_t(nice),
@@ -503,7 +509,8 @@ static int show_stat(struct seq_file *p, void *v)
 			(unsigned long long)cputime64_to_clock_t(iowait),
 			(unsigned long long)cputime64_to_clock_t(irq),
 			(unsigned long long)cputime64_to_clock_t(softirq),
-			(unsigned long long)cputime64_to_clock_t(steal));
+			(unsigned long long)cputime64_to_clock_t(steal),
+			(unsigned long long)cputime64_to_clock_t(guest));
 	}
 	seq_printf(p, "intr %llu", (unsigned long long)sum);
 

+ 1 - 0
include/linux/kernel_stat.h

@@ -23,6 +23,7 @@ struct cpu_usage_stat {
 	cputime64_t idle;
 	cputime64_t iowait;
 	cputime64_t steal;
+	cputime64_t guest;
 };
 
 struct kernel_stat {

+ 71 - 28
include/linux/sched.h

@@ -87,6 +87,7 @@ struct sched_param {
 #include <linux/timer.h>
 #include <linux/hrtimer.h>
 #include <linux/task_io_accounting.h>
+#include <linux/kobject.h>
 
 #include <asm/processor.h>
 
@@ -136,6 +137,7 @@ extern unsigned long weighted_cpuload(const int cpu);
 
 struct seq_file;
 struct cfs_rq;
+struct task_group;
 #ifdef CONFIG_SCHED_DEBUG
 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 extern void proc_sched_set_task(struct task_struct *p);
@@ -174,8 +176,7 @@ print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 #define EXIT_ZOMBIE		16
 #define EXIT_DEAD		32
 /* in tsk->state again */
-#define TASK_NONINTERACTIVE	64
-#define TASK_DEAD		128
+#define TASK_DEAD		64
 
 #define __set_task_state(tsk, state_value)		\
 	do { (tsk)->state = (state_value); } while (0)
@@ -516,6 +517,8 @@ struct signal_struct {
 	 * in __exit_signal, except for the group leader.
 	 */
 	cputime_t utime, stime, cutime, cstime;
+	cputime_t gtime;
+	cputime_t cgtime;
 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 	unsigned long inblock, oublock, cinblock, coublock;
@@ -596,8 +599,21 @@ struct user_struct {
 	/* Hash table maintenance information */
 	struct hlist_node uidhash_node;
 	uid_t uid;
+
+#ifdef CONFIG_FAIR_USER_SCHED
+	struct task_group *tg;
+	struct kset kset;
+	struct subsys_attribute user_attr;
+	struct work_struct work;
+#endif
 };
 
+#ifdef CONFIG_FAIR_USER_SCHED
+extern int uids_kobject_init(void);
+#else
+static inline int uids_kobject_init(void) { return 0; }
+#endif
+
 extern struct user_struct *find_user(uid_t);
 
 extern struct user_struct root_user;
@@ -609,13 +625,17 @@ struct reclaim_state;
 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 struct sched_info {
 	/* cumulative counters */
-	unsigned long pcnt;	      /* # of times run on this cpu */
+	unsigned long pcount;	      /* # of times run on this cpu */
 	unsigned long long cpu_time,  /* time spent on the cpu */
 			   run_delay; /* time spent waiting on a runqueue */
 
 	/* timestamps */
 	unsigned long long last_arrival,/* when we last ran on a cpu */
 			   last_queued;	/* when we were last queued to run */
+#ifdef CONFIG_SCHEDSTATS
+	/* BKL stats */
+	unsigned long bkl_count;
+#endif
 };
 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 
@@ -750,7 +770,7 @@ struct sched_domain {
 
 #ifdef CONFIG_SCHEDSTATS
 	/* load_balance() stats */
-	unsigned long lb_cnt[CPU_MAX_IDLE_TYPES];
+	unsigned long lb_count[CPU_MAX_IDLE_TYPES];
 	unsigned long lb_failed[CPU_MAX_IDLE_TYPES];
 	unsigned long lb_balanced[CPU_MAX_IDLE_TYPES];
 	unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES];
@@ -760,17 +780,17 @@ struct sched_domain {
 	unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES];
 
 	/* Active load balancing */
-	unsigned long alb_cnt;
+	unsigned long alb_count;
 	unsigned long alb_failed;
 	unsigned long alb_pushed;
 
 	/* SD_BALANCE_EXEC stats */
-	unsigned long sbe_cnt;
+	unsigned long sbe_count;
 	unsigned long sbe_balanced;
 	unsigned long sbe_pushed;
 
 	/* SD_BALANCE_FORK stats */
-	unsigned long sbf_cnt;
+	unsigned long sbf_count;
 	unsigned long sbf_balanced;
 	unsigned long sbf_pushed;
 
@@ -854,11 +874,11 @@ struct rq;
 struct sched_domain;
 
 struct sched_class {
-	struct sched_class *next;
+	const struct sched_class *next;
 
 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
-	void (*yield_task) (struct rq *rq, struct task_struct *p);
+	void (*yield_task) (struct rq *rq);
 
 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
 
@@ -888,31 +908,22 @@ struct load_weight {
  *     4 se->block_start
  *     4 se->run_node
  *     4 se->sleep_start
- *     4 se->sleep_start_fair
  *     6 se->load.weight
- *     7 se->delta_fair
- *    15 se->wait_runtime
  */
 struct sched_entity {
-	long			wait_runtime;
-	unsigned long		delta_fair_run;
-	unsigned long		delta_fair_sleep;
-	unsigned long		delta_exec;
-	s64			fair_key;
 	struct load_weight	load;		/* for load-balancing */
 	struct rb_node		run_node;
 	unsigned int		on_rq;
+	int			peer_preempt;
 
 	u64			exec_start;
 	u64			sum_exec_runtime;
+	u64			vruntime;
 	u64			prev_sum_exec_runtime;
-	u64			wait_start_fair;
-	u64			sleep_start_fair;
 
 #ifdef CONFIG_SCHEDSTATS
 	u64			wait_start;
 	u64			wait_max;
-	s64			sum_wait_runtime;
 
 	u64			sleep_start;
 	u64			sleep_max;
@@ -921,9 +932,25 @@ struct sched_entity {
 	u64			block_start;
 	u64			block_max;
 	u64			exec_max;
-
-	unsigned long		wait_runtime_overruns;
-	unsigned long		wait_runtime_underruns;
+	u64			slice_max;
+
+	u64			nr_migrations;
+	u64			nr_migrations_cold;
+	u64			nr_failed_migrations_affine;
+	u64			nr_failed_migrations_running;
+	u64			nr_failed_migrations_hot;
+	u64			nr_forced_migrations;
+	u64			nr_forced2_migrations;
+
+	u64			nr_wakeups;
+	u64			nr_wakeups_sync;
+	u64			nr_wakeups_migrate;
+	u64			nr_wakeups_local;
+	u64			nr_wakeups_remote;
+	u64			nr_wakeups_affine;
+	u64			nr_wakeups_affine_attempts;
+	u64			nr_wakeups_passive;
+	u64			nr_wakeups_idle;
 #endif
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
@@ -952,7 +979,7 @@ struct task_struct {
 
 	int prio, static_prio, normal_prio;
 	struct list_head run_list;
-	struct sched_class *sched_class;
+	const struct sched_class *sched_class;
 	struct sched_entity se;
 
 #ifdef CONFIG_PREEMPT_NOTIFIERS
@@ -1023,6 +1050,7 @@ struct task_struct {
 
 	unsigned int rt_priority;
 	cputime_t utime, stime;
+	cputime_t gtime;
 	unsigned long nvcsw, nivcsw; /* context switch counts */
 	struct timespec start_time; 		/* monotonic time */
 	struct timespec real_start_time;	/* boot based time */
@@ -1314,6 +1342,7 @@ static inline void put_task_struct(struct task_struct *t)
 #define PF_STARTING	0x00000002	/* being created */
 #define PF_EXITING	0x00000004	/* getting shut down */
 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
+#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
 #define PF_DUMPCORE	0x00000200	/* dumped core */
@@ -1401,15 +1430,17 @@ static inline void idle_task_exit(void) {}
 
 extern void sched_idle_next(void);
 
+#ifdef CONFIG_SCHED_DEBUG
 extern unsigned int sysctl_sched_latency;
-extern unsigned int sysctl_sched_min_granularity;
+extern unsigned int sysctl_sched_nr_latency;
 extern unsigned int sysctl_sched_wakeup_granularity;
 extern unsigned int sysctl_sched_batch_wakeup_granularity;
-extern unsigned int sysctl_sched_stat_granularity;
-extern unsigned int sysctl_sched_runtime_limit;
-extern unsigned int sysctl_sched_compat_yield;
 extern unsigned int sysctl_sched_child_runs_first;
 extern unsigned int sysctl_sched_features;
+extern unsigned int sysctl_sched_migration_cost;
+#endif
+
+extern unsigned int sysctl_sched_compat_yield;
 
 #ifdef CONFIG_RT_MUTEXES
 extern int rt_mutex_getprio(struct task_struct *p);
@@ -1843,6 +1874,18 @@ extern int sched_mc_power_savings, sched_smt_power_savings;
 
 extern void normalize_rt_tasks(void);
 
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+extern struct task_group init_task_group;
+
+extern struct task_group *sched_create_group(void);
+extern void sched_destroy_group(struct task_group *tg);
+extern void sched_move_task(struct task_struct *tsk);
+extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
+extern unsigned long sched_group_shares(struct task_group *tg);
+
+#endif
+
 #ifdef CONFIG_TASK_XACCT
 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
 {

+ 2 - 3
include/linux/topology.h

@@ -159,15 +159,14 @@
 	.imbalance_pct		= 125,			\
 	.cache_nice_tries	= 1,			\
 	.busy_idx		= 2,			\
-	.idle_idx		= 0,			\
-	.newidle_idx		= 0,			\
+	.idle_idx		= 1,			\
+	.newidle_idx		= 2,			\
 	.wake_idx		= 1,			\
 	.forkexec_idx		= 1,			\
 	.flags			= SD_LOAD_BALANCE	\
 				| SD_BALANCE_NEWIDLE	\
 				| SD_BALANCE_EXEC	\
 				| SD_WAKE_AFFINE	\
-				| SD_WAKE_IDLE		\
 				| BALANCE_FOR_PKG_POWER,\
 	.last_balance		= jiffies,		\
 	.balance_interval	= 1,			\

+ 21 - 0
init/Kconfig

@@ -281,6 +281,27 @@ config CPUSETS
 
 	  Say N if unsure.
 
+config FAIR_GROUP_SCHED
+	bool "Fair group CPU scheduler"
+	default y
+	depends on EXPERIMENTAL
+	help
+	  This feature lets CPU scheduler recognize task groups and control CPU
+	  bandwidth allocation to such task groups.
+
+choice
+	depends on FAIR_GROUP_SCHED
+	prompt "Basis for grouping tasks"
+	default FAIR_USER_SCHED
+
+config FAIR_USER_SCHED
+	bool "user id"
+	help
+	  This option will choose userid as the basis for grouping
+	  tasks, thus providing equal CPU bandwidth to each user.
+
+endchoice
+
 config SYSFS_DEPRECATED
 	bool "Create deprecated sysfs files"
 	default y

+ 1 - 1
kernel/delayacct.c

@@ -119,7 +119,7 @@ int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
 	 * No locking available for sched_info (and too expensive to add one)
 	 * Mitigate by taking snapshot of values
 	 */
-	t1 = tsk->sched_info.pcnt;
+	t1 = tsk->sched_info.pcount;
 	t2 = tsk->sched_info.run_delay;
 	t3 = tsk->sched_info.cpu_time;
 

+ 6 - 0
kernel/exit.c

@@ -111,6 +111,7 @@ static void __exit_signal(struct task_struct *tsk)
 		 */
 		sig->utime = cputime_add(sig->utime, tsk->utime);
 		sig->stime = cputime_add(sig->stime, tsk->stime);
+		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
 		sig->min_flt += tsk->min_flt;
 		sig->maj_flt += tsk->maj_flt;
 		sig->nvcsw += tsk->nvcsw;
@@ -1242,6 +1243,11 @@ static int wait_task_zombie(struct task_struct *p, int noreap,
 			cputime_add(p->stime,
 			cputime_add(sig->stime,
 				    sig->cstime)));
+		psig->cgtime =
+			cputime_add(psig->cgtime,
+			cputime_add(p->gtime,
+			cputime_add(sig->gtime,
+				    sig->cgtime)));
 		psig->cmin_flt +=
 			p->min_flt + sig->min_flt + sig->cmin_flt;
 		psig->cmaj_flt +=

+ 3 - 0
kernel/fork.c

@@ -877,6 +877,8 @@ static inline int copy_signal(unsigned long clone_flags, struct task_struct * ts
 	sig->tty_old_pgrp = NULL;
 
 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
+	sig->gtime = cputime_zero;
+	sig->cgtime = cputime_zero;
 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
@@ -1045,6 +1047,7 @@ static struct task_struct *copy_process(unsigned long clone_flags,
 
 	p->utime = cputime_zero;
 	p->stime = cputime_zero;
+	p->gtime = cputime_zero;
 
 #ifdef CONFIG_TASK_XACCT
 	p->rchar = 0;		/* I/O counter: bytes read */

+ 8 - 0
kernel/ksysfs.c

@@ -14,6 +14,7 @@
 #include <linux/module.h>
 #include <linux/init.h>
 #include <linux/kexec.h>
+#include <linux/sched.h>
 
 #define KERNEL_ATTR_RO(_name) \
 static struct subsys_attribute _name##_attr = __ATTR_RO(_name)
@@ -116,6 +117,13 @@ static int __init ksysfs_init(void)
 					      &notes_attr);
 	}
 
+	/*
+	 * Create "/sys/kernel/uids" directory and corresponding root user's
+	 * directory under it.
+	 */
+	if (!error)
+		error = uids_kobject_init();
+
 	return error;
 }
 

+ 831 - 613
kernel/sched.c

@@ -96,7 +96,7 @@ unsigned long long __attribute__((weak)) sched_clock(void)
 /*
  * Some helpers for converting nanosecond timing to jiffy resolution
  */
-#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
+#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
 #define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))
 
 #define NICE_0_LOAD		SCHED_LOAD_SCALE
@@ -105,11 +105,9 @@ unsigned long long __attribute__((weak)) sched_clock(void)
 /*
  * These are the 'tuning knobs' of the scheduler:
  *
- * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
- * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
+ * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  * Timeslices get refilled after they expire.
  */
-#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
 #define DEF_TIMESLICE		(100 * HZ / 1000)
 
 #ifdef CONFIG_SMP
@@ -133,24 +131,6 @@ static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
 }
 #endif
 
-#define SCALE_PRIO(x, prio) \
-	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
-
-/*
- * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
- * to time slice values: [800ms ... 100ms ... 5ms]
- */
-static unsigned int static_prio_timeslice(int static_prio)
-{
-	if (static_prio == NICE_TO_PRIO(19))
-		return 1;
-
-	if (static_prio < NICE_TO_PRIO(0))
-		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
-	else
-		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
-}
-
 static inline int rt_policy(int policy)
 {
 	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
@@ -171,31 +151,91 @@ struct rt_prio_array {
 	struct list_head queue[MAX_RT_PRIO];
 };
 
-struct load_stat {
-	struct load_weight load;
-	u64 load_update_start, load_update_last;
-	unsigned long delta_fair, delta_exec, delta_stat;
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+struct cfs_rq;
+
+/* task group related information */
+struct task_group {
+	/* schedulable entities of this group on each cpu */
+	struct sched_entity **se;
+	/* runqueue "owned" by this group on each cpu */
+	struct cfs_rq **cfs_rq;
+	unsigned long shares;
+	/* spinlock to serialize modification to shares */
+	spinlock_t lock;
+};
+
+/* Default task group's sched entity on each cpu */
+static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
+/* Default task group's cfs_rq on each cpu */
+static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
+
+static struct sched_entity *init_sched_entity_p[NR_CPUS];
+static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
+
+/* Default task group.
+ *	Every task in system belong to this group at bootup.
+ */
+struct task_group init_task_group = {
+	.se     = init_sched_entity_p,
+	.cfs_rq = init_cfs_rq_p,
 };
 
+#ifdef CONFIG_FAIR_USER_SCHED
+# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
+#else
+# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
+#endif
+
+static int init_task_group_load = INIT_TASK_GRP_LOAD;
+
+/* return group to which a task belongs */
+static inline struct task_group *task_group(struct task_struct *p)
+{
+	struct task_group *tg;
+
+#ifdef CONFIG_FAIR_USER_SCHED
+	tg = p->user->tg;
+#else
+	tg  = &init_task_group;
+#endif
+
+	return tg;
+}
+
+/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
+static inline void set_task_cfs_rq(struct task_struct *p)
+{
+	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
+	p->se.parent = task_group(p)->se[task_cpu(p)];
+}
+
+#else
+
+static inline void set_task_cfs_rq(struct task_struct *p) { }
+
+#endif	/* CONFIG_FAIR_GROUP_SCHED */
+
 /* CFS-related fields in a runqueue */
 struct cfs_rq {
 	struct load_weight load;
 	unsigned long nr_running;
 
-	s64 fair_clock;
 	u64 exec_clock;
-	s64 wait_runtime;
-	u64 sleeper_bonus;
-	unsigned long wait_runtime_overruns, wait_runtime_underruns;
+	u64 min_vruntime;
 
 	struct rb_root tasks_timeline;
 	struct rb_node *rb_leftmost;
 	struct rb_node *rb_load_balance_curr;
-#ifdef CONFIG_FAIR_GROUP_SCHED
 	/* 'curr' points to currently running entity on this cfs_rq.
 	 * It is set to NULL otherwise (i.e when none are currently running).
 	 */
 	struct sched_entity *curr;
+
+	unsigned long nr_spread_over;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 
 	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
@@ -206,6 +246,8 @@ struct cfs_rq {
 	 * list is used during load balance.
 	 */
 	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
+	struct task_group *tg;    /* group that "owns" this runqueue */
+	struct rcu_head rcu;
 #endif
 };
 
@@ -237,7 +279,7 @@ struct rq {
 #ifdef CONFIG_NO_HZ
 	unsigned char in_nohz_recently;
 #endif
-	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
+	struct load_weight load;	/* capture load from *all* tasks on this cpu */
 	unsigned long nr_load_updates;
 	u64 nr_switches;
 
@@ -289,16 +331,19 @@ struct rq {
 	unsigned long yld_exp_empty;
 	unsigned long yld_act_empty;
 	unsigned long yld_both_empty;
-	unsigned long yld_cnt;
+	unsigned long yld_count;
 
 	/* schedule() stats */
 	unsigned long sched_switch;
-	unsigned long sched_cnt;
+	unsigned long sched_count;
 	unsigned long sched_goidle;
 
