|
@@ -0,0 +1,1777 @@
|
|
|
|
+/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
|
|
|
+ *
|
|
|
|
+ * This program is free software; you can redistribute it and/or
|
|
|
|
+ * modify it under the terms of version 2 of the GNU General Public
|
|
|
|
+ * License as published by the Free Software Foundation.
|
|
|
|
+ *
|
|
|
|
+ * This program is distributed in the hope that it will be useful, but
|
|
|
|
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
+ * General Public License for more details.
|
|
|
|
+ */
|
|
|
|
+#include <linux/kernel.h>
|
|
|
|
+#include <linux/types.h>
|
|
|
|
+#include <linux/slab.h>
|
|
|
|
+#include <linux/bpf.h>
|
|
|
|
+#include <linux/filter.h>
|
|
|
|
+#include <net/netlink.h>
|
|
|
|
+#include <linux/file.h>
|
|
|
|
+#include <linux/vmalloc.h>
|
|
|
|
+
|
|
|
|
+/* bpf_check() is a static code analyzer that walks eBPF program
|
|
|
|
+ * instruction by instruction and updates register/stack state.
|
|
|
|
+ * All paths of conditional branches are analyzed until 'bpf_exit' insn.
|
|
|
|
+ *
|
|
|
|
+ * The first pass is depth-first-search to check that the program is a DAG.
|
|
|
|
+ * It rejects the following programs:
|
|
|
|
+ * - larger than BPF_MAXINSNS insns
|
|
|
|
+ * - if loop is present (detected via back-edge)
|
|
|
|
+ * - unreachable insns exist (shouldn't be a forest. program = one function)
|
|
|
|
+ * - out of bounds or malformed jumps
|
|
|
|
+ * The second pass is all possible path descent from the 1st insn.
|
|
|
|
+ * Since it's analyzing all pathes through the program, the length of the
|
|
|
|
+ * analysis is limited to 32k insn, which may be hit even if total number of
|
|
|
|
+ * insn is less then 4K, but there are too many branches that change stack/regs.
|
|
|
|
+ * Number of 'branches to be analyzed' is limited to 1k
|
|
|
|
+ *
|
|
|
|
+ * On entry to each instruction, each register has a type, and the instruction
|
|
|
|
+ * changes the types of the registers depending on instruction semantics.
|
|
|
|
+ * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
|
|
|
|
+ * copied to R1.
|
|
|
|
+ *
|
|
|
|
+ * All registers are 64-bit.
|
|
|
|
+ * R0 - return register
|
|
|
|
+ * R1-R5 argument passing registers
|
|
|
|
+ * R6-R9 callee saved registers
|
|
|
|
+ * R10 - frame pointer read-only
|
|
|
|
+ *
|
|
|
|
+ * At the start of BPF program the register R1 contains a pointer to bpf_context
|
|
|
|
+ * and has type PTR_TO_CTX.
|
|
|
|
+ *
|
|
|
|
+ * Verifier tracks arithmetic operations on pointers in case:
|
|
|
|
+ * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
|
|
|
|
+ * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
|
|
|
|
+ * 1st insn copies R10 (which has FRAME_PTR) type into R1
|
|
|
|
+ * and 2nd arithmetic instruction is pattern matched to recognize
|
|
|
|
+ * that it wants to construct a pointer to some element within stack.
|
|
|
|
+ * So after 2nd insn, the register R1 has type PTR_TO_STACK
|
|
|
|
+ * (and -20 constant is saved for further stack bounds checking).
|
|
|
|
+ * Meaning that this reg is a pointer to stack plus known immediate constant.
|
|
|
|