 	/* try_to_wake_up() stats */
-	unsigned long ttwu_cnt;
+	unsigned long ttwu_count;
 	unsigned long ttwu_local;
+
+	/* BKL stats */
+	unsigned long bkl_count;
 #endif
 	struct lock_class_key rq_lock_key;
 };
@@ -382,6 +427,37 @@ static void update_rq_clock(struct rq *rq)
 #define task_rq(p)		cpu_rq(task_cpu(p))
 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 
+/*
+ * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
+ */
+#ifdef CONFIG_SCHED_DEBUG
+# define const_debug __read_mostly
+#else
+# define const_debug static const
+#endif
+
+/*
+ * Debugging: various feature bits
+ */
+enum {
+	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
+	SCHED_FEAT_START_DEBIT		= 2,
+	SCHED_FEAT_TREE_AVG             = 4,
+	SCHED_FEAT_APPROX_AVG           = 8,
+	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
+	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
+};
+
+const_debug unsigned int sysctl_sched_features =
+		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
+		SCHED_FEAT_START_DEBIT		*1 |
+		SCHED_FEAT_TREE_AVG		*0 |
+		SCHED_FEAT_APPROX_AVG		*0 |
+		SCHED_FEAT_WAKEUP_PREEMPT	*1 |
+		SCHED_FEAT_PREEMPT_RESTRICT	*1;
+
+#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
+
 /*
  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  * clock constructed from sched_clock():
@@ -400,18 +476,7 @@ unsigned long long cpu_clock(int cpu)
 
 	return now;
 }
-
-#ifdef CONFIG_FAIR_GROUP_SCHED
-/* Change a task's ->cfs_rq if it moves across CPUs */
-static inline void set_task_cfs_rq(struct task_struct *p)
-{
-	p->se.cfs_rq = &task_rq(p)->cfs;
-}
-#else
-static inline void set_task_cfs_rq(struct task_struct *p)
-{
-}
-#endif
+EXPORT_SYMBOL_GPL(cpu_clock);
 
 #ifndef prepare_arch_switch
 # define prepare_arch_switch(next)	do { } while (0)
@@ -497,16 +562,13 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 static inline struct rq *__task_rq_lock(struct task_struct *p)
 	__acquires(rq->lock)
 {
-	struct rq *rq;
-
-repeat_lock_task:
-	rq = task_rq(p);
-	spin_lock(&rq->lock);
-	if (unlikely(rq != task_rq(p))) {
+	for (;;) {
+		struct rq *rq = task_rq(p);
+		spin_lock(&rq->lock);
+		if (likely(rq == task_rq(p)))
+			return rq;
 		spin_unlock(&rq->lock);
-		goto repeat_lock_task;
 	}
-	return rq;
 }
 
 /*
@@ -519,18 +581,17 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 {
 	struct rq *rq;
 
-repeat_lock_task:
-	local_irq_save(*flags);
-	rq = task_rq(p);
-	spin_lock(&rq->lock);
-	if (unlikely(rq != task_rq(p))) {
+	for (;;) {
+		local_irq_save(*flags);
+		rq = task_rq(p);
+		spin_lock(&rq->lock);
+		if (likely(rq == task_rq(p)))
+			return rq;
 		spin_unlock_irqrestore(&rq->lock, *flags);
-		goto repeat_lock_task;
 	}
-	return rq;
 }
 
-static inline void __task_rq_unlock(struct rq *rq)
+static void __task_rq_unlock(struct rq *rq)
 	__releases(rq->lock)
 {
 	spin_unlock(&rq->lock);
@@ -545,7 +606,7 @@ static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
 /*
  * this_rq_lock - lock this runqueue and disable interrupts.
  */
-static inline struct rq *this_rq_lock(void)
+static struct rq *this_rq_lock(void)
 	__acquires(rq->lock)
 {
 	struct rq *rq;
@@ -645,19 +706,6 @@ static inline void resched_task(struct task_struct *p)
 }
 #endif
 
-static u64 div64_likely32(u64 divident, unsigned long divisor)
-{
-#if BITS_PER_LONG == 32
-	if (likely(divident <= 0xffffffffULL))
-		return (u32)divident / divisor;
-	do_div(divident, divisor);
-
-	return divident;
-#else
-	return divident / divisor;
-#endif
-}
-
 #if BITS_PER_LONG == 32
 # define WMULT_CONST	(~0UL)
 #else
@@ -699,16 +747,14 @@ calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
 	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
 }
 
-static void update_load_add(struct load_weight *lw, unsigned long inc)
+static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 {
 	lw->weight += inc;
-	lw->inv_weight = 0;
 }
 
-static void update_load_sub(struct load_weight *lw, unsigned long dec)
+static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 {
 	lw->weight -= dec;
-	lw->inv_weight = 0;
 }
 
 /*
@@ -784,29 +830,20 @@ static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
 		      int *this_best_prio, struct rq_iterator *iterator);
 
 #include "sched_stats.h"
-#include "sched_rt.c"
-#include "sched_fair.c"
 #include "sched_idletask.c"
+#include "sched_fair.c"
+#include "sched_rt.c"
 #ifdef CONFIG_SCHED_DEBUG
 # include "sched_debug.c"
 #endif
 
 #define sched_class_highest (&rt_sched_class)
 
-static void __update_curr_load(struct rq *rq, struct load_stat *ls)
-{
-	if (rq->curr != rq->idle && ls->load.weight) {
-		ls->delta_exec += ls->delta_stat;
-		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
-		ls->delta_stat = 0;
-	}
-}
-
 /*
  * Update delta_exec, delta_fair fields for rq.
  *
  * delta_fair clock advances at a rate inversely proportional to
- * total load (rq->ls.load.weight) on the runqueue, while
+ * total load (rq->load.weight) on the runqueue, while
  * delta_exec advances at the same rate as wall-clock (provided
  * cpu is not idle).
  *
@@ -814,35 +851,17 @@ static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  * runqueue over any given interval. This (smoothened) load is used
  * during load balance.
  *
- * This function is called /before/ updating rq->ls.load
+ * This function is called /before/ updating rq->load
  * and when switching tasks.
  */
-static void update_curr_load(struct rq *rq)
-{
-	struct load_stat *ls = &rq->ls;
-	u64 start;
-
-	start = ls->load_update_start;
-	ls->load_update_start = rq->clock;
-	ls->delta_stat += rq->clock - start;
-	/*
-	 * Stagger updates to ls->delta_fair. Very frequent updates
-	 * can be expensive.
-	 */
-	if (ls->delta_stat >= sysctl_sched_stat_granularity)
-		__update_curr_load(rq, ls);
-}
-
 static inline void inc_load(struct rq *rq, const struct task_struct *p)
 {
-	update_curr_load(rq);
-	update_load_add(&rq->ls.load, p->se.load.weight);
+	update_load_add(&rq->load, p->se.load.weight);
 }
 
 static inline void dec_load(struct rq *rq, const struct task_struct *p)
 {
-	update_curr_load(rq);
-	update_load_sub(&rq->ls.load, p->se.load.weight);
+	update_load_sub(&rq->load, p->se.load.weight);
 }
 
 static void inc_nr_running(struct task_struct *p, struct rq *rq)
@@ -859,8 +878,6 @@ static void dec_nr_running(struct task_struct *p, struct rq *rq)
 
 static void set_load_weight(struct task_struct *p)
 {
-	p->se.wait_runtime = 0;
-
 	if (task_has_rt_policy(p)) {
 		p->se.load.weight = prio_to_weight[0] * 2;
 		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
@@ -951,20 +968,6 @@ static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
 	inc_nr_running(p, rq);
 }
 
-/*
- * activate_idle_task - move idle task to the _front_ of runqueue.
- */
-static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
-{
-	update_rq_clock(rq);
-
-	if (p->state == TASK_UNINTERRUPTIBLE)
-		rq->nr_uninterruptible--;
-
-	enqueue_task(rq, p, 0);
-	inc_nr_running(p, rq);
-}
-
 /*
  * deactivate_task - remove a task from the runqueue.
  */
@@ -989,32 +992,50 @@ inline int task_curr(const struct task_struct *p)
 /* Used instead of source_load when we know the type == 0 */
 unsigned long weighted_cpuload(const int cpu)
 {
-	return cpu_rq(cpu)->ls.load.weight;
+	return cpu_rq(cpu)->load.weight;
 }
 
 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 {
 #ifdef CONFIG_SMP
 	task_thread_info(p)->cpu = cpu;
-	set_task_cfs_rq(p);
 #endif
+	set_task_cfs_rq(p);
 }
 
 #ifdef CONFIG_SMP
 
+/*
+ * Is this task likely cache-hot:
+ */
+static inline int
+task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
+{
+	s64 delta;
+
+	if (p->sched_class != &fair_sched_class)
+		return 0;
+
+	if (sysctl_sched_migration_cost == -1)
+		return 1;
+	if (sysctl_sched_migration_cost == 0)
+		return 0;
+
+	delta = now - p->se.exec_start;
+
+	return delta < (s64)sysctl_sched_migration_cost;
+}
+
+
 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 {
 	int old_cpu = task_cpu(p);
 	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
-	u64 clock_offset, fair_clock_offset;
+	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
+		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
+	u64 clock_offset;
 
 	clock_offset = old_rq->clock - new_rq->clock;
-	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
-
-	if (p->se.wait_start_fair)
-		p->se.wait_start_fair -= fair_clock_offset;
-	if (p->se.sleep_start_fair)
-		p->se.sleep_start_fair -= fair_clock_offset;
 
 #ifdef CONFIG_SCHEDSTATS
 	if (p->se.wait_start)
@@ -1023,7 +1044,14 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 		p->se.sleep_start -= clock_offset;
 	if (p->se.block_start)
 		p->se.block_start -= clock_offset;
+	if (old_cpu != new_cpu) {
+		schedstat_inc(p, se.nr_migrations);
+		if (task_hot(p, old_rq->clock, NULL))
+			schedstat_inc(p, se.nr_forced2_migrations);
+	}
 #endif
+	p->se.vruntime -= old_cfsrq->min_vruntime -
+					 new_cfsrq->min_vruntime;
 
 	__set_task_cpu(p, new_cpu);
 }
@@ -1078,69 +1106,71 @@ void wait_task_inactive(struct task_struct *p)
 	int running, on_rq;
 	struct rq *rq;
 
-repeat:
-	/*
-	 * We do the initial early heuristics without holding
-	 * any task-queue locks at all. We'll only try to get
-	 * the runqueue lock when things look like they will
-	 * work out!
-	 */
-	rq = task_rq(p);
+	for (;;) {
+		/*
+		 * We do the initial early heuristics without holding
+		 * any task-queue locks at all. We'll only try to get
+		 * the runqueue lock when things look like they will
+		 * work out!
+		 */
+		rq = task_rq(p);
 
-	/*
-	 * If the task is actively running on another CPU
-	 * still, just relax and busy-wait without holding
-	 * any locks.
-	 *
-	 * NOTE! Since we don't hold any locks, it's not
-	 * even sure that "rq" stays as the right runqueue!
-	 * But we don't care, since "task_running()" will
-	 * return false if the runqueue has changed and p
-	 * is actually now running somewhere else!
-	 */
-	while (task_running(rq, p))
-		cpu_relax();
+		/*
+		 * If the task is actively running on another CPU
+		 * still, just relax and busy-wait without holding
+		 * any locks.
+		 *
+		 * NOTE! Since we don't hold any locks, it's not
+		 * even sure that "rq" stays as the right runqueue!
+		 * But we don't care, since "task_running()" will
+		 * return false if the runqueue has changed and p
+		 * is actually now running somewhere else!
+		 */
+		while (task_running(rq, p))
+			cpu_relax();
 
-	/*
-	 * Ok, time to look more closely! We need the rq
-	 * lock now, to be *sure*. If we're wrong, we'll
-	 * just go back and repeat.
-	 */
-	rq = task_rq_lock(p, &flags);
-	running = task_running(rq, p);
-	on_rq = p->se.on_rq;
-	task_rq_unlock(rq, &flags);
+		/*
+		 * Ok, time to look more closely! We need the rq
+		 * lock now, to be *sure*. If we're wrong, we'll
+		 * just go back and repeat.
+		 */
+		rq = task_rq_lock(p, &flags);
+		running = task_running(rq, p);
+		on_rq = p->se.on_rq;
+		task_rq_unlock(rq, &flags);
 
-	/*
-	 * Was it really running after all now that we
-	 * checked with the proper locks actually held?
-	 *
-	 * Oops. Go back and try again..
-	 */
-	if (unlikely(running)) {
-		cpu_relax();
-		goto repeat;
-	}
+		/*
+		 * Was it really running after all now that we
+		 * checked with the proper locks actually held?
+		 *
+		 * Oops. Go back and try again..
+		 */
+		if (unlikely(running)) {
+			cpu_relax();
+			continue;
+		}
 
-	/*
-	 * It's not enough that it's not actively running,
-	 * it must be off the runqueue _entirely_, and not
-	 * preempted!
-	 *
-	 * So if it wa still runnable (but just not actively
-	 * running right now), it's preempted, and we should
-	 * yield - it could be a while.
-	 */
-	if (unlikely(on_rq)) {
-		yield();
-		goto repeat;
-	}
+		/*
+		 * It's not enough that it's not actively running,
+		 * it must be off the runqueue _entirely_, and not
+		 * preempted!
+		 *
+		 * So if it wa still runnable (but just not actively
+		 * running right now), it's preempted, and we should
+		 * yield - it could be a while.
+		 */
+		if (unlikely(on_rq)) {
+			schedule_timeout_uninterruptible(1);
+			continue;
+		}
 
-	/*
-	 * Ahh, all good. It wasn't running, and it wasn't
-	 * runnable, which means that it will never become
-	 * running in the future either. We're all done!
-	 */
+		/*
+		 * Ahh, all good. It wasn't running, and it wasn't
+		 * runnable, which means that it will never become
+		 * running in the future either. We're all done!
+		 */
+		break;
+	}
 }
 
 /***
@@ -1174,7 +1204,7 @@ void kick_process(struct task_struct *p)
  * We want to under-estimate the load of migration sources, to
  * balance conservatively.
  */
-static inline unsigned long source_load(int cpu, int type)
+static unsigned long source_load(int cpu, int type)
 {
 	struct rq *rq = cpu_rq(cpu);
 	unsigned long total = weighted_cpuload(cpu);
@@ -1189,7 +1219,7 @@ static inline unsigned long source_load(int cpu, int type)
  * Return a high guess at the load of a migration-target cpu weighted
  * according to the scheduling class and "nice" value.
  */
-static inline unsigned long target_load(int cpu, int type)
+static unsigned long target_load(int cpu, int type)
 {
 	struct rq *rq = cpu_rq(cpu);
 	unsigned long total = weighted_cpuload(cpu);
@@ -1231,7 +1261,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
 
 		/* Skip over this group if it has no CPUs allowed */
 		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
-			goto nextgroup;
+			continue;
 
 		local_group = cpu_isset(this_cpu, group->cpumask);
 
@@ -1259,9 +1289,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
 			min_load = avg_load;
 			idlest = group;
 		}
-nextgroup:
-		group = group->next;
-	} while (group != sd->groups);
+	} while (group = group->next, group != sd->groups);
 
 	if (!idlest || 100*this_load < imbalance*min_load)
 		return NULL;
@@ -1393,8 +1421,13 @@ static int wake_idle(int cpu, struct task_struct *p)
 		if (sd->flags & SD_WAKE_IDLE) {
 			cpus_and(tmp, sd->span, p->cpus_allowed);
 			for_each_cpu_mask(i, tmp) {
-				if (idle_cpu(i))
+				if (idle_cpu(i)) {
+					if (i != task_cpu(p)) {
+						schedstat_inc(p,
+							se.nr_wakeups_idle);
+					}
 					return i;
+				}
 			}
 		} else {
 			break;
@@ -1425,7 +1458,7 @@ static inline int wake_idle(int cpu, struct task_struct *p)
  */
 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
 {
-	int cpu, this_cpu, success = 0;
+	int cpu, orig_cpu, this_cpu, success = 0;
 	unsigned long flags;
 	long old_state;
 	struct rq *rq;
@@ -1444,6 +1477,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
 		goto out_running;
 
 	cpu = task_cpu(p);
+	orig_cpu = cpu;
 	this_cpu = smp_processor_id();
 
 #ifdef CONFIG_SMP
@@ -1452,7 +1486,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
 
 	new_cpu = cpu;
 
-	schedstat_inc(rq, ttwu_cnt);
+	schedstat_inc(rq, ttwu_count);
 	if (cpu == this_cpu) {
 		schedstat_inc(rq, ttwu_local);
 		goto out_set_cpu;
@@ -1487,6 +1521,13 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
 			unsigned long tl = this_load;
 			unsigned long tl_per_task;
 
+			/*
+			 * Attract cache-cold tasks on sync wakeups:
+			 */
+			if (sync && !task_hot(p, rq->clock, this_sd))
+				goto out_set_cpu;
+
+			schedstat_inc(p, se.nr_wakeups_affine_attempts);
 			tl_per_task = cpu_avg_load_per_task(this_cpu);
 
 			/*
@@ -1506,6 +1547,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
 				 * there is no bad imbalance.
 				 */
 				schedstat_inc(this_sd, ttwu_move_affine);
+				schedstat_inc(p, se.nr_wakeups_affine);
 				goto out_set_cpu;
 			}
 		}
@@ -1517,6 +1559,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
 		if (this_sd->flags & SD_WAKE_BALANCE) {
 			if (imbalance*this_load <= 100*load) {
 				schedstat_inc(this_sd, ttwu_move_balance);
+				schedstat_inc(p, se.nr_wakeups_passive);
 				goto out_set_cpu;
 			}
 		}
@@ -1542,18 +1585,18 @@ out_set_cpu:
 
 out_activate:
 #endif /* CONFIG_SMP */
+	schedstat_inc(p, se.nr_wakeups);
+	if (sync)
+		schedstat_inc(p, se.nr_wakeups_sync);
+	if (orig_cpu != cpu)
+		schedstat_inc(p, se.nr_wakeups_migrate);
+	if (cpu == this_cpu)
+		schedstat_inc(p, se.nr_wakeups_local);
+	else
+		schedstat_inc(p, se.nr_wakeups_remote);
 	update_rq_clock(rq);
 	activate_task(rq, p, 1);
-	/*
-	 * Sync wakeups (i.e. those types of wakeups where the waker
-	 * has indicated that it will leave the CPU in short order)
-	 * don't trigger a preemption, if the woken up task will run on
-	 * this cpu. (in this case the 'I will reschedule' promise of
-	 * the waker guarantees that the freshly woken up task is going
-	 * to be considered on this CPU.)
-	 */
-	if (!sync || cpu != this_cpu)
-		check_preempt_curr(rq, p);
+	check_preempt_curr(rq, p);
 	success = 1;
 
 out_running:
@@ -1584,28 +1627,20 @@ int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  */
 static void __sched_fork(struct task_struct *p)
 {
-	p->se.wait_start_fair		= 0;
 	p->se.exec_start		= 0;
 	p->se.sum_exec_runtime		= 0;
 	p->se.prev_sum_exec_runtime	= 0;
-	p->se.delta_exec		= 0;
-	p->se.delta_fair_run		= 0;
-	p->se.delta_fair_sleep		= 0;
-	p->se.wait_runtime		= 0;
-	p->se.sleep_start_fair		= 0;
 
 #ifdef CONFIG_SCHEDSTATS
 	p->se.wait_start		= 0;
-	p->se.sum_wait_runtime		= 0;
 	p->se.sum_sleep_runtime		= 0;
 	p->se.sleep_start		= 0;
 	p->se.block_start		= 0;
 	p->se.sleep_max			= 0;
 	p->se.block_max			= 0;
 	p->se.exec_max			= 0;
+	p->se.slice_max			= 0;
 	p->se.wait_max			= 0;
-	p->se.wait_runtime_overruns	= 0;
-	p->se.wait_runtime_underruns	= 0;
 #endif
 
 	INIT_LIST_HEAD(&p->run_list);
@@ -1636,12 +1671,14 @@ void sched_fork(struct task_struct *p, int clone_flags)
 #ifdef CONFIG_SMP
 	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
 #endif
-	__set_task_cpu(p, cpu);
+	set_task_cpu(p, cpu);
 
 	/*
 	 * Make sure we do not leak PI boosting priority to the child:
 	 */
 	p->prio = current->normal_prio;
+	if (!rt_prio(p->prio))
+		p->sched_class = &fair_sched_class;
 
 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 	if (likely(sched_info_on()))
@@ -1657,12 +1694,6 @@ void sched_fork(struct task_struct *p, int clone_flags)
 	put_cpu();
 }
 
-/*
- * After fork, child runs first. (default) If set to 0 then
- * parent will (try to) run first.
- */
-unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
-
 /*
  * wake_up_new_task - wake up a newly created task for the first time.
  *
@@ -1674,24 +1705,14 @@ void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
 {
 	unsigned long flags;
 	struct rq *rq;
-	int this_cpu;
 
 	rq = task_rq_lock(p, &flags);
 	BUG_ON(p->state != TASK_RUNNING);
-	this_cpu = smp_processor_id(); /* parent's CPU */
 	update_rq_clock(rq);
 
 	p->prio = effective_prio(p);
 
-	if (rt_prio(p->prio))
-		p->sched_class = &rt_sched_class;
-	else
-		p->sched_class = &fair_sched_class;
-
-	if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
-			(clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
-			!current->se.on_rq) {
-
+	if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
 		activate_task(rq, p, 0);
 	} else {
 		/*
@@ -1800,7 +1821,7 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev,
  * with the lock held can cause deadlocks; see schedule() for
  * details.)
  */
-static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
+static void finish_task_switch(struct rq *rq, struct task_struct *prev)
 	__releases(rq->lock)
 {
 	struct mm_struct *mm = rq->prev_mm;
@@ -1982,42 +2003,10 @@ unsigned long nr_active(void)
  */
 static void update_cpu_load(struct rq *this_rq)
 {
-	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
-	unsigned long total_load = this_rq->ls.load.weight;
-	unsigned long this_load =  total_load;
-	struct load_stat *ls = &this_rq->ls;
+	unsigned long this_load = this_rq->load.weight;
 	int i, scale;
 
 	this_rq->nr_load_updates++;
-	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
-		goto do_avg;
-
-	/* Update delta_fair/delta_exec fields first */
-	update_curr_load(this_rq);
-
-	fair_delta64 = ls->delta_fair + 1;
-	ls->delta_fair = 0;
-
-	exec_delta64 = ls->delta_exec + 1;
-	ls->delta_exec = 0;
-
-	sample_interval64 = this_rq->clock - ls->load_update_last;
-	ls->load_update_last = this_rq->clock;
-
-	if ((s64)sample_interval64 < (s64)TICK_NSEC)
-		sample_interval64 = TICK_NSEC;
-
-	if (exec_delta64 > sample_interval64)
-		exec_delta64 = sample_interval64;
-
-	idle_delta64 = sample_interval64 - exec_delta64;
-
-	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
-	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
-
-	this_load = (unsigned long)tmp64;
-
-do_avg:
 
 	/* Update our load: */
 	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
@@ -2027,7 +2016,13 @@ do_avg:
 
 		old_load = this_rq->cpu_load[i];
 		new_load = this_load;
-
+		/*
+		 * Round up the averaging division if load is increasing. This
+		 * prevents us from getting stuck on 9 if the load is 10, for
+		 * example.
+		 */
+		if (new_load > old_load)
+			new_load += scale-1;
 		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
 	}
 }
@@ -2179,13 +2174,38 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
 	 * 3) are cache-hot on their current CPU.
 	 */
-	if (!cpu_isset(this_cpu, p->cpus_allowed))
+	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
+		schedstat_inc(p, se.nr_failed_migrations_affine);
 		return 0;
+	}
 	*all_pinned = 0;
 
-	if (task_running(rq, p))
+	if (task_running(rq, p)) {
+		schedstat_inc(p, se.nr_failed_migrations_running);
 		return 0;
+	}
+
+	/*
+	 * Aggressive migration if:
+	 * 1) task is cache cold, or
+	 * 2) too many balance attempts have failed.
+	 */
+
+	if (!task_hot(p, rq->clock, sd) ||
+			sd->nr_balance_failed > sd->cache_nice_tries) {
+#ifdef CONFIG_SCHEDSTATS
+		if (task_hot(p, rq->clock, sd)) {
+			schedstat_inc(sd, lb_hot_gained[idle]);
+			schedstat_inc(p, se.nr_forced_migrations);
+		}
+#endif
+		return 1;
+	}
 
+	if (task_hot(p, rq->clock, sd)) {
+		schedstat_inc(p, se.nr_failed_migrations_hot);
+		return 0;
+	}
 	return 1;
 }
 
@@ -2264,7 +2284,7 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
 		      struct sched_domain *sd, enum cpu_idle_type idle,
 		      int *all_pinned)
 {
-	struct sched_class *class = sched_class_highest;
+	const struct sched_class *class = sched_class_highest;
 	unsigned long total_load_moved = 0;
 	int this_best_prio = this_rq->curr->prio;
 
@@ -2289,7 +2309,7 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
 			 struct sched_domain *sd, enum cpu_idle_type idle)
 {
-	struct sched_class *class;
+	const struct sched_class *class;
 	int this_best_prio = MAX_PRIO;
 
 	for (class = sched_class_highest; class; class = class->next)
@@ -2653,7 +2673,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 		sd_idle = 1;
 
-	schedstat_inc(sd, lb_cnt[idle]);
+	schedstat_inc(sd, lb_count[idle]);
 
 redo:
 	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
@@ -2806,7 +2826,7 @@ load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
 		sd_idle = 1;
 
-	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
+	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
 redo:
 	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
 				   &sd_idle, &cpus, NULL);
@@ -2940,7 +2960,7 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
 	}
 
 	if (likely(sd)) {
-		schedstat_inc(sd, alb_cnt);
+		schedstat_inc(sd, alb_count);
 
 		if (move_one_task(target_rq, target_cpu, busiest_rq,
 				  sd, CPU_IDLE))
@@ -3033,7 +3053,7 @@ static DEFINE_SPINLOCK(balancing);
  *
  * Balancing parameters are set up in arch_init_sched_domains.
  */
-static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
+static void rebalance_domains(int cpu, enum cpu_idle_type idle)
 {
 	int balance = 1;
 	struct rq *rq = cpu_rq(cpu);
@@ -3279,6 +3299,25 @@ void account_user_time(struct task_struct *p, cputime_t cputime)
 		cpustat->user = cputime64_add(cpustat->user, tmp);
 }
 
+/*
+ * Account guest cpu time to a process.
+ * @p: the process that the cpu time gets accounted to
+ * @cputime: the cpu time spent in virtual machine since the last update
+ */
+void account_guest_time(struct task_struct *p, cputime_t cputime)
+{
+	cputime64_t tmp;
+	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
+
+	tmp = cputime_to_cputime64(cputime);
+
+	p->utime = cputime_add(p->utime, cputime);
+	p->gtime = cputime_add(p->gtime, cputime);
+
+	cpustat->user = cputime64_add(cpustat->user, tmp);
+	cpustat->guest = cputime64_add(cpustat->guest, tmp);
+}
+
 /*
  * Account system cpu time to a process.
  * @p: the process that the cpu time gets accounted to
@@ -3292,6 +3331,12 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
 	struct rq *rq = this_rq();
 	cputime64_t tmp;
 
+	if (p->flags & PF_VCPU) {
+		account_guest_time(p, cputime);
+		p->flags &= ~PF_VCPU;
+		return;
+	}
+
 	p->stime = cputime_add(p->stime, cputime);
 
 	/* Add system time to cpustat. */
@@ -3430,7 +3475,13 @@ static inline void schedule_debug(struct task_struct *prev)
 
 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 
-	schedstat_inc(this_rq(), sched_cnt);
+	schedstat_inc(this_rq(), sched_count);
+#ifdef CONFIG_SCHEDSTATS
+	if (unlikely(prev->lock_depth >= 0)) {
+		schedstat_inc(this_rq(), bkl_count);
+		schedstat_inc(prev, sched_info.bkl_count);
+	}
+#endif
 }
 
 /*
@@ -3439,7 +3490,7 @@ static inline void schedule_debug(struct task_struct *prev)
 static inline struct task_struct *
 pick_next_task(struct rq *rq, struct task_struct *prev)
 {
-	struct sched_class *class;
+	const struct sched_class *class;
 	struct task_struct *p;
 
 	/*
@@ -3488,9 +3539,13 @@ need_resched_nonpreemptible:
 
 	schedule_debug(prev);
 
-	spin_lock_irq(&rq->lock);
-	clear_tsk_need_resched(prev);
+	/*
+	 * Do the rq-clock update outside the rq lock:
+	 */
+	local_irq_disable();
 	__update_rq_clock(rq);
+	spin_lock(&rq->lock);
+	clear_tsk_need_resched(prev);
 
 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
 		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
@@ -3550,27 +3605,30 @@ asmlinkage void __sched preempt_schedule(void)
 	if (likely(ti->preempt_count || irqs_disabled()))
 		return;
 
-need_resched:
-	add_preempt_count(PREEMPT_ACTIVE);
-	/*
-	 * We keep the big kernel semaphore locked, but we
-	 * clear ->lock_depth so that schedule() doesnt
-	 * auto-release the semaphore:
-	 */
+	do {
+		add_preempt_count(PREEMPT_ACTIVE);
+
+		/*
+		 * We keep the big kernel semaphore locked, but we
+		 * clear ->lock_depth so that schedule() doesnt
+		 * auto-release the semaphore:
+		 */
 #ifdef CONFIG_PREEMPT_BKL
-	saved_lock_depth = task->lock_depth;
-	task->lock_depth = -1;
+		saved_lock_depth = task->lock_depth;
+		task->lock_depth = -1;
 #endif
-	schedule();
+		schedule();
 #ifdef CONFIG_PREEMPT_BKL
-	task->lock_depth = saved_lock_depth;
+		task->lock_depth = saved_lock_depth;
 #endif
-	sub_preempt_count(PREEMPT_ACTIVE);
+		sub_preempt_count(PREEMPT_ACTIVE);
 
-	/* we could miss a preemption opportunity between schedule and now */
-	barrier();
-	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
-		goto need_resched;
+		/*
+		 * Check again in case we missed a preemption opportunity
+		 * between schedule and now.
+		 */
+		barrier();
+	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
 }
 EXPORT_SYMBOL(preempt_schedule);
 
@@ -3590,29 +3648,32 @@ asmlinkage void __sched preempt_schedule_irq(void)
 	/* Catch callers which need to be fixed */
 	BUG_ON(ti->preempt_count || !irqs_disabled());
 
-need_resched:
-	add_preempt_count(PREEMPT_ACTIVE);
-	/*
-	 * We keep the big kernel semaphore locked, but we
-	 * clear ->lock_depth so that schedule() doesnt
-	 * auto-release the semaphore:
-	 */
+	do {
+		add_preempt_count(PREEMPT_ACTIVE);
+
+		/*
+		 * We keep the big kernel semaphore locked, but we
+		 * clear ->lock_depth so that schedule() doesnt
+		 * auto-release the semaphore:
+		 */
 #ifdef CONFIG_PREEMPT_BKL
-	saved_lock_depth = task->lock_depth;
-	task->lock_depth = -1;
+		saved_lock_depth = task->lock_depth;
+		task->lock_depth = -1;
 #endif
-	local_irq_enable();
-	schedule();
-	local_irq_disable();
+		local_irq_enable();
+		schedule();
+		local_irq_disable();
 #ifdef CONFIG_PREEMPT_BKL
-	task->lock_depth = saved_lock_depth;
+		task->lock_depth = saved_lock_depth;
 #endif
-	sub_preempt_count(PREEMPT_ACTIVE);
+		sub_preempt_count(PREEMPT_ACTIVE);
 
-	/* we could miss a preemption opportunity between schedule and now */
-	barrier();
-	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
-		goto need_resched;
+		/*
+		 * Check again in case we missed a preemption opportunity
+		 * between schedule and now.
+		 */
+		barrier();
+	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
 }
 
 #endif /* CONFIG_PREEMPT */
@@ -3636,10 +3697,9 @@ EXPORT_SYMBOL(default_wake_function);
 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 			     int nr_exclusive, int sync, void *key)
 {
-	struct list_head *tmp, *next;
+	wait_queue_t *curr, *next;
 
-	list_for_each_safe(tmp, next, &q->task_list) {
-		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
+	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
 		unsigned flags = curr->flags;
 
 		if (curr->func(curr, mode, sync, key) &&
@@ -3729,206 +3789,116 @@ void fastcall complete_all(struct completion *x)
 }
 EXPORT_SYMBOL(complete_all);
 
-void fastcall __sched wait_for_completion(struct completion *x)
+static inline long __sched
+do_wait_for_common(struct completion *x, long timeout, int state)
 {
-	might_sleep();
-
-	spin_lock_irq(&x->wait.lock);
 	if (!x->done) {
 		DECLARE_WAITQUEUE(wait, current);
 
 		wait.flags |= WQ_FLAG_EXCLUSIVE;
 		__add_wait_queue_tail(&x->wait, &wait);
 		do {
-			__set_current_state(TASK_UNINTERRUPTIBLE);
-			spin_unlock_irq(&x->wait.lock);
-			schedule();
-			spin_lock_irq(&x->wait.lock);
-		} while (!x->done);
-		__remove_wait_queue(&x->wait, &wait);
-	}
-	x->done--;
-	spin_unlock_irq(&x->wait.lock);
-}
-EXPORT_SYMBOL(wait_for_completion);
-
-unsigned long fastcall __sched
-wait_for_completion_timeout(struct completion *x, unsigned long timeout)
-{
-	might_sleep();
-
-	spin_lock_irq(&x->wait.lock);
-	if (!x->done) {
-		DECLARE_WAITQUEUE(wait, current);
-
-		wait.flags |= WQ_FLAG_EXCLUSIVE;
-		__add_wait_queue_tail(&x->wait, &wait);
-		do {
-			__set_current_state(TASK_UNINTERRUPTIBLE);
+			if (state == TASK_INTERRUPTIBLE &&
+			    signal_pending(current)) {
+				__remove_wait_queue(&x->wait, &wait);
+				return -ERESTARTSYS;
+			}
+			__set_current_state(state);
 			spin_unlock_irq(&x->wait.lock);
 			timeout = schedule_timeout(timeout);
 			spin_lock_irq(&x->wait.lock);
 			if (!timeout) {
 				__remove_wait_queue(&x->wait, &wait);
-				goto out;
+				return timeout;
 			}
 		} while (!x->done);
 		__remove_wait_queue(&x->wait, &wait);
 	}
 	x->done--;
-out:
-	spin_unlock_irq(&x->wait.lock);
 	return timeout;
 }
-EXPORT_SYMBOL(wait_for_completion_timeout);
 
-int fastcall __sched wait_for_completion_interruptible(struct completion *x)
+static long __sched
+wait_for_common(struct completion *x, long timeout, int state)
 {
-	int ret = 0;
-
 	might_sleep();
 
 	spin_lock_irq(&x->wait.lock);
-	if (!x->done) {
-		DECLARE_WAITQUEUE(wait, current);
-
-		wait.flags |= WQ_FLAG_EXCLUSIVE;
-		__add_wait_queue_tail(&x->wait, &wait);
-		do {
-			if (signal_pending(current)) {
-				ret = -ERESTARTSYS;
-				__remove_wait_queue(&x->wait, &wait);
-				goto out;
-			}
-			__set_current_state(TASK_INTERRUPTIBLE);
-			spin_unlock_irq(&x->wait.lock);
-			schedule();
-			spin_lock_irq(&x->wait.lock);
-		} while (!x->done);
-		__remove_wait_queue(&x->wait, &wait);
-	}
-	x->done--;
-out:
+	timeout = do_wait_for_common(x, timeout, state);
 	spin_unlock_irq(&x->wait.lock);
+	return timeout;
+}
 
-	return ret;
+void fastcall __sched wait_for_completion(struct completion *x)
+{
+	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
 }
-EXPORT_SYMBOL(wait_for_completion_interruptible);
+EXPORT_SYMBOL(wait_for_completion);
 
 unsigned long fastcall __sched
-wait_for_completion_interruptible_timeout(struct completion *x,
-					  unsigned long timeout)
+wait_for_completion_timeout(struct completion *x, unsigned long timeout)
 {
-	might_sleep();
-
-	spin_lock_irq(&x->wait.lock);
-	if (!x->done) {
-		DECLARE_WAITQUEUE(wait, current);
-
-		wait.flags |= WQ_FLAG_EXCLUSIVE;
-		__add_wait_queue_tail(&x->wait, &wait);
-		do {
-			if (signal_pending(current)) {
-				timeout = -ERESTARTSYS;
-				__remove_wait_queue(&x->wait, &wait);
-				goto out;
-			}
-			__set_current_state(TASK_INTERRUPTIBLE);
-			spin_unlock_irq(&x->wait.lock);
-			timeout = schedule_timeout(timeout);
-			spin_lock_irq(&x->wait.lock);
-			if (!timeout) {
-				__remove_wait_queue(&x->wait, &wait);
-				goto out;
-			}
-		} while (!x->done);
-		__remove_wait_queue(&x->wait, &wait);
-	}
-	x->done--;
-out:
-	spin_unlock_irq(&x->wait.lock);
-	return timeout;
+	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
 }
-EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
+EXPORT_SYMBOL(wait_for_completion_timeout);
 
-static inline void
-sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
+int __sched wait_for_completion_interruptible(struct completion *x)
 {
-	spin_lock_irqsave(&q->lock, *flags);
-	__add_wait_queue(q, wait);
-	spin_unlock(&q->lock);
+	return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
 }
+EXPORT_SYMBOL(wait_for_completion_interruptible);
 
-static inline void
-sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
+unsigned long fastcall __sched
+wait_for_completion_interruptible_timeout(struct completion *x,
+					  unsigned long timeout)
 {
-	spin_lock_irq(&q->lock);
-	__remove_wait_queue(q, wait);
-	spin_unlock_irqrestore(&q->lock, *flags);
+	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
 }
+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
 
-void __sched interruptible_sleep_on(wait_queue_head_t *q)
+static long __sched
+sleep_on_common(wait_queue_head_t *q, int state, long timeout)
 {
 	unsigned long flags;
 	wait_queue_t wait;
 
 	init_waitqueue_entry(&wait, current);
 
-	current->state = TASK_INTERRUPTIBLE;
+	__set_current_state(state);
 
-	sleep_on_head(q, &wait, &flags);
-	schedule();
-	sleep_on_tail(q, &wait, &flags);
+	spin_lock_irqsave(&q->lock, flags);
+	__add_wait_queue(q, &wait);
+	spin_unlock(&q->lock);
+	timeout = schedule_timeout(timeout);
+	spin_lock_irq(&q->lock);
+	__remove_wait_queue(q, &wait);
+	spin_unlock_irqrestore(&q->lock, flags);
+
+	return timeout;
+}
+
+void __sched interruptible_sleep_on(wait_queue_head_t *q)
+{
+	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
 }
 EXPORT_SYMBOL(interruptible_sleep_on);
 
 long __sched
 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
 {
-	unsigned long flags;
-	wait_queue_t wait;
-
-	init_waitqueue_entry(&wait, current);
-
-	current->state = TASK_INTERRUPTIBLE;
-
-	sleep_on_head(q, &wait, &flags);
-	timeout = schedule_timeout(timeout);
-	sleep_on_tail(q, &wait, &flags);
-
-	return timeout;
+	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
 }
 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
 
 void __sched sleep_on(wait_queue_head_t *q)
 {
-	unsigned long flags;
-	wait_queue_t wait;
-
-	init_waitqueue_entry(&wait, current);
-
-	current->state = TASK_UNINTERRUPTIBLE;
-
-	sleep_on_head(q, &wait, &flags);
-	schedule();
-	sleep_on_tail(q, &wait, &flags);
+	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
 }
 EXPORT_SYMBOL(sleep_on);
 
 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
 {
-	unsigned long flags;
-	wait_queue_t wait;
-
-	init_waitqueue_entry(&wait, current);
-
-	current->state = TASK_UNINTERRUPTIBLE;
-
-	sleep_on_head(q, &wait, &flags);
-	timeout = schedule_timeout(timeout);
-	sleep_on_tail(q, &wait, &flags);
-
-	return timeout;
+	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
 }
 EXPORT_SYMBOL(sleep_on_timeout);
 
@@ -3947,7 +3917,7 @@ EXPORT_SYMBOL(sleep_on_timeout);
 void rt_mutex_setprio(struct task_struct *p, int prio)
 {
 	unsigned long flags;
-	int oldprio, on_rq;
+	int oldprio, on_rq, running;
 	struct rq *rq;
 
 	BUG_ON(prio < 0 || prio > MAX_PRIO);
@@ -3957,8 +3927,12 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
 
 	oldprio = p->prio;
 	on_rq = p->se.on_rq;
-	if (on_rq)
+	running = task_running(rq, p);
+	if (on_rq) {
 		dequeue_task(rq, p, 0);
+		if (running)
+			p->sched_class->put_prev_task(rq, p);
+	}
 
 	if (rt_prio(prio))
 		p->sched_class = &rt_sched_class;
@@ -3968,13 +3942,15 @@ void rt_mutex_setprio(struct task_struct *p, int prio)
 	p->prio = prio;
 
 	if (on_rq) {
+		if (running)
+			p->sched_class->set_curr_task(rq);
 		enqueue_task(rq, p, 0);
 		/*
 		 * Reschedule if we are currently running on this runqueue and
 		 * our priority decreased, or if we are not currently running on
 		 * this runqueue and our priority is higher than the current's
 		 */
-		if (task_running(rq, p)) {
+		if (running) {
 			if (p->prio > oldprio)
 				resched_task(rq->curr);
 		} else {
@@ -4138,7 +4114,7 @@ struct task_struct *idle_task(int cpu)
  * find_process_by_pid - find a process with a matching PID value.
  * @pid: the pid in question.
  */
-static inline struct task_struct *find_process_by_pid(pid_t pid)
+static struct task_struct *find_process_by_pid(pid_t pid)
 {
 	return pid ? find_task_by_pid(pid) : current;
 }
@@ -4180,7 +4156,7 @@ __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
 int sched_setscheduler(struct task_struct *p, int policy,
 		       struct sched_param *param)
 {
-	int retval, oldprio, oldpolicy = -1, on_rq;
+	int retval, oldprio, oldpolicy = -1, on_rq, running;
 	unsigned long flags;
 	struct rq *rq;
 
@@ -4262,18 +4238,26 @@ recheck:
 	}
 	update_rq_clock(rq);
 	on_rq = p->se.on_rq;
-	if (on_rq)
+	running = task_running(rq, p);
+	if (on_rq) {
 		deactivate_task(rq, p, 0);
+		if (running)
+			p->sched_class->put_prev_task(rq, p);
+	}
+
 	oldprio = p->prio;
 	__setscheduler(rq, p, policy, param->sched_priority);
+
 	if (on_rq) {
+		if (running)
+			p->sched_class->set_curr_task(rq);
 		activate_task(rq, p, 0);
 		/*
 		 * Reschedule if we are currently running on this runqueue and
 		 * our priority decreased, or if we are not currently running on
 		 * this runqueue and our priority is higher than the current's
 		 */
-		if (task_running(rq, p)) {
+		if (running) {
 			if (p->prio > oldprio)
 				resched_task(rq->curr);
 		} else {
@@ -4344,10 +4328,10 @@ asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
 asmlinkage long sys_sched_getscheduler(pid_t pid)
 {
 	struct task_struct *p;
-	int retval = -EINVAL;
+	int retval;
 
 	if (pid < 0)
-		goto out_nounlock;
+		return -EINVAL;
 
 	retval = -ESRCH;
 	read_lock(&tasklist_lock);
@@ -4358,8 +4342,6 @@ asmlinkage long sys_sched_getscheduler(pid_t pid)
 			retval = p->policy;
 	}
 	read_unlock(&tasklist_lock);
-
-out_nounlock:
 	return retval;
 }
 
@@ -4372,10 +4354,10 @@ asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
 {
 	struct sched_param lp;
 	struct task_struct *p;
-	int retval = -EINVAL;
+	int retval;
 
 	if (!param || pid < 0)
-		goto out_nounlock;
+		return -EINVAL;
 
 	read_lock(&tasklist_lock);
 	p = find_process_by_pid(pid);
@@ -4395,7 +4377,6 @@ asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
 	 */
 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 
-out_nounlock:
 	return retval;
 
 out_unlock:
@@ -4555,8 +4536,8 @@ asmlinkage long sys_sched_yield(void)
 {
 	struct rq *rq = this_rq_lock();
 
-	schedstat_inc(rq, yld_cnt);
-	current->sched_class->yield_task(rq, current);
+	schedstat_inc(rq, yld_count);
+	current->sched_class->yield_task(rq);
 
 	/*
 	 * Since we are going to call schedule() anyway, there's
@@ -4750,11 +4731,12 @@ asmlinkage
 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
 {
 	struct task_struct *p;
-	int retval = -EINVAL;
+	unsigned int time_slice;
+	int retval;
 	struct timespec t;
 
 	if (pid < 0)
-		goto out_nounlock;
+		return -EINVAL;
 
 	retval = -ESRCH;
 	read_lock(&tasklist_lock);
@@ -4766,12 +4748,24 @@ long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
 	if (retval)
 		goto out_unlock;
 
-	jiffies_to_timespec(p->policy == SCHED_FIFO ?
-				0 : static_prio_timeslice(p->static_prio), &t);
+	if (p->policy == SCHED_FIFO)
+		time_slice = 0;
+	else if (p->policy == SCHED_RR)
+		time_slice = DEF_TIMESLICE;
+	else {
+		struct sched_entity *se = &p->se;
+		unsigned long flags;
+		struct rq *rq;
+
+		rq = task_rq_lock(p, &flags);
+		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
+		task_rq_unlock(rq, &flags);
+	}
 	read_unlock(&tasklist_lock);
+	jiffies_to_timespec(time_slice, &t);
 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-out_nounlock:
 	return retval;
+
 out_unlock:
 	read_unlock(&tasklist_lock);
 	return retval;
@@ -4900,32 +4894,6 @@ void __cpuinit init_idle(struct task_struct *idle, int cpu)
  */
 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
 
-/*
- * Increase the granularity value when there are more CPUs,
- * because with more CPUs the 'effective latency' as visible
- * to users decreases. But the relationship is not linear,
- * so pick a second-best guess by going with the log2 of the
- * number of CPUs.
- *
- * This idea comes from the SD scheduler of Con Kolivas:
- */
-static inline void sched_init_granularity(void)
-{
-	unsigned int factor = 1 + ilog2(num_online_cpus());
-	const unsigned long limit = 100000000;
-
-	sysctl_sched_min_granularity *= factor;
-	if (sysctl_sched_min_granularity > limit)
-		sysctl_sched_min_granularity = limit;
-
-	sysctl_sched_latency *= factor;
-	if (sysctl_sched_latency > limit)
-		sysctl_sched_latency = limit;
-
-	sysctl_sched_runtime_limit = sysctl_sched_latency;
-	sysctl_sched_wakeup_granularity = sysctl_sched_min_granularity / 2;
-}
-
 #ifdef CONFIG_SMP
 /*
  * This is how migration works:
@@ -5103,35 +5071,34 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
 	struct rq *rq;
 	int dest_cpu;
 
-restart:
-	/* On same node? */
-	mask = node_to_cpumask(cpu_to_node(dead_cpu));
-	cpus_and(mask, mask, p->cpus_allowed);
-	dest_cpu = any_online_cpu(mask);
-
-	/* On any allowed CPU? */
-	if (dest_cpu == NR_CPUS)
-		dest_cpu = any_online_cpu(p->cpus_allowed);
-
-	/* No more Mr. Nice Guy. */
-	if (dest_cpu == NR_CPUS) {
-		rq = task_rq_lock(p, &flags);
-		cpus_setall(p->cpus_allowed);
-		dest_cpu = any_online_cpu(p->cpus_allowed);
-		task_rq_unlock(rq, &flags);
+	do {
+		/* On same node? */
+		mask = node_to_cpumask(cpu_to_node(dead_cpu));
+		cpus_and(mask, mask, p->cpus_allowed);
+		dest_cpu = any_online_cpu(mask);
+
+		/* On any allowed CPU? */
+		if (dest_cpu == NR_CPUS)
+			dest_cpu = any_online_cpu(p->cpus_allowed);
+
+		/* No more Mr. Nice Guy. */
+		if (dest_cpu == NR_CPUS) {
+			rq = task_rq_lock(p, &flags);
+			cpus_setall(p->cpus_allowed);
+			dest_cpu = any_online_cpu(p->cpus_allowed);
+			task_rq_unlock(rq, &flags);
 
-		/*
-		 * Don't tell them about moving exiting tasks or
-		 * kernel threads (both mm NULL), since they never
-		 * leave kernel.
-		 */
-		if (p->mm && printk_ratelimit())
-			printk(KERN_INFO "process %d (%s) no "
-			       "longer affine to cpu%d\n",
-			       p->pid, p->comm, dead_cpu);
-	}
-	if (!__migrate_task(p, dead_cpu, dest_cpu))
-		goto restart;
+			/*
+			 * Don't tell them about moving exiting tasks or
+			 * kernel threads (both mm NULL), since they never
+			 * leave kernel.
+			 */
+			if (p->mm && printk_ratelimit())
+				printk(KERN_INFO "process %d (%s) no "
+				       "longer affine to cpu%d\n",
+				       p->pid, p->comm, dead_cpu);
+		}
+	} while (!__migrate_task(p, dead_cpu, dest_cpu));
 }
 
 /*
@@ -5172,6 +5139,20 @@ static void migrate_live_tasks(int src_cpu)
 	write_unlock_irq(&tasklist_lock);
 }
 
+/*
+ * activate_idle_task - move idle task to the _front_ of runqueue.
+ */
+static void activate_idle_task(struct task_struct *p, struct rq *rq)
+{
+	update_rq_clock(rq);
+
+	if (p->state == TASK_UNINTERRUPTIBLE)
+		rq->nr_uninterruptible--;
+
+	enqueue_task(rq, p, 0);
+	inc_nr_running(p, rq);
+}
+
 /*
  * Schedules idle task to be the next runnable task on current CPU.
  * It does so by boosting its priority to highest possible and adding it to
@@ -5284,14 +5265,23 @@ static struct ctl_table sd_ctl_root[] = {
 static struct ctl_table *sd_alloc_ctl_entry(int n)
 {
 	struct ctl_table *entry =
-		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
-
-	BUG_ON(!entry);
-	memset(entry, 0, n * sizeof(struct ctl_table));
+		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
 
 	return entry;
 }
 
+static void sd_free_ctl_entry(struct ctl_table **tablep)
+{
+	struct ctl_table *entry = *tablep;
+
+	for (entry = *tablep; entry->procname; entry++)
+		if (entry->child)
+			sd_free_ctl_entry(&entry->child);
+
+	kfree(*tablep);
+	*tablep = NULL;
+}
+
 static void
 set_table_entry(struct ctl_table *entry,
 		const char *procname, void *data, int maxlen,
@@ -5307,7 +5297,10 @@ set_table_entry(struct ctl_table *entry,
 static struct ctl_table *
 sd_alloc_ctl_domain_table(struct sched_domain *sd)
 {
-	struct ctl_table *table = sd_alloc_ctl_entry(14);
+	struct ctl_table *table = sd_alloc_ctl_entry(12);
+
+	if (table == NULL)
+		return NULL;
 
 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
 		sizeof(long), 0644, proc_doulongvec_minmax);
@@ -5327,11 +5320,12 @@ sd_alloc_ctl_domain_table(struct sched_domain *sd)
 		sizeof(int), 0644, proc_dointvec_minmax);
 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
 		sizeof(int), 0644, proc_dointvec_minmax);
-	set_table_entry(&table[10], "cache_nice_tries",
+	set_table_entry(&table[9], "cache_nice_tries",
 		&sd->cache_nice_tries,
 		sizeof(int), 0644, proc_dointvec_minmax);
-	set_table_entry(&table[12], "flags", &sd->flags,
+	set_table_entry(&table[10], "flags", &sd->flags,
 		sizeof(int), 0644, proc_dointvec_minmax);
+	/* &table[11] is terminator */
 
 	return table;
 }
@@ -5346,6 +5340,8 @@ static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 	for_each_domain(cpu, sd)
 		domain_num++;
 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
+	if (table == NULL)
+		return NULL;
 
 	i = 0;
 	for_each_domain(cpu, sd) {
@@ -5360,24 +5356,38 @@ static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 }
 
 static struct ctl_table_header *sd_sysctl_header;
-static void init_sched_domain_sysctl(void)
+static void register_sched_domain_sysctl(void)
 {
 	int i, cpu_num = num_online_cpus();
 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
 	char buf[32];
 
+	if (entry == NULL)
+		return;
+
 	sd_ctl_dir[0].child = entry;
 
-	for (i = 0; i < cpu_num; i++, entry++) {
+	for_each_online_cpu(i) {
 		snprintf(buf, 32, "cpu%d", i);
 		entry->procname = kstrdup(buf, GFP_KERNEL);
 		entry->mode = 0555;
 		entry->child = sd_alloc_ctl_cpu_table(i);
+		entry++;
 	}
 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
 }
+
+static void unregister_sched_domain_sysctl(void)
+{
+	unregister_sysctl_table(sd_sysctl_header);
+	sd_sysctl_header = NULL;
+	sd_free_ctl_entry(&sd_ctl_dir[0].child);
+}
 #else
-static void init_sched_domain_sysctl(void)
+static void register_sched_domain_sysctl(void)
+{
+}
+static void unregister_sched_domain_sysctl(void)
 {
 }
 #endif
@@ -5499,8 +5509,7 @@ int __init migration_init(void)
 int nr_cpu_ids __read_mostly = NR_CPUS;
 EXPORT_SYMBOL(nr_cpu_ids);
 
-#undef SCHED_DOMAIN_DEBUG
-#ifdef SCHED_DOMAIN_DEBUG
+#ifdef CONFIG_SCHED_DEBUG
 static void sched_domain_debug(struct sched_domain *sd, int cpu)
 {
 	int level = 0;
@@ -5558,16 +5567,19 @@ static void sched_domain_debug(struct sched_domain *sd, int cpu)
 				printk("\n");
 				printk(KERN_ERR "ERROR: domain->cpu_power not "
 						"set\n");
+				break;
 			}
 
 			if (!cpus_weight(group->cpumask)) {
 				printk("\n");
 				printk(KERN_ERR "ERROR: empty group\n");
+				break;
 			}
 
 			if (cpus_intersects(groupmask, group->cpumask)) {
 				printk("\n");
 				printk(KERN_ERR "ERROR: repeated CPUs\n");
+				break;
 			}
 
 			cpus_or(groupmask, groupmask, group->cpumask);
@@ -5701,7 +5713,7 @@ static int __init isolated_cpu_setup(char *str)
 	return 1;
 }
 
-__setup ("isolcpus=", isolated_cpu_setup);
+__setup("isolcpus=", isolated_cpu_setup);
 
 /*
  * init_sched_build_groups takes the cpumask we wish to span, and a pointer
@@ -5930,24 +5942,23 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
 
 	if (!sg)
 		return;
-next_sg:
-	for_each_cpu_mask(j, sg->cpumask) {
-		struct sched_domain *sd;
+	do {
+		for_each_cpu_mask(j, sg->cpumask) {
+			struct sched_domain *sd;
 
-		sd = &per_cpu(phys_domains, j);
-		if (j != first_cpu(sd->groups->cpumask)) {
-			/*
-			 * Only add "power" once for each
-			 * physical package.
-			 */
-			continue;
-		}
+			sd = &per_cpu(phys_domains, j);
+			if (j != first_cpu(sd->groups->cpumask)) {
+				/*
+				 * Only add "power" once for each
+				 * physical package.
+				 */
+				continue;
+			}
 
-		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
-	}
-	sg = sg->next;
-	if (sg != group_head)
-		goto next_sg;
+			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
+		}
+		sg = sg->next;
+	} while (sg != group_head);
 }
 #endif
 
@@ -6058,7 +6069,7 @@ static int build_sched_domains(const cpumask_t *cpu_map)
 	/*
 	 * Allocate the per-node list of sched groups
 	 */
-	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
+	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
 					   GFP_KERNEL);
 	if (!sched_group_nodes) {
 		printk(KERN_WARNING "Can not alloc sched group node list\n");
@@ -6311,6 +6322,8 @@ static int arch_init_sched_domains(const cpumask_t *cpu_map)
 
 	err = build_sched_domains(&cpu_default_map);
 
+	register_sched_domain_sysctl();
+
 	return err;
 }
 
@@ -6327,6 +6340,8 @@ static void detach_destroy_domains(const cpumask_t *cpu_map)
 {
 	int i;
 
+	unregister_sched_domain_sysctl();
+
 	for_each_cpu_mask(i, *cpu_map)
 		cpu_attach_domain(NULL, i);
 	synchronize_sched();
@@ -6357,6 +6372,8 @@ int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
 	if (!err && !cpus_empty(*partition2))
 		err = build_sched_domains(partition2);
 
+	register_sched_domain_sysctl();
+
 	return err;
 }
 
@@ -6488,17 +6505,13 @@ void __init sched_init_smp(void)
 	/* XXX: Theoretical race here - CPU may be hotplugged now */
 	hotcpu_notifier(update_sched_domains, 0);
 
-	init_sched_domain_sysctl();
-
 	/* Move init over to a non-isolated CPU */
 	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
 		BUG();
-	sched_init_granularity();
 }
 #else
 void __init sched_init_smp(void)
 {
-	sched_init_granularity();
 }
 #endif /* CONFIG_SMP */
 
@@ -6512,28 +6525,20 @@ int in_sched_functions(unsigned long addr)
 		&& addr < (unsigned long)__sched_text_end);
 }
 
-static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
+static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
 {
 	cfs_rq->tasks_timeline = RB_ROOT;
-	cfs_rq->fair_clock = 1;
 #ifdef CONFIG_FAIR_GROUP_SCHED
 	cfs_rq->rq = rq;
 #endif
+	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
 }
 
 void __init sched_init(void)
 {
-	u64 now = sched_clock();
 	int highest_cpu = 0;
 	int i, j;
 
-	/*
-	 * Link up the scheduling class hierarchy:
-	 */
-	rt_sched_class.next = &fair_sched_class;
-	fair_sched_class.next = &idle_sched_class;
-	idle_sched_class.next = NULL;
-
 	for_each_possible_cpu(i) {
 		struct rt_prio_array *array;
 		struct rq *rq;
@@ -6546,10 +6551,28 @@ void __init sched_init(void)
 		init_cfs_rq(&rq->cfs, rq);
 #ifdef CONFIG_FAIR_GROUP_SCHED
 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
-		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
+		{
+			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
+			struct sched_entity *se =
+					 &per_cpu(init_sched_entity, i);
+
+			init_cfs_rq_p[i] = cfs_rq;
+			init_cfs_rq(cfs_rq, rq);
+			cfs_rq->tg = &init_task_group;
+			list_add(&cfs_rq->leaf_cfs_rq_list,
+							 &rq->leaf_cfs_rq_list);
+
+			init_sched_entity_p[i] = se;
+			se->cfs_rq = &rq->cfs;
+			se->my_q = cfs_rq;
+			se->load.weight = init_task_group_load;
+			se->load.inv_weight =
+				 div64_64(1ULL<<32, init_task_group_load);
+			se->parent = NULL;
+		}
+		init_task_group.shares = init_task_group_load;
+		spin_lock_init(&init_task_group.lock);
 #endif
-		rq->ls.load_update_last = now;
-		rq->ls.load_update_start = now;
 
 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
 			rq->cpu_load[j] = 0;
@@ -6634,26 +6657,40 @@ EXPORT_SYMBOL(__might_sleep);
 #endif
 
 #ifdef CONFIG_MAGIC_SYSRQ
+static void normalize_task(struct rq *rq, struct task_struct *p)
+{
+	int on_rq;
+	update_rq_clock(rq);
+	on_rq = p->se.on_rq;
+	if (on_rq)
+		deactivate_task(rq, p, 0);
+	__setscheduler(rq, p, SCHED_NORMAL, 0);
+	if (on_rq) {
+		activate_task(rq, p, 0);
+		resched_task(rq->curr);
+	}
+}
+
 void normalize_rt_tasks(void)
 {
 	struct task_struct *g, *p;
 	unsigned long flags;
 	struct rq *rq;
-	int on_rq;
 
 	read_lock_irq(&tasklist_lock);
 	do_each_thread(g, p) {
-		p->se.fair_key			= 0;
-		p->se.wait_runtime		= 0;
+		/*
+		 * Only normalize user tasks:
+		 */
+		if (!p->mm)
+			continue;
+
 		p->se.exec_start		= 0;
-		p->se.wait_start_fair		= 0;
-		p->se.sleep_start_fair		= 0;
 #ifdef CONFIG_SCHEDSTATS
 		p->se.wait_start		= 0;
 		p->se.sleep_start		= 0;
 		p->se.block_start		= 0;
 #endif
-		task_rq(p)->cfs.fair_clock	= 0;
 		task_rq(p)->clock		= 0;
 
 		if (!rt_task(p)) {
@@ -6668,26 +6705,9 @@ void normalize_rt_tasks(void)
 
 		spin_lock_irqsave(&p->pi_lock, flags);
 		rq = __task_rq_lock(p);
-#ifdef CONFIG_SMP
-		/*
-		 * Do not touch the migration thread:
-		 */
-		if (p == rq->migration_thread)
-			goto out_unlock;
-#endif
 
-		update_rq_clock(rq);
-		on_rq = p->se.on_rq;
-		if (on_rq)
-			deactivate_task(rq, p, 0);
-		__setscheduler(rq, p, SCHED_NORMAL, 0);
-		if (on_rq) {
-			activate_task(rq, p, 0);
-			resched_task(rq->curr);
-		}
-#ifdef CONFIG_SMP
- out_unlock:
-#endif
+		normalize_task(rq, p);
+
 		__task_rq_unlock(rq);
 		spin_unlock_irqrestore(&p->pi_lock, flags);
 	} while_each_thread(g, p);
@@ -6740,3 +6760,201 @@ void set_curr_task(int cpu, struct task_struct *p)
 }
 
 #endif
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+/* allocate runqueue etc for a new task group */
+struct task_group *sched_create_group(void)
+{
+	struct task_group *tg;
+	struct cfs_rq *cfs_rq;
+	struct sched_entity *se;
+	struct rq *rq;
+	int i;
+
+	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
+	if (!tg)
+		return ERR_PTR(-ENOMEM);
+
+	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
+	if (!tg->cfs_rq)
+		goto err;
+	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
+	if (!tg->se)
+		goto err;
+
+	for_each_possible_cpu(i) {
+		rq = cpu_rq(i);
+
+		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
+							 cpu_to_node(i));
+		if (!cfs_rq)
+			goto err;
+
+		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
+							cpu_to_node(i));
+		if (!se)
+			goto err;
+
+		memset(cfs_rq, 0, sizeof(struct cfs_rq));
+		memset(se, 0, sizeof(struct sched_entity));
+
+		tg->cfs_rq[i] = cfs_rq;
+		init_cfs_rq(cfs_rq, rq);
+		cfs_rq->tg = tg;
+
+		tg->se[i] = se;
+		se->cfs_rq = &rq->cfs;
+		se->my_q = cfs_rq;
+		se->load.weight = NICE_0_LOAD;
+		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
+		se->parent = NULL;
+	}
+
+	for_each_possible_cpu(i) {
+		rq = cpu_rq(i);
+		cfs_rq = tg->cfs_rq[i];
+		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
+	}
+
+	tg->shares = NICE_0_LOAD;
+	spin_lock_init(&tg->lock);
+
+	return tg;
+
+err:
+	for_each_possible_cpu(i) {
+		if (tg->cfs_rq)
+			kfree(tg->cfs_rq[i]);
+		if (tg->se)
+			kfree(tg->se[i]);
+	}
+	kfree(tg->cfs_rq);
+	kfree(tg->se);
+	kfree(tg);
+
+	return ERR_PTR(-ENOMEM);
+}
+
+/* rcu callback to free various structures associated with a task group */
+static void free_sched_group(struct rcu_head *rhp)
+{
+	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
+	struct task_group *tg = cfs_rq->tg;
+	struct sched_entity *se;
+	int i;
+
+	/* now it should be safe to free those cfs_rqs */
+	for_each_possible_cpu(i) {
+		cfs_rq = tg->cfs_rq[i];
+		kfree(cfs_rq);
+
+		se = tg->se[i];
+		kfree(se);
+	}
+
+	kfree(tg->cfs_rq);
+	kfree(tg->se);
+	kfree(tg);
+}
+
+/* Destroy runqueue etc associated with a task group */
+void sched_destroy_group(struct task_group *tg)
+{
+	struct cfs_rq *cfs_rq;
+	int i;
+
+	for_each_possible_cpu(i) {
+		cfs_rq = tg->cfs_rq[i];
+		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
+	}
+
+	cfs_rq = tg->cfs_rq[0];
+
+	/* wait for possible concurrent references to cfs_rqs complete */
+	call_rcu(&cfs_rq->rcu, free_sched_group);
+}
+
+/* change task's runqueue when it moves between groups.
+ *	The caller of this function should have put the task in its new group
+ *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
+ *	reflect its new group.
+ */
+void sched_move_task(struct task_struct *tsk)
+{
+	int on_rq, running;
+	unsigned long flags;
+	struct rq *rq;
+
+	rq = task_rq_lock(tsk, &flags);
+
+	if (tsk->sched_class != &fair_sched_class)
+		goto done;
+
+	update_rq_clock(rq);
+
+	running = task_running(rq, tsk);
+	on_rq = tsk->se.on_rq;
+
+	if (on_rq) {
+		dequeue_task(rq, tsk, 0);
+		if (unlikely(running))
+			tsk->sched_class->put_prev_task(rq, tsk);
+	}
+
+	set_task_cfs_rq(tsk);
+
+	if (on_rq) {
+		if (unlikely(running))
+			tsk->sched_class->set_curr_task(rq);
+		enqueue_task(rq, tsk, 0);
+	}
+
+done:
+	task_rq_unlock(rq, &flags);
+}
+
+static void set_se_shares(struct sched_entity *se, unsigned long shares)
+{
+	struct cfs_rq *cfs_rq = se->cfs_rq;
+	struct rq *rq = cfs_rq->rq;
+	int on_rq;
+
+	spin_lock_irq(&rq->lock);
+
+	on_rq = se->on_rq;
+	if (on_rq)
+		dequeue_entity(cfs_rq, se, 0);
+
+	se->load.weight = shares;
+	se->load.inv_weight = div64_64((1ULL<<32), shares);
+
+	if (on_rq)
+		enqueue_entity(cfs_rq, se, 0);
+
+	spin_unlock_irq(&rq->lock);
+}
+
+int sched_group_set_shares(struct task_group *tg, unsigned long shares)
+{
+	int i;
+
+	spin_lock(&tg->lock);
+	if (tg->shares == shares)
+		goto done;
+
+	tg->shares = shares;
+	for_each_possible_cpu(i)
+		set_se_shares(tg->se[i], shares);
+
+done:
+	spin_unlock(&tg->lock);
+	return 0;
+}
+
+unsigned long sched_group_shares(struct task_group *tg)
+{
+	return tg->shares;
+}
+
+#endif	/* CONFIG_FAIR_GROUP_SCHED */

+ 194 - 88
kernel/sched_debug.c

@@ -28,6 +28,31 @@
 		printk(x);			\
  } while (0)
 
+/*
+ * Ease the printing of nsec fields:
+ */
+static long long nsec_high(long long nsec)
+{
+	if (nsec < 0) {
+		nsec = -nsec;
+		do_div(nsec, 1000000);
+		return -nsec;
+	}
+	do_div(nsec, 1000000);
+
+	return nsec;
+}
+
+static unsigned long nsec_low(long long nsec)
+{
+	if (nsec < 0)
+		nsec = -nsec;
+
+	return do_div(nsec, 1000000);
+}
+
+#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
+
 static void
 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 {
@@ -36,23 +61,19 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
 	else
 		SEQ_printf(m, " ");
 
-	SEQ_printf(m, "%15s %5d %15Ld %13Ld %13Ld %9Ld %5d ",
+	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
 		p->comm, p->pid,
-		(long long)p->se.fair_key,
-		(long long)(p->se.fair_key - rq->cfs.fair_clock),
-		(long long)p->se.wait_runtime,
+		SPLIT_NS(p->se.vruntime),
 		(long long)(p->nvcsw + p->nivcsw),
 		p->prio);
 #ifdef CONFIG_SCHEDSTATS
-	SEQ_printf(m, "%15Ld %15Ld %15Ld %15Ld %15Ld\n",
-		(long long)p->se.sum_exec_runtime,
-		(long long)p->se.sum_wait_runtime,
-		(long long)p->se.sum_sleep_runtime,
-		(long long)p->se.wait_runtime_overruns,
-		(long long)p->se.wait_runtime_underruns);
+	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld\n",
+		SPLIT_NS(p->se.vruntime),
+		SPLIT_NS(p->se.sum_exec_runtime),
+		SPLIT_NS(p->se.sum_sleep_runtime));
 #else
-	SEQ_printf(m, "%15Ld %15Ld %15Ld %15Ld %15Ld\n",
-		0LL, 0LL, 0LL, 0LL, 0LL);
+	SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld\n",
+		0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
 #endif
 }
 
@@ -62,14 +83,10 @@ static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 
 	SEQ_printf(m,
 	"\nrunnable tasks:\n"
-	"            task   PID        tree-key         delta       waiting"
-	"  switches  prio"
-	"        sum-exec        sum-wait       sum-sleep"
-	"    wait-overrun   wait-underrun\n"
-	"------------------------------------------------------------------"
-	"----------------"
-	"------------------------------------------------"
-	"--------------------------------\n");
+	"            task   PID         tree-key  switches  prio"
+	"     exec-runtime         sum-exec        sum-sleep\n"
+	"------------------------------------------------------"
+	"----------------------------------------------------\n");
 
 	read_lock_irq(&tasklist_lock);
 
@@ -83,45 +100,48 @@ static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
 	read_unlock_irq(&tasklist_lock);
 }
 
-static void
-print_cfs_rq_runtime_sum(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
+void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
 {
-	s64 wait_runtime_rq_sum = 0;
-	struct task_struct *p;
-	struct rb_node *curr;
-	unsigned long flags;
+	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
+		spread, rq0_min_vruntime, spread0;
 	struct rq *rq = &per_cpu(runqueues, cpu);
+	struct sched_entity *last;
+	unsigned long flags;
 
-	spin_lock_irqsave(&rq->lock, flags);
-	curr = first_fair(cfs_rq);
-	while (curr) {
-		p = rb_entry(curr, struct task_struct, se.run_node);
-		wait_runtime_rq_sum += p->se.wait_runtime;
-
-		curr = rb_next(curr);
-	}
-	spin_unlock_irqrestore(&rq->lock, flags);
-
-	SEQ_printf(m, "  .%-30s: %Ld\n", "wait_runtime_rq_sum",
-		(long long)wait_runtime_rq_sum);
-}
-
-void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
-{
 	SEQ_printf(m, "\ncfs_rq\n");
 
-#define P(x) \
-	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(cfs_rq->x))
-
-	P(fair_clock);
-	P(exec_clock);
-	P(wait_runtime);
-	P(wait_runtime_overruns);
-	P(wait_runtime_underruns);
-	P(sleeper_bonus);
-#undef P
+	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
+			SPLIT_NS(cfs_rq->exec_clock));
 
-	print_cfs_rq_runtime_sum(m, cpu, cfs_rq);
+	spin_lock_irqsave(&rq->lock, flags);
+	if (cfs_rq->rb_leftmost)
+		MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
+	last = __pick_last_entity(cfs_rq);
+	if (last)
+		max_vruntime = last->vruntime;
+	min_vruntime = rq->cfs.min_vruntime;
+	rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime;
+	spin_unlock_irqrestore(&rq->lock, flags);
+	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
+			SPLIT_NS(MIN_vruntime));
+	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
+			SPLIT_NS(min_vruntime));
+	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
+			SPLIT_NS(max_vruntime));
+	spread = max_vruntime - MIN_vruntime;
+	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
+			SPLIT_NS(spread));
+	spread0 = min_vruntime - rq0_min_vruntime;
+	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
+			SPLIT_NS(spread0));
+	SEQ_printf(m, "  .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
+	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
+#ifdef CONFIG_SCHEDSTATS
+	SEQ_printf(m, "  .%-30s: %ld\n", "bkl_count",
+			rq->bkl_count);
+#endif
+	SEQ_printf(m, "  .%-30s: %ld\n", "nr_spread_over",
+			cfs_rq->nr_spread_over);
 }
 
 static void print_cpu(struct seq_file *m, int cpu)
@@ -141,31 +161,32 @@ static void print_cpu(struct seq_file *m, int cpu)
 
 #define P(x) \
 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x))
+#define PN(x) \
+	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
 
 	P(nr_running);
 	SEQ_printf(m, "  .%-30s: %lu\n", "load",
-		   rq->ls.load.weight);
-	P(ls.delta_fair);
-	P(ls.delta_exec);
+		   rq->load.weight);
 	P(nr_switches);
 	P(nr_load_updates);
 	P(nr_uninterruptible);
 	SEQ_printf(m, "  .%-30s: %lu\n", "jiffies", jiffies);
-	P(next_balance);
+	PN(next_balance);
 	P(curr->pid);
-	P(clock);
-	P(idle_clock);
-	P(prev_clock_raw);
+	PN(clock);
+	PN(idle_clock);
+	PN(prev_clock_raw);
 	P(clock_warps);
 	P(clock_overflows);
 	P(clock_deep_idle_events);
-	P(clock_max_delta);
+	PN(clock_max_delta);
 	P(cpu_load[0]);
 	P(cpu_load[1]);
 	P(cpu_load[2]);
 	P(cpu_load[3]);
 	P(cpu_load[4]);
 #undef P
+#undef PN
 
 	print_cfs_stats(m, cpu);
 
@@ -177,12 +198,25 @@ static int sched_debug_show(struct seq_file *m, void *v)
 	u64 now = ktime_to_ns(ktime_get());
 	int cpu;
 
-	SEQ_printf(m, "Sched Debug Version: v0.05-v20, %s %.*s\n",
+	SEQ_printf(m, "Sched Debug Version: v0.06-v22, %s %.*s\n",
 		init_utsname()->release,
 		(int)strcspn(init_utsname()->version, " "),
 		init_utsname()->version);
 
-	SEQ_printf(m, "now at %Lu nsecs\n", (unsigned long long)now);
+	SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
+
+#define P(x) \
+	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
+#define PN(x) \
+	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
+	PN(sysctl_sched_latency);
+	PN(sysctl_sched_nr_latency);
+	PN(sysctl_sched_wakeup_granularity);
+	PN(sysctl_sched_batch_wakeup_granularity);
+	PN(sysctl_sched_child_runs_first);
+	P(sysctl_sched_features);
+#undef PN
+#undef P
 
 	for_each_online_cpu(cpu)
 		print_cpu(m, cpu);
@@ -202,7 +236,7 @@ static int sched_debug_open(struct inode *inode, struct file *filp)
 	return single_open(filp, sched_debug_show, NULL);
 }
 
-static struct file_operations sched_debug_fops = {
+static const struct file_operations sched_debug_fops = {
 	.open		= sched_debug_open,
 	.read		= seq_read,
 	.llseek		= seq_lseek,
@@ -226,6 +260,7 @@ __initcall(init_sched_debug_procfs);
 
 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 {
+	unsigned long nr_switches;
 	unsigned long flags;
 	int num_threads = 1;
 
@@ -237,41 +272,89 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 	rcu_read_unlock();
 
 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
-	SEQ_printf(m, "----------------------------------------------\n");
+	SEQ_printf(m,
+		"---------------------------------------------------------\n");
+#define __P(F) \
+	SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
 #define P(F) \
-	SEQ_printf(m, "%-25s:%20Ld\n", #F, (long long)p->F)
+	SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
+#define __PN(F) \
+	SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
+#define PN(F) \
+	SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 
-	P(se.wait_runtime);
-	P(se.wait_start_fair);
-	P(se.exec_start);
-	P(se.sleep_start_fair);
-	P(se.sum_exec_runtime);
+	PN(se.exec_start);
+	PN(se.vruntime);
+	PN(se.sum_exec_runtime);
+
+	nr_switches = p->nvcsw + p->nivcsw;
 
 #ifdef CONFIG_SCHEDSTATS
-	P(se.wait_start);
-	P(se.sleep_start);
-	P(se.block_start);
-	P(se.sleep_max);
-	P(se.block_max);
-	P(se.exec_max);
-	P(se.wait_max);
-	P(se.wait_runtime_overruns);
-	P(se.wait_runtime_underruns);
-	P(se.sum_wait_runtime);
+	PN(se.wait_start);
+	PN(se.sleep_start);
+	PN(se.block_start);
+	PN(se.sleep_max);
+	PN(se.block_max);
+	PN(se.exec_max);
+	PN(se.slice_max);
+	PN(se.wait_max);
+	P(sched_info.bkl_count);
+	P(se.nr_migrations);
+	P(se.nr_migrations_cold);
+	P(se.nr_failed_migrations_affine);
+	P(se.nr_failed_migrations_running);
+	P(se.nr_failed_migrations_hot);
+	P(se.nr_forced_migrations);
+	P(se.nr_forced2_migrations);
+	P(se.nr_wakeups);
+	P(se.nr_wakeups_sync);
+	P(se.nr_wakeups_migrate);
+	P(se.nr_wakeups_local);
+	P(se.nr_wakeups_remote);
+	P(se.nr_wakeups_affine);
+	P(se.nr_wakeups_affine_attempts);
+	P(se.nr_wakeups_passive);
+	P(se.nr_wakeups_idle);
+
+	{
+		u64 avg_atom, avg_per_cpu;
+
+		avg_atom = p->se.sum_exec_runtime;
+		if (nr_switches)
+			do_div(avg_atom, nr_switches);
+		else
+			avg_atom = -1LL;
+
+		avg_per_cpu = p->se.sum_exec_runtime;
+		if (p->se.nr_migrations)
+			avg_per_cpu = div64_64(avg_per_cpu, p->se.nr_migrations);
+		else
+			avg_per_cpu = -1LL;
+
+		__PN(avg_atom);
+		__PN(avg_per_cpu);
+	}
 #endif
-	SEQ_printf(m, "%-25s:%20Ld\n",
-		   "nr_switches", (long long)(p->nvcsw + p->nivcsw));
+	__P(nr_switches);
+	SEQ_printf(m, "%-35s:%21Ld\n",
+		   "nr_voluntary_switches", (long long)p->nvcsw);
+	SEQ_printf(m, "%-35s:%21Ld\n",
+		   "nr_involuntary_switches", (long long)p->nivcsw);
+
 	P(se.load.weight);
 	P(policy);
 	P(prio);
+#undef PN
+#undef __PN
 #undef P
+#undef __P
 
 	{
 		u64 t0, t1;
 
 		t0 = sched_clock();
 		t1 = sched_clock();
-		SEQ_printf(m, "%-25s:%20Ld\n",
+		SEQ_printf(m, "%-35s:%21Ld\n",
 			   "clock-delta", (long long)(t1-t0));
 	}
 }
@@ -279,9 +362,32 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
 void proc_sched_set_task(struct task_struct *p)
 {
 #ifdef CONFIG_SCHEDSTATS
-	p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0;
-	p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0;
+	p->se.wait_max				= 0;
+	p->se.sleep_max				= 0;
+	p->se.sum_sleep_runtime			= 0;
+	p->se.block_max				= 0;
+	p->se.exec_max				= 0;
+	p->se.slice_max				= 0;
+	p->se.nr_migrations			= 0;
+	p->se.nr_migrations_cold		= 0;
+	p->se.nr_failed_migrations_affine	= 0;
+	p->se.nr_failed_migrations_running	= 0;
+	p->se.nr_failed_migrations_hot		= 0;
+	p->se.nr_forced_migrations		= 0;
+	p->se.nr_forced2_migrations		= 0;
+	p->se.nr_wakeups			= 0;
+	p->se.nr_wakeups_sync			= 0;
+	p->se.nr_wakeups_migrate		= 0;
+	p->se.nr_wakeups_local			= 0;
+	p->se.nr_wakeups_remote			= 0;
+	p->se.nr_wakeups_affine			= 0;
+	p->se.nr_wakeups_affine_attempts	= 0;
+	p->se.nr_wakeups_passive		= 0;
+	p->se.nr_wakeups_idle			= 0;
+	p->sched_info.bkl_count			= 0;
 #endif
-	p->se.sum_exec_runtime = 0;
-	p->se.prev_sum_exec_runtime	= 0;
+	p->se.sum_exec_runtime			= 0;
+	p->se.prev_sum_exec_runtime		= 0;
+	p->nvcsw				= 0;
+	p->nivcsw				= 0;
 }

+ 328 - 483
kernel/sched_fair.c

@@ -25,22 +25,26 @@
  * (default: 20ms, units: nanoseconds)
  *
  * NOTE: this latency value is not the same as the concept of
- * 'timeslice length' - timeslices in CFS are of variable length.
- * (to see the precise effective timeslice length of your workload,
- *  run vmstat and monitor the context-switches field)
+ * 'timeslice length' - timeslices in CFS are of variable length
+ * and have no persistent notion like in traditional, time-slice
+ * based scheduling concepts.
  *
- * On SMP systems the value of this is multiplied by the log2 of the
- * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
- * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
- * Targeted preemption latency for CPU-bound tasks:
+ * (to see the precise effective timeslice length of your workload,
+ *  run vmstat and monitor the context-switches (cs) field)
  */
-unsigned int sysctl_sched_latency __read_mostly = 20000000ULL;
+const_debug unsigned int sysctl_sched_latency = 20000000ULL;
+
+/*
+ * After fork, child runs first. (default) If set to 0 then
+ * parent will (try to) run first.
+ */
+const_debug unsigned int sysctl_sched_child_runs_first = 1;
 
 /*
  * Minimal preemption granularity for CPU-bound tasks:
  * (default: 2 msec, units: nanoseconds)
  */
-unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
+const_debug unsigned int sysctl_sched_nr_latency = 20;
 
 /*
  * sys_sched_yield() compat mode
@@ -52,52 +56,25 @@ unsigned int __read_mostly sysctl_sched_compat_yield;
 
 /*
  * SCHED_BATCH wake-up granularity.
- * (default: 25 msec, units: nanoseconds)
+ * (default: 10 msec, units: nanoseconds)
  *
  * This option delays the preemption effects of decoupled workloads
  * and reduces their over-scheduling. Synchronous workloads will still
  * have immediate wakeup/sleep latencies.
  */
-unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL;
+const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
 
 /*
  * SCHED_OTHER wake-up granularity.
- * (default: 1 msec, units: nanoseconds)
+ * (default: 10 msec, units: nanoseconds)
  *
  * This option delays the preemption effects of decoupled workloads
  * and reduces their over-scheduling. Synchronous workloads will still
  * have immediate wakeup/sleep latencies.
  */
-unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL;
-
-unsigned int sysctl_sched_stat_granularity __read_mostly;
-
-/*
- * Initialized in sched_init_granularity() [to 5 times the base granularity]:
- */
-unsigned int sysctl_sched_runtime_limit __read_mostly;
-
-/*
- * Debugging: various feature bits
- */
-enum {
-	SCHED_FEAT_FAIR_SLEEPERS	= 1,
-	SCHED_FEAT_SLEEPER_AVG		= 2,
-	SCHED_FEAT_SLEEPER_LOAD_AVG	= 4,
-	SCHED_FEAT_PRECISE_CPU_LOAD	= 8,
-	SCHED_FEAT_START_DEBIT		= 16,
-	SCHED_FEAT_SKIP_INITIAL		= 32,
-};
+const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
 
-unsigned int sysctl_sched_features __read_mostly =
-		SCHED_FEAT_FAIR_SLEEPERS	*1 |
-		SCHED_FEAT_SLEEPER_AVG		*0 |
-		SCHED_FEAT_SLEEPER_LOAD_AVG	*1 |
-		SCHED_FEAT_PRECISE_CPU_LOAD	*1 |
-		SCHED_FEAT_START_DEBIT		*1 |
-		SCHED_FEAT_SKIP_INITIAL		*0;
-
-extern struct sched_class fair_sched_class;
+const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 
 /**************************************************************
  * CFS operations on generic schedulable entities:
@@ -111,21 +88,9 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 	return cfs_rq->rq;
 }
 
-/* currently running entity (if any) on this cfs_rq */
-static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
-{
-	return cfs_rq->curr;
-}
-
 /* An entity is a task if it doesn't "own" a runqueue */
 #define entity_is_task(se)	(!se->my_q)
 
-static inline void
-set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-	cfs_rq->curr = se;
-}
-
 #else	/* CONFIG_FAIR_GROUP_SCHED */
 
 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
@@ -133,21 +98,8 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 	return container_of(cfs_rq, struct rq, cfs);
 }
 
-static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
-{
-	struct rq *rq = rq_of(cfs_rq);
-
-	if (unlikely(rq->curr->sched_class != &fair_sched_class))
-		return NULL;
-
-	return &rq->curr->se;
-}
-
 #define entity_is_task(se)	1
 
-static inline void
-set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
-
 #endif	/* CONFIG_FAIR_GROUP_SCHED */
 
 static inline struct task_struct *task_of(struct sched_entity *se)
@@ -160,16 +112,38 @@ static inline struct task_struct *task_of(struct sched_entity *se)
  * Scheduling class tree data structure manipulation methods:
  */
 
+static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
+{
+	s64 delta = (s64)(vruntime - min_vruntime);
+	if (delta > 0)
+		min_vruntime = vruntime;
+
+	return min_vruntime;
+}
+
+static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
+{
+	s64 delta = (s64)(vruntime - min_vruntime);
+	if (delta < 0)
+		min_vruntime = vruntime;
+
+	return min_vruntime;
+}
+
+static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+	return se->vruntime - cfs_rq->min_vruntime;
+}
+
 /*
  * Enqueue an entity into the rb-tree:
  */
-static inline void
-__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
+static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 	struct rb_node *parent = NULL;
 	struct sched_entity *entry;
-	s64 key = se->fair_key;
+	s64 key = entity_key(cfs_rq, se);
 	int leftmost = 1;
 
 	/*
@@ -182,7 +156,7 @@ __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 		 * We dont care about collisions. Nodes with
 		 * the same key stay together.
 		 */
-		if (key - entry->fair_key < 0) {
+		if (key < entity_key(cfs_rq, entry)) {
 			link = &parent->rb_left;
 		} else {
 			link = &parent->rb_right;
@@ -199,24 +173,14 @@ __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 
 	rb_link_node(&se->run_node, parent, link);
 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
-	update_load_add(&cfs_rq->load, se->load.weight);
-	cfs_rq->nr_running++;
-	se->on_rq = 1;
-
-	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
 }
 
-static inline void
-__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
+static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
 	if (cfs_rq->rb_leftmost == &se->run_node)
 		cfs_rq->rb_leftmost = rb_next(&se->run_node);
-	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
-	update_load_sub(&cfs_rq->load, se->load.weight);
-	cfs_rq->nr_running--;
-	se->on_rq = 0;
 
-	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
+	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 }
 
 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
@@ -229,118 +193,86 @@ static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
 	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
 }
 
+static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
+{
+	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
+	struct sched_entity *se = NULL;
+	struct rb_node *parent;
+
+	while (*link) {
+		parent = *link;
+		se = rb_entry(parent, struct sched_entity, run_node);
+		link = &parent->rb_right;
+	}
+
+	return se;
+}
+
 /**************************************************************
  * Scheduling class statistics methods:
  */
 
+
 /*
- * Calculate the preemption granularity needed to schedule every
- * runnable task once per sysctl_sched_latency amount of time.
- * (down to a sensible low limit on granularity)
- *
- * For example, if there are 2 tasks running and latency is 10 msecs,
- * we switch tasks every 5 msecs. If we have 3 tasks running, we have
- * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
- * for each task. We do finer and finer scheduling up to until we
- * reach the minimum granularity value.
- *
- * To achieve this we use the following dynamic-granularity rule:
+ * The idea is to set a period in which each task runs once.
  *
- *    gran = lat/nr - lat/nr/nr
+ * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
+ * this period because otherwise the slices get too small.
  *
- * This comes out of the following equations:
- *
- *    kA1 + gran = kB1
- *    kB2 + gran = kA2
- *    kA2 = kA1
- *    kB2 = kB1 - d + d/nr
- *    lat = d * nr
- *
- * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
- * '1' is start of time, '2' is end of time, 'd' is delay between
- * 1 and 2 (during which task B was running), 'nr' is number of tasks
- * running, 'lat' is the the period of each task. ('lat' is the
- * sched_latency that we aim for.)
+ * p = (nr <= nl) ? l : l*nr/nl
  */
-static long
-sched_granularity(struct cfs_rq *cfs_rq)
+static u64 __sched_period(unsigned long nr_running)
 {
-	unsigned int gran = sysctl_sched_latency;
-	unsigned int nr = cfs_rq->nr_running;
+	u64 period = sysctl_sched_latency;
+	unsigned long nr_latency = sysctl_sched_nr_latency;
 
-	if (nr > 1) {
-		gran = gran/nr - gran/nr/nr;
-		gran = max(gran, sysctl_sched_min_granularity);
+	if (unlikely(nr_running > nr_latency)) {
+		period *= nr_running;
+		do_div(period, nr_latency);
 	}
 
-	return gran;
+	return period;
 }
 
 /*
- * We rescale the rescheduling granularity of tasks according to their
- * nice level, but only linearly, not exponentially:
+ * We calculate the wall-time slice from the period by taking a part
+ * proportional to the weight.
+ *
+ * s = p*w/rw
  */
-static long
-niced_granularity(struct sched_entity *curr, unsigned long granularity)
+static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	u64 tmp;
+	u64 slice = __sched_period(cfs_rq->nr_running);
 
-	if (likely(curr->load.weight == NICE_0_LOAD))
-		return granularity;
-	/*
-	 * Positive nice levels get the same granularity as nice-0:
-	 */
-	if (likely(curr->load.weight < NICE_0_LOAD)) {
-		tmp = curr->load.weight * (u64)granularity;
-		return (long) (tmp >> NICE_0_SHIFT);
-	}
-	/*
-	 * Negative nice level tasks get linearly finer
-	 * granularity:
-	 */
-	tmp = curr->load.inv_weight * (u64)granularity;
+	slice *= se->load.weight;
+	do_div(slice, cfs_rq->load.weight);
 
-	/*
-	 * It will always fit into 'long':
-	 */
-	return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
+	return slice;
 }
 
-static inline void
-limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
+/*
+ * We calculate the vruntime slice.
+ *
+ * vs = s/w = p/rw
+ */
+static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
 {
-	long limit = sysctl_sched_runtime_limit;
+	u64 vslice = __sched_period(nr_running);
 
-	/*
-	 * Niced tasks have the same history dynamic range as
-	 * non-niced tasks:
-	 */
-	if (unlikely(se->wait_runtime > limit)) {
-		se->wait_runtime = limit;
-		schedstat_inc(se, wait_runtime_overruns);
-		schedstat_inc(cfs_rq, wait_runtime_overruns);
-	}
-	if (unlikely(se->wait_runtime < -limit)) {
-		se->wait_runtime = -limit;
-		schedstat_inc(se, wait_runtime_underruns);
-		schedstat_inc(cfs_rq, wait_runtime_underruns);
-	}
+	do_div(vslice, rq_weight);
+
+	return vslice;
 }
 
-static inline void
-__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
+static u64 sched_vslice(struct cfs_rq *cfs_rq)
 {
-	se->wait_runtime += delta;
-	schedstat_add(se, sum_wait_runtime, delta);
-	limit_wait_runtime(cfs_rq, se);
+	return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
 }
 
-static void
-add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
+static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
-	__add_wait_runtime(cfs_rq, se, delta);
-	schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
+	return __sched_vslice(cfs_rq->load.weight + se->load.weight,
+			cfs_rq->nr_running + 1);
 }
 
 /*
@@ -348,46 +280,41 @@ add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
  * are not in our scheduling class.
  */
 static inline void
-__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
+__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
+	      unsigned long delta_exec)
 {
-	unsigned long delta, delta_exec, delta_fair, delta_mine;
-	struct load_weight *lw = &cfs_rq->load;
-	unsigned long load = lw->weight;
+	unsigned long delta_exec_weighted;
+	u64 vruntime;
 
-	delta_exec = curr->delta_exec;
 	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
 
 	curr->sum_exec_runtime += delta_exec;
-	cfs_rq->exec_clock += delta_exec;
-
-	if (unlikely(!load))
-		return;
-
-	delta_fair = calc_delta_fair(delta_exec, lw);
-	delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
-
-	if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
-		delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
-		delta = min(delta, (unsigned long)(
-			(long)sysctl_sched_runtime_limit - curr->wait_runtime));
-		cfs_rq->sleeper_bonus -= delta;
-		delta_mine -= delta;
+	schedstat_add(cfs_rq, exec_clock, delta_exec);
+	delta_exec_weighted = delta_exec;
+	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
+		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
+							&curr->load);
 	}
+	curr->vruntime += delta_exec_weighted;
 
-	cfs_rq->fair_clock += delta_fair;
 	/*
-	 * We executed delta_exec amount of time on the CPU,
-	 * but we were only entitled to delta_mine amount of
-	 * time during that period (if nr_running == 1 then
-	 * the two values are equal)
-	 * [Note: delta_mine - delta_exec is negative]:
+	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
+	 * value tracking the leftmost vruntime in the tree.
 	 */
-	add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
+	if (first_fair(cfs_rq)) {
+		vruntime = min_vruntime(curr->vruntime,
+				__pick_next_entity(cfs_rq)->vruntime);
+	} else
+		vruntime = curr->vruntime;
+
+	cfs_rq->min_vruntime =
+		max_vruntime(cfs_rq->min_vruntime, vruntime);
 }
 
 static void update_curr(struct cfs_rq *cfs_rq)
 {
-	struct sched_entity *curr = cfs_rq_curr(cfs_rq);
+	struct sched_entity *curr = cfs_rq->curr;
+	u64 now = rq_of(cfs_rq)->clock;
 	unsigned long delta_exec;
 
 	if (unlikely(!curr))
@@ -398,135 +325,47 @@ static void update_curr(struct cfs_rq *cfs_rq)
 	 * since the last time we changed load (this cannot
 	 * overflow on 32 bits):
 	 */
-	delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
+	delta_exec = (unsigned long)(now - curr->exec_start);
 
-	curr->delta_exec += delta_exec;
-
-	if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
-		__update_curr(cfs_rq, curr);
-		curr->delta_exec = 0;
-	}
-	curr->exec_start = rq_of(cfs_rq)->clock;
+	__update_curr(cfs_rq, curr, delta_exec);
+	curr->exec_start = now;
 }
 
 static inline void
 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	se->wait_start_fair = cfs_rq->fair_clock;
 	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
 }
 
-/*
- * We calculate fair deltas here, so protect against the random effects
- * of a multiplication overflow by capping it to the runtime limit:
- */
-#if BITS_PER_LONG == 32
-static inline unsigned long
-calc_weighted(unsigned long delta, unsigned long weight, int shift)
-{
-	u64 tmp = (u64)delta * weight >> shift;
-
-	if (unlikely(tmp > sysctl_sched_runtime_limit*2))
-		return sysctl_sched_runtime_limit*2;
-	return tmp;
-}
-#else
-static inline unsigned long
-calc_weighted(unsigned long delta, unsigned long weight, int shift)
-{
-	return delta * weight >> shift;
-}
-#endif
-
 /*
  * Task is being enqueued - update stats:
  */
 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	s64 key;
-
 	/*
 	 * Are we enqueueing a waiting task? (for current tasks
 	 * a dequeue/enqueue event is a NOP)
 	 */
-	if (se != cfs_rq_curr(cfs_rq))
+	if (se != cfs_rq->curr)
 		update_stats_wait_start(cfs_rq, se);
-	/*
-	 * Update the key:
-	 */
-	key = cfs_rq->fair_clock;
-
-	/*
-	 * Optimize the common nice 0 case:
-	 */
-	if (likely(se->load.weight == NICE_0_LOAD)) {
-		key -= se->wait_runtime;
-	} else {
-		u64 tmp;
-
-		if (se->wait_runtime < 0) {
-			tmp = -se->wait_runtime;
-			key += (tmp * se->load.inv_weight) >>
-					(WMULT_SHIFT - NICE_0_SHIFT);
-		} else {
-			tmp = se->wait_runtime;
-			key -= (tmp * se->load.inv_weight) >>
-					(WMULT_SHIFT - NICE_0_SHIFT);
-		}
-	}
-
-	se->fair_key = key;
-}
-
-/*
- * Note: must be called with a freshly updated rq->fair_clock.
- */
-static inline void
-__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-	unsigned long delta_fair = se->delta_fair_run;
-
-	schedstat_set(se->wait_max, max(se->wait_max,
-			rq_of(cfs_rq)->clock - se->wait_start));
-
-	if (unlikely(se->load.weight != NICE_0_LOAD))
-		delta_fair = calc_weighted(delta_fair, se->load.weight,
-							NICE_0_SHIFT);
-
-	add_wait_runtime(cfs_rq, se, delta_fair);
 }
 
 static void
 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	unsigned long delta_fair;
-
-	if (unlikely(!se->wait_start_fair))
-		return;
-
-	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
-			(u64)(cfs_rq->fair_clock - se->wait_start_fair));
-
-	se->delta_fair_run += delta_fair;
-	if (unlikely(abs(se->delta_fair_run) >=
-				sysctl_sched_stat_granularity)) {
-		__update_stats_wait_end(cfs_rq, se);
-		se->delta_fair_run = 0;
-	}
-
-	se->wait_start_fair = 0;
+	schedstat_set(se->wait_max, max(se->wait_max,
+			rq_of(cfs_rq)->clock - se->wait_start));
 	schedstat_set(se->wait_start, 0);
 }
 
 static inline void
 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	update_curr(cfs_rq);
 	/*
 	 * Mark the end of the wait period if dequeueing a
 	 * waiting task:
 	 */
-	if (se != cfs_rq_curr(cfs_rq))
+	if (se != cfs_rq->curr)
 		update_stats_wait_end(cfs_rq, se);
 }
 
@@ -542,79 +381,28 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 	se->exec_start = rq_of(cfs_rq)->clock;
 }
 
-/*
- * We are descheduling a task - update its stats:
- */
-static inline void
-update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
-{
-	se->exec_start = 0;
-}
-
 /**************************************************
  * Scheduling class queueing methods:
  */
 
-static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
+static void
+account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	unsigned long load = cfs_rq->load.weight, delta_fair;
-	long prev_runtime;
-
-	/*
-	 * Do not boost sleepers if there's too much bonus 'in flight'
-	 * already:
-	 */
-	if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
-		return;
-
-	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
-		load = rq_of(cfs_rq)->cpu_load[2];
-
-	delta_fair = se->delta_fair_sleep;
-
-	/*
-	 * Fix up delta_fair with the effect of us running
-	 * during the whole sleep period:
-	 */
-	if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
-		delta_fair = div64_likely32((u64)delta_fair * load,
-						load + se->load.weight);
-
-	if (unlikely(se->load.weight != NICE_0_LOAD))
-		delta_fair = calc_weighted(delta_fair, se->load.weight,
-							NICE_0_SHIFT);
-
-	prev_runtime = se->wait_runtime;
-	__add_wait_runtime(cfs_rq, se, delta_fair);
-	delta_fair = se->wait_runtime - prev_runtime;
+	update_load_add(&cfs_rq->load, se->load.weight);
+	cfs_rq->nr_running++;
+	se->on_rq = 1;
+}
 
-	/*
-	 * Track the amount of bonus we've given to sleepers:
-	 */
-	cfs_rq->sleeper_bonus += delta_fair;
+static void
+account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+	update_load_sub(&cfs_rq->load, se->load.weight);
+	cfs_rq->nr_running--;
+	se->on_rq = 0;
 }
 
 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-	struct task_struct *tsk = task_of(se);
-	unsigned long delta_fair;
-
-	if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
-			 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
-		return;
-
-	delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
-		(u64)(cfs_rq->fair_clock - se->sleep_start_fair));
-
-	se->delta_fair_sleep += delta_fair;
-	if (unlikely(abs(se->delta_fair_sleep) >=
-				sysctl_sched_stat_granularity)) {
-		__enqueue_sleeper(cfs_rq, se);
-		se->delta_fair_sleep = 0;
-	}
-
-	se->sleep_start_fair = 0;
-
 #ifdef CONFIG_SCHEDSTATS
 	if (se->sleep_start) {
 		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
@@ -646,6 +434,8 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 		 * time that the task spent sleeping:
 		 */
 		if (unlikely(prof_on == SLEEP_PROFILING)) {
+			struct task_struct *tsk = task_of(se);
+
 			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
 				     delta >> 20);
 		}
@@ -653,27 +443,81 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 #endif
 }
 
+static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+#ifdef CONFIG_SCHED_DEBUG
+	s64 d = se->vruntime - cfs_rq->min_vruntime;
+
+	if (d < 0)
+		d = -d;
+
+	if (d > 3*sysctl_sched_latency)
+		schedstat_inc(cfs_rq, nr_spread_over);
+#endif
+}
+
+static void
+place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
+{
+	u64 vruntime;
+
+	vruntime = cfs_rq->min_vruntime;
+
+	if (sched_feat(TREE_AVG)) {
+		struct sched_entity *last = __pick_last_entity(cfs_rq);
+		if (last) {
+			vruntime += last->vruntime;
+			vruntime >>= 1;
+		}
+	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
+		vruntime += sched_vslice(cfs_rq)/2;
+
+	if (initial && sched_feat(START_DEBIT))
+		vruntime += sched_vslice_add(cfs_rq, se);
+
+	if (!initial) {
+		if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
+				task_of(se)->policy != SCHED_BATCH)
+			vruntime -= sysctl_sched_latency;
+
+		vruntime = max_t(s64, vruntime, se->vruntime);
+	}
+
+	se->vruntime = vruntime;
+
+}
+
 static void
 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
 {
 	/*
-	 * Update the fair clock.
+	 * Update run-time statistics of the 'current'.
 	 */
 	update_curr(cfs_rq);
 
-	if (wakeup)
+	if (wakeup) {
+		place_entity(cfs_rq, se, 0);
 		enqueue_sleeper(cfs_rq, se);
+	}
 
 	update_stats_enqueue(cfs_rq, se);
-	__enqueue_entity(cfs_rq, se);
+	check_spread(cfs_rq, se);
+	if (se != cfs_rq->curr)
+		__enqueue_entity(cfs_rq, se);
+	account_entity_enqueue(cfs_rq, se);
 }
 
 static void
 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
 {
+	/*
+	 * Update run-time statistics of the 'current'.
+	 */
+	update_curr(cfs_rq);
+
 	update_stats_dequeue(cfs_rq, se);
 	if (sleep) {
-		se->sleep_start_fair = cfs_rq->fair_clock;
+		se->peer_preempt = 0;
 #ifdef CONFIG_SCHEDSTATS
 		if (entity_is_task(se)) {
 			struct task_struct *tsk = task_of(se);
@@ -685,68 +529,66 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
 		}
 #endif
 	}
-	__dequeue_entity(cfs_rq, se);
+
+	if (se != cfs_rq->curr)
+		__dequeue_entity(cfs_rq, se);
+	account_entity_dequeue(cfs_rq, se);
 }
 
 /*
  * Preempt the current task with a newly woken task if needed:
  */
 static void
-__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
-			  struct sched_entity *curr, unsigned long granularity)
+check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 {
-	s64 __delta = curr->fair_key - se->fair_key;
 	unsigned long ideal_runtime, delta_exec;
 
-	/*
-	 * ideal_runtime is compared against sum_exec_runtime, which is
-	 * walltime, hence do not scale.
-	 */
-	ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
-			(unsigned long)sysctl_sched_min_granularity);
-
-	/*
-	 * If we executed more than what the latency constraint suggests,
-	 * reduce the rescheduling granularity. This way the total latency
-	 * of how much a task is not scheduled converges to
-	 * sysctl_sched_latency:
-	 */
+	ideal_runtime = sched_slice(cfs_rq, curr);
 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
-	if (delta_exec > ideal_runtime)
-		granularity = 0;
-
-	/*
-	 * Take scheduling granularity into account - do not
-	 * preempt the current task unless the best task has
-	 * a larger than sched_granularity fairness advantage:
-	 *
-	 * scale granularity as key space is in fair_clock.
-	 */
-	if (__delta > niced_granularity(curr, granularity))
+	if (delta_exec > ideal_runtime ||
+			(sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
 		resched_task(rq_of(cfs_rq)->curr);
+	curr->peer_preempt = 0;
 }
 
-static inline void
+static void
 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
+	/* 'current' is not kept within the tree. */
+	if (se->on_rq) {
+		/*
+		 * Any task has to be enqueued before it get to execute on
+		 * a CPU. So account for the time it spent waiting on the
+		 * runqueue.
+		 */
+		update_stats_wait_end(cfs_rq, se);
+		__dequeue_entity(cfs_rq, se);
+	}
+
+	update_stats_curr_start(cfs_rq, se);
+	cfs_rq->curr = se;
+#ifdef CONFIG_SCHEDSTATS
 	/*
-	 * Any task has to be enqueued before it get to execute on
-	 * a CPU. So account for the time it spent waiting on the
-	 * runqueue. (note, here we rely on pick_next_task() having
-	 * done a put_prev_task_fair() shortly before this, which
-	 * updated rq->fair_clock - used by update_stats_wait_end())
+	 * Track our maximum slice length, if the CPU's load is at
+	 * least twice that of our own weight (i.e. dont track it
+	 * when there are only lesser-weight tasks around):
 	 */
-	update_stats_wait_end(cfs_rq, se);
-	update_stats_curr_start(cfs_rq, se);
-	set_cfs_rq_curr(cfs_rq, se);
+	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
+		se->slice_max = max(se->slice_max,
+			se->sum_exec_runtime - se->prev_sum_exec_runtime);
+	}
+#endif
 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
 }
 
 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
 {
-	struct sched_entity *se = __pick_next_entity(cfs_rq);
+	struct sched_entity *se = NULL;
 
-	set_next_entity(cfs_rq, se);
+	if (first_fair(cfs_rq)) {
+		se = __pick_next_entity(cfs_rq);
+		set_next_entity(cfs_rq, se);
+	}
 
 	return se;
 }
@@ -760,33 +602,24 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
 	if (prev->on_rq)
 		update_curr(cfs_rq);
 
-	update_stats_curr_end(cfs_rq, prev);
-
-	if (prev->on_rq)
+	check_spread(cfs_rq, prev);
+	if (prev->on_rq) {
 		update_stats_wait_start(cfs_rq, prev);
-	set_cfs_rq_curr(cfs_rq, NULL);
+		/* Put 'current' back into the tree. */
+		__enqueue_entity(cfs_rq, prev);
+	}
+	cfs_rq->curr = NULL;
 }
 
 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
 {
-	struct sched_entity *next;
-
 	/*
-	 * Dequeue and enqueue the task to update its
-	 * position within the tree:
+	 * Update run-time statistics of the 'current'.
 	 */
-	dequeue_entity(cfs_rq, curr, 0);
-	enqueue_entity(cfs_rq, curr, 0);
-
-	/*
-	 * Reschedule if another task tops the current one.
-	 */
-	next = __pick_next_entity(cfs_rq);
-	if (next == curr)
-		return;
+	update_curr(cfs_rq);
 
-	__check_preempt_curr_fair(cfs_rq, next, curr,
-			sched_granularity(cfs_rq));
+	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
+		check_preempt_tick(cfs_rq, curr);
 }
 
 /**************************************************
@@ -821,23 +654,28 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  */
 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 {
-	/* A later patch will take group into account */
-	return &cpu_rq(this_cpu)->cfs;
+	return cfs_rq->tg->cfs_rq[this_cpu];
 }
 
 /* Iterate thr' all leaf cfs_rq's on a runqueue */
 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
 	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 
-/* Do the two (enqueued) tasks belong to the same group ? */
-static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
+/* Do the two (enqueued) entities belong to the same group ? */
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
 {
-	if (curr->se.cfs_rq == p->se.cfs_rq)
+	if (se->cfs_rq == pse->cfs_rq)
 		return 1;
 
 	return 0;
 }
 
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+	return se->parent;
+}
+
 #else	/* CONFIG_FAIR_GROUP_SCHED */
 
 #define for_each_sched_entity(se) \
@@ -870,11 +708,17 @@ static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 
-static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
+static inline int
+is_same_group(struct sched_entity *se, struct sched_entity *pse)
 {
 	return 1;
 }
 
+static inline struct sched_entity *parent_entity(struct sched_entity *se)
+{
+	return NULL;
+}
+
 #endif	/* CONFIG_FAIR_GROUP_SCHED */
 
 /*
@@ -892,6 +736,7 @@ static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
 			break;
 		cfs_rq = cfs_rq_of(se);
 		enqueue_entity(cfs_rq, se, wakeup);
+		wakeup = 1;
 	}
 }
 
@@ -911,6 +756,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
 		/* Don't dequeue parent if it has other entities besides us */
 		if (cfs_rq->load.weight)
 			break;
+		sleep = 1;
 	}
 }
 
@@ -919,12 +765,10 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  *
  * If compat_yield is turned on then we requeue to the end of the tree.
  */
-static void yield_task_fair(struct rq *rq, struct task_struct *p)
+static void yield_task_fair(struct rq *rq)
 {
-	struct cfs_rq *cfs_rq = task_cfs_rq(p);
-	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
-	struct sched_entity *rightmost, *se = &p->se;
-	struct rb_node *parent;
+	struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
+	struct sched_entity *rightmost, *se = &rq->curr->se;
 
 	/*
 	 * Are we the only task in the tree?
@@ -935,52 +779,39 @@ static void yield_task_fair(struct rq *rq, struct task_struct *p)
 	if (likely(!sysctl_sched_compat_yield)) {
 		__update_rq_clock(rq);
 		/*
-		 * Dequeue and enqueue the task to update its
-		 * position within the tree:
+		 * Update run-time statistics of the 'current'.
 		 */
-		dequeue_entity(cfs_rq, &p->se, 0);
-		enqueue_entity(cfs_rq, &p->se, 0);
+		update_curr(cfs_rq);
 
 		return;
 	}
 	/*
 	 * Find the rightmost entry in the rbtree:
 	 */
-	do {
-		parent = *link;
-		link = &parent->rb_right;
-	} while (*link);
-
-	rightmost = rb_entry(parent, struct sched_entity, run_node);
+	rightmost = __pick_last_entity(cfs_rq);
 	/*
 	 * Already in the rightmost position?
 	 */
-	if (unlikely(rightmost == se))
+	if (unlikely(rightmost->vruntime < se->vruntime))
 		return;
 
 	/*
 	 * Minimally necessary key value to be last in the tree:
+	 * Upon rescheduling, sched_class::put_prev_task() will place
+	 * 'current' within the tree based on its new key value.
 	 */
-	se->fair_key = rightmost->fair_key + 1;
-
-	if (cfs_rq->rb_leftmost == &se->run_node)
-		cfs_rq->rb_leftmost = rb_next(&se->run_node);
-	/*
-	 * Relink the task to the rightmost position:
-	 */
-	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
-	rb_link_node(&se->run_node, parent, link);
-	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
+	se->vruntime = rightmost->vruntime + 1;
 }
 
 /*
  * Preempt the current task with a newly woken task if needed:
  */
-static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
+static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
 {
 	struct task_struct *curr = rq->curr;
 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
-	unsigned long gran;
+	struct sched_entity *se = &curr->se, *pse = &p->se;
+	s64 delta, gran;
 
 	if (unlikely(rt_prio(p->prio))) {
 		update_rq_clock(rq);
@@ -988,16 +819,31 @@ static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
 		resched_task(curr);
 		return;
 	}
-
-	gran = sysctl_sched_wakeup_granularity;
 	/*
-	 * Batch tasks prefer throughput over latency:
+	 * Batch tasks do not preempt (their preemption is driven by
+	 * the tick):
 	 */
 	if (unlikely(p->policy == SCHED_BATCH))
-		gran = sysctl_sched_batch_wakeup_granularity;
+		return;
+
+	if (sched_feat(WAKEUP_PREEMPT)) {
+		while (!is_same_group(se, pse)) {
+			se = parent_entity(se);
+			pse = parent_entity(pse);
+		}
 
-	if (is_same_group(curr, p))
-		__check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
+		delta = se->vruntime - pse->vruntime;
+		gran = sysctl_sched_wakeup_granularity;
+		if (unlikely(se->load.weight != NICE_0_LOAD))
+			gran = calc_delta_fair(gran, &se->load);
+
+		if (delta > gran) {
+			int now = !sched_feat(PREEMPT_RESTRICT);
+
+			if (now || p->prio < curr->prio || !se->peer_preempt++)
+				resched_task(curr);
+		}
+	}
 }
 
 static struct task_struct *pick_next_task_fair(struct rq *rq)
@@ -1041,7 +887,7 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  * achieve that by always pre-iterating before returning
  * the current task:
  */
-static inline struct task_struct *
+static struct task_struct *
 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
 {
 	struct task_struct *p;
@@ -1078,7 +924,10 @@ static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
 	if (!cfs_rq->nr_running)
 		return MAX_PRIO;
 
-	curr = __pick_next_entity(cfs_rq);
+	curr = cfs_rq->curr;
+	if (!curr)
+		curr = __pick_next_entity(cfs_rq);
+
 	p = task_of(curr);
 
 	return p->prio;
@@ -1153,6 +1002,8 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr)
 	}
 }
 
+#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
+
 /*
  * Share the fairness runtime between parent and child, thus the
  * total amount of pressure for CPU stays equal - new tasks
@@ -1163,37 +1014,32 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr)
 static void task_new_fair(struct rq *rq, struct task_struct *p)
 {
 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
-	struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq);
+	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
+	int this_cpu = smp_processor_id();
 
 	sched_info_queued(p);
 
 	update_curr(cfs_rq);
-	update_stats_enqueue(cfs_rq, se);
-	/*
-	 * Child runs first: we let it run before the parent
-	 * until it reschedules once. We set up the key so that
-	 * it will preempt the parent:
-	 */
-	se->fair_key = curr->fair_key -
-		niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
-	/*
-	 * The first wait is dominated by the child-runs-first logic,
-	 * so do not credit it with that waiting time yet:
-	 */
-	if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
-		se->wait_start_fair = 0;
+	place_entity(cfs_rq, se, 1);
 
-	/*
-	 * The statistical average of wait_runtime is about
-	 * -granularity/2, so initialize the task with that:
-	 */
-	if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
-		se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
+	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
+			curr->vruntime < se->vruntime) {
+		/*
+		 * Upon rescheduling, sched_class::put_prev_task() will place
+		 * 'current' within the tree based on its new key value.
+		 */
+		swap(curr->vruntime, se->vruntime);
+	}
 
+	update_stats_enqueue(cfs_rq, se);
+	check_spread(cfs_rq, se);
+	check_spread(cfs_rq, curr);
 	__enqueue_entity(cfs_rq, se);
+	account_entity_enqueue(cfs_rq, se);
+	se->peer_preempt = 0;
+	resched_task(rq->curr);
 }
 
-#ifdef CONFIG_FAIR_GROUP_SCHED
 /* Account for a task changing its policy or group.
  *
  * This routine is mostly called to set cfs_rq->curr field when a task
@@ -1206,21 +1052,17 @@ static void set_curr_task_fair(struct rq *rq)
 	for_each_sched_entity(se)
 		set_next_entity(cfs_rq_of(se), se);
 }
-#else
-static void set_curr_task_fair(struct rq *rq)
-{
-}
-#endif
 
 /*
  * All the scheduling class methods:
  */
-struct sched_class fair_sched_class __read_mostly = {
+static const struct sched_class fair_sched_class = {
+	.next			= &idle_sched_class,
 	.enqueue_task		= enqueue_task_fair,
 	.dequeue_task		= dequeue_task_fair,
 	.yield_task		= yield_task_fair,
 
-	.check_preempt_curr	= check_preempt_curr_fair,
+	.check_preempt_curr	= check_preempt_wakeup,
 
 	.pick_next_task		= pick_next_task_fair,
 	.put_prev_task		= put_prev_task_fair,
@@ -1237,6 +1079,9 @@ static void print_cfs_stats(struct seq_file *m, int cpu)
 {
 	struct cfs_rq *cfs_rq;
 
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
+#endif
 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
 		print_cfs_rq(m, cpu, cfs_rq);
 }

+ 7 - 1
kernel/sched_idletask.c

@@ -50,10 +50,15 @@ static void task_tick_idle(struct rq *rq, struct task_struct *curr)
 {
 }
 
+static void set_curr_task_idle(struct rq *rq)
+{
+}
+
 /*
  * Simple, special scheduling class for the per-CPU idle tasks:
  */
-static struct sched_class idle_sched_class __read_mostly = {
+const struct sched_class idle_sched_class = {
+	/* .next is NULL */
 	/* no enqueue/yield_task for idle tasks */
 
 	/* dequeue is not valid, we print a debug message there: */
@@ -66,6 +71,7 @@ static struct sched_class idle_sched_class __read_mostly = {
 
 	.load_balance		= load_balance_idle,
 
+	.set_curr_task          = set_curr_task_idle,
 	.task_tick		= task_tick_idle,
 	/* no .task_new for idle tasks */
 };

+ 14 - 5
kernel/sched_rt.c

@@ -7,7 +7,7 @@
  * Update the current task's runtime statistics. Skip current tasks that
  * are not in our scheduling class.
  */
-static inline void update_curr_rt(struct rq *rq)
+static void update_curr_rt(struct rq *rq)
 {
 	struct task_struct *curr = rq->curr;
 	u64 delta_exec;
@@ -59,9 +59,9 @@ static void requeue_task_rt(struct rq *rq, struct task_struct *p)
 }
 
 static void
-yield_task_rt(struct rq *rq, struct task_struct *p)
+yield_task_rt(struct rq *rq)
 {
-	requeue_task_rt(rq, p);
+	requeue_task_rt(rq, rq->curr);
 }
 
 /*
@@ -206,7 +206,7 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p)
 	if (--p->time_slice)
 		return;
 
-	p->time_slice = static_prio_timeslice(p->static_prio);
+	p->time_slice = DEF_TIMESLICE;
 
 	/*
 	 * Requeue to the end of queue if we are not the only element
@@ -218,7 +218,15 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p)
 	}
 }
 
-static struct sched_class rt_sched_class __read_mostly = {
+static void set_curr_task_rt(struct rq *rq)
+{
+	struct task_struct *p = rq->curr;
+
+	p->se.exec_start = rq->clock;
+}
+
+const struct sched_class rt_sched_class = {
+	.next			= &fair_sched_class,
 	.enqueue_task		= enqueue_task_rt,
 	.dequeue_task		= dequeue_task_rt,
 	.yield_task		= yield_task_rt,
@@ -230,5 +238,6 @@ static struct sched_class rt_sched_class __read_mostly = {
 
 	.load_balance		= load_balance_rt,
 
+	.set_curr_task          = set_curr_task_rt,
 	.task_tick		= task_tick_rt,
 };

+ 14 - 14
kernel/sched_stats.h

@@ -16,18 +16,18 @@ static int show_schedstat(struct seq_file *seq, void *v)
 		struct rq *rq = cpu_rq(cpu);
 #ifdef CONFIG_SMP
 		struct sched_domain *sd;
-		int dcnt = 0;
+		int dcount = 0;
 #endif
 
 		/* runqueue-specific stats */
 		seq_printf(seq,
 		    "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %llu %llu %lu",
 		    cpu, rq->yld_both_empty,
-		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
-		    rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
-		    rq->ttwu_cnt, rq->ttwu_local,
+		    rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count,
+		    rq->sched_switch, rq->sched_count, rq->sched_goidle,
+		    rq->ttwu_count, rq->ttwu_local,
 		    rq->rq_sched_info.cpu_time,
-		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
+		    rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
 
 		seq_printf(seq, "\n");
 
@@ -39,12 +39,12 @@ static int show_schedstat(struct seq_file *seq, void *v)
 			char mask_str[NR_CPUS];
 
 			cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
-			seq_printf(seq, "domain%d %s", dcnt++, mask_str);
+			seq_printf(seq, "domain%d %s", dcount++, mask_str);
 			for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
 					itype++) {
 				seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
 						"%lu",
-				    sd->lb_cnt[itype],
+				    sd->lb_count[itype],
 				    sd->lb_balanced[itype],
 				    sd->lb_failed[itype],
 				    sd->lb_imbalance[itype],
@@ -55,9 +55,9 @@ static int show_schedstat(struct seq_file *seq, void *v)
 			}
 			seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
 			    " %lu %lu %lu\n",
-			    sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
-			    sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
-			    sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
+			    sd->alb_count, sd->alb_failed, sd->alb_pushed,
+			    sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
+			    sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
 			    sd->ttwu_wake_remote, sd->ttwu_move_affine,
 			    sd->ttwu_move_balance);
 		}
@@ -101,7 +101,7 @@ rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 {
 	if (rq) {
 		rq->rq_sched_info.run_delay += delta;
-		rq->rq_sched_info.pcnt++;
+		rq->rq_sched_info.pcount++;
 	}
 }
 
@@ -129,7 +129,7 @@ rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 # define schedstat_set(var, val)	do { } while (0)
 #endif
 
-#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
+#ifdef CONFIG_SCHEDSTATS
 /*
  * Called when a process is dequeued from the active array and given
  * the cpu.  We should note that with the exception of interactive
@@ -164,7 +164,7 @@ static void sched_info_arrive(struct task_struct *t)
 	sched_info_dequeued(t);
 	t->sched_info.run_delay += delta;
 	t->sched_info.last_arrival = now;
-	t->sched_info.pcnt++;
+	t->sched_info.pcount++;
 
 	rq_sched_info_arrive(task_rq(t), delta);
 }
@@ -233,5 +233,5 @@ sched_info_switch(struct task_struct *prev, struct task_struct *next)
 #else
 #define sched_info_queued(t)		do { } while (0)
 #define sched_info_switch(t, next)	do { } while (0)
-#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
+#endif /* CONFIG_SCHEDSTATS */
 

+ 10 - 27
kernel/sysctl.c

@@ -222,14 +222,11 @@ static ctl_table kern_table[] = {
 #ifdef CONFIG_SCHED_DEBUG
 	{
 		.ctl_name	= CTL_UNNUMBERED,
-		.procname	= "sched_min_granularity_ns",
-		.data		= &sysctl_sched_min_granularity,
+		.procname	= "sched_nr_latency",
+		.data		= &sysctl_sched_nr_latency,
 		.maxlen		= sizeof(unsigned int),
 		.mode		= 0644,
-		.proc_handler	= &proc_dointvec_minmax,
-		.strategy	= &sysctl_intvec,
-		.extra1		= &min_sched_granularity_ns,
-		.extra2		= &max_sched_granularity_ns,
+		.proc_handler	= &proc_dointvec,
 	},
 	{
 		.ctl_name	= CTL_UNNUMBERED,
@@ -266,38 +263,24 @@ static ctl_table kern_table[] = {
 	},
 	{
 		.ctl_name	= CTL_UNNUMBERED,
-		.procname	= "sched_stat_granularity_ns",
-		.data		= &sysctl_sched_stat_granularity,
-		.maxlen		= sizeof(unsigned int),
-		.mode		= 0644,
-		.proc_handler	= &proc_dointvec_minmax,
-		.strategy	= &sysctl_intvec,
-		.extra1		= &min_wakeup_granularity_ns,
-		.extra2		= &max_wakeup_granularity_ns,
-	},
-	{
-		.ctl_name	= CTL_UNNUMBERED,
-		.procname	= "sched_runtime_limit_ns",
-		.data		= &sysctl_sched_runtime_limit,
+		.procname	= "sched_child_runs_first",
+		.data		= &sysctl_sched_child_runs_first,
 		.maxlen		= sizeof(unsigned int),
 		.mode		= 0644,
-		.proc_handler	= &proc_dointvec_minmax,
-		.strategy	= &sysctl_intvec,
-		.extra1		= &min_sched_granularity_ns,
-		.extra2		= &max_sched_granularity_ns,
+		.proc_handler	= &proc_dointvec,
 	},
 	{
 		.ctl_name	= CTL_UNNUMBERED,
-		.procname	= "sched_child_runs_first",
-		.data		= &sysctl_sched_child_runs_first,
+		.procname	= "sched_features",
+		.data		= &sysctl_sched_features,
 		.maxlen		= sizeof(unsigned int),
 		.mode		= 0644,
 		.proc_handler	= &proc_dointvec,
 	},
 	{
 		.ctl_name	= CTL_UNNUMBERED,
-		.procname	= "sched_features",
-		.data		= &sysctl_sched_features,
+		.procname	= "sched_migration_cost",
+		.data		= &sysctl_sched_migration_cost,
 		.maxlen		= sizeof(unsigned int),
 		.mode		= 0644,
 		.proc_handler	= &proc_dointvec,

+ 238 - 11
kernel/user.c

@@ -50,12 +50,16 @@ struct user_struct root_user = {
 	.uid_keyring	= &root_user_keyring,
 	.session_keyring = &root_session_keyring,
 #endif
+#ifdef CONFIG_FAIR_USER_SCHED
+	.tg		= &init_task_group,
+#endif
 };
 
 /*
  * These routines must be called with the uidhash spinlock held!
  */
-static inline void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent)
+static inline void uid_hash_insert(struct user_struct *up,
+						struct hlist_head *hashent)
 {
 	hlist_add_head(&up->uidhash_node, hashent);
 }
@@ -65,13 +69,14 @@ static inline void uid_hash_remove(struct user_struct *up)
 	hlist_del_init(&up->uidhash_node);
 }
 
-static inline struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
+static inline struct user_struct *uid_hash_find(uid_t uid,
+						struct hlist_head *hashent)
 {
 	struct user_struct *user;
 	struct hlist_node *h;
 
 	hlist_for_each_entry(user, h, hashent, uidhash_node) {
-		if(user->uid == uid) {
+		if (user->uid == uid) {
 			atomic_inc(&user->__count);
 			return user;
 		}
@@ -80,6 +85,203 @@ static inline struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *ha
 	return NULL;
 }
 
+#ifdef CONFIG_FAIR_USER_SCHED
+
+static struct kobject uids_kobject; /* represents /sys/kernel/uids directory */
+static DEFINE_MUTEX(uids_mutex);
+
+static void sched_destroy_user(struct user_struct *up)
+{
+	sched_destroy_group(up->tg);
+}
+
+static int sched_create_user(struct user_struct *up)
+{
+	int rc = 0;
+
+	up->tg = sched_create_group();
+	if (IS_ERR(up->tg))
+		rc = -ENOMEM;
+
+	return rc;
+}
+
+static void sched_switch_user(struct task_struct *p)
+{
+	sched_move_task(p);
+}
+
+static inline void uids_mutex_lock(void)
+{
+	mutex_lock(&uids_mutex);
+}
+
+static inline void uids_mutex_unlock(void)
+{
+	mutex_unlock(&uids_mutex);
+}
+
+/* return cpu shares held by the user */
+ssize_t cpu_shares_show(struct kset *kset, char *buffer)
+{
+	struct user_struct *up = container_of(kset, struct user_struct, kset);
+
+	return sprintf(buffer, "%lu\n", sched_group_shares(up->tg));
+}
+
+/* modify cpu shares held by the user */
+ssize_t cpu_shares_store(struct kset *kset, const char *buffer, size_t size)
+{
+	struct user_struct *up = container_of(kset, struct user_struct, kset);
+	unsigned long shares;
+	int rc;
+
+	sscanf(buffer, "%lu", &shares);
+
+	rc = sched_group_set_shares(up->tg, shares);
+
+	return (rc ? rc : size);
+}
+
+static void user_attr_init(struct subsys_attribute *sa, char *name, int mode)
+{
+	sa->attr.name = name;
+	sa->attr.mode = mode;
+	sa->show = cpu_shares_show;
+	sa->store = cpu_shares_store;
+}
+
+/* Create "/sys/kernel/uids/<uid>" directory and
+ *  "/sys/kernel/uids/<uid>/cpu_share" file for this user.
+ */
+static int user_kobject_create(struct user_struct *up)
+{
+	struct kset *kset = &up->kset;
+	struct kobject *kobj = &kset->kobj;
+	int error;
+
+	memset(kset, 0, sizeof(struct kset));
+	kobj->parent = &uids_kobject;	/* create under /sys/kernel/uids dir */
+	kobject_set_name(kobj, "%d", up->uid);
+	kset_init(kset);
+	user_attr_init(&up->user_attr, "cpu_share", 0644);
+
+	error = kobject_add(kobj);
+	if (error)
+		goto done;
+
+	error = sysfs_create_file(kobj, &up->user_attr.attr);
+	if (error)
+		kobject_del(kobj);
+
+	kobject_uevent(kobj, KOBJ_ADD);
+
+done:
+	return error;
+}
+
+/* create these in sysfs filesystem:
+ * 	"/sys/kernel/uids" directory
+ * 	"/sys/kernel/uids/0" directory (for root user)
+ * 	"/sys/kernel/uids/0/cpu_share" file (for root user)
+ */
+int __init uids_kobject_init(void)
+{
+	int error;
+
+	/* create under /sys/kernel dir */
+	uids_kobject.parent = &kernel_subsys.kobj;
+	uids_kobject.kset = &kernel_subsys;
+	kobject_set_name(&uids_kobject, "uids");
+	kobject_init(&uids_kobject);
+
+	error = kobject_add(&uids_kobject);
+	if (!error)
+		error = user_kobject_create(&root_user);
+
+	return error;
+}
+
+/* work function to remove sysfs directory for a user and free up
+ * corresponding structures.
+ */
+static void remove_user_sysfs_dir(struct work_struct *w)
+{
+	struct user_struct *up = container_of(w, struct user_struct, work);
+	struct kobject *kobj = &up->kset.kobj;
+	unsigned long flags;
+	int remove_user = 0;
+
+	/* Make uid_hash_remove() + sysfs_remove_file() + kobject_del()
+	 * atomic.
+	 */
+	uids_mutex_lock();
+
+	local_irq_save(flags);
+
+	if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) {
+		uid_hash_remove(up);
+		remove_user = 1;
+		spin_unlock_irqrestore(&uidhash_lock, flags);
+	} else {
+		local_irq_restore(flags);
+	}
+
+	if (!remove_user)
+		goto done;
+
+	sysfs_remove_file(kobj, &up->user_attr.attr);
+	kobject_uevent(kobj, KOBJ_REMOVE);
+	kobject_del(kobj);
+
+	sched_destroy_user(up);
+	key_put(up->uid_keyring);
+	key_put(up->session_keyring);
+	kmem_cache_free(uid_cachep, up);
+
+done:
+	uids_mutex_unlock();
+}
+
+/* IRQs are disabled and uidhash_lock is held upon function entry.
+ * IRQ state (as stored in flags) is restored and uidhash_lock released
+ * upon function exit.
+ */
+static inline void free_user(struct user_struct *up, unsigned long flags)
+{
+	/* restore back the count */
+	atomic_inc(&up->__count);
+	spin_unlock_irqrestore(&uidhash_lock, flags);
+
+	INIT_WORK(&up->work, remove_user_sysfs_dir);
+	schedule_work(&up->work);
+}
+
+#else	/* CONFIG_FAIR_USER_SCHED */
+
+static void sched_destroy_user(struct user_struct *up) { }
+static int sched_create_user(struct user_struct *up) { return 0; }
+static void sched_switch_user(struct task_struct *p) { }
+static inline int user_kobject_create(struct user_struct *up) { return 0; }
+static inline void uids_mutex_lock(void) { }
+static inline void uids_mutex_unlock(void) { }
+
+/* IRQs are disabled and uidhash_lock is held upon function entry.
+ * IRQ state (as stored in flags) is restored and uidhash_lock released
+ * upon function exit.
+ */
+static inline void free_user(struct user_struct *up, unsigned long flags)
+{
+	uid_hash_remove(up);
+	spin_unlock_irqrestore(&uidhash_lock, flags);
+	sched_destroy_user(up);
+	key_put(up->uid_keyring);
+	key_put(up->session_keyring);
+	kmem_cache_free(uid_cachep, up);
+}
+
+#endif	/* CONFIG_FAIR_USER_SCHED */
+
 /*
  * Locate the user_struct for the passed UID.  If found, take a ref on it.  The
  * caller must undo that ref with free_uid().
@@ -106,15 +308,10 @@ void free_uid(struct user_struct *up)
 		return;
 
 	local_irq_save(flags);
-	if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) {
-		uid_hash_remove(up);
-		spin_unlock_irqrestore(&uidhash_lock, flags);
-		key_put(up->uid_keyring);
-		key_put(up->session_keyring);
-		kmem_cache_free(uid_cachep, up);
-	} else {
+	if (atomic_dec_and_lock(&up->__count, &uidhash_lock))
+		free_user(up, flags);
+	else
 		local_irq_restore(flags);
-	}
 }
 
 struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid)
@@ -122,6 +319,11 @@ struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid)
 	struct hlist_head *hashent = uidhashentry(ns, uid);
 	struct user_struct *up;
 
+	/* Make uid_hash_find() + user_kobject_create() + uid_hash_insert()
+	 * atomic.
+	 */
+	uids_mutex_lock();
+
 	spin_lock_irq(&uidhash_lock);
 	up = uid_hash_find(uid, hashent);
 	spin_unlock_irq(&uidhash_lock);
@@ -150,6 +352,22 @@ struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid)
 			return NULL;
 		}
 
+		if (sched_create_user(new) < 0) {
+			key_put(new->uid_keyring);
+			key_put(new->session_keyring);
+			kmem_cache_free(uid_cachep, new);
+			return NULL;
+		}
+
+		if (user_kobject_create(new)) {
+			sched_destroy_user(new);
+			key_put(new->uid_keyring);
+			key_put(new->session_keyring);
+			kmem_cache_free(uid_cachep, new);
+			uids_mutex_unlock();
+			return NULL;
+		}
+
 		/*
 		 * Before adding this, check whether we raced
 		 * on adding the same user already..
@@ -157,6 +375,11 @@ struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid)
 		spin_lock_irq(&uidhash_lock);
 		up = uid_hash_find(uid, hashent);
 		if (up) {
+			/* This case is not possible when CONFIG_FAIR_USER_SCHED
+			 * is defined, since we serialize alloc_uid() using
+			 * uids_mutex. Hence no need to call
+			 * sched_destroy_user() or remove_user_sysfs_dir().
+			 */
 			key_put(new->uid_keyring);
 			key_put(new->session_keyring);
 			kmem_cache_free(uid_cachep, new);
@@ -167,6 +390,9 @@ struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid)
 		spin_unlock_irq(&uidhash_lock);
 
 	}
+
+	uids_mutex_unlock();
+
 	return up;
 }
 
@@ -184,6 +410,7 @@ void switch_uid(struct user_struct *new_user)
 	atomic_dec(&old_user->processes);
 	switch_uid_keyring(new_user);
 	current->user = new_user;
+	sched_switch_user(current);
 
 	/*
 	 * We need to synchronize with __sigqueue_alloc()

+ 2 - 2
net/unix/af_unix.c

@@ -334,7 +334,7 @@ static void unix_write_space(struct sock *sk)
 	read_lock(&sk->sk_callback_lock);
 	if (unix_writable(sk)) {
 		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
-			wake_up_interruptible(sk->sk_sleep);
+			wake_up_interruptible_sync(sk->sk_sleep);
 		sk_wake_async(sk, 2, POLL_OUT);
 	}
 	read_unlock(&sk->sk_callback_lock);
@@ -1639,7 +1639,7 @@ static int unix_dgram_recvmsg(struct kiocb *iocb, struct socket *sock,
 	if (!skb)
 		goto out_unlock;
 
-	wake_up_interruptible(&u->peer_wait);
+	wake_up_interruptible_sync(&u->peer_wait);
 
 	if (msg->msg_name)
 		unix_copy_addr(msg, skb->sk);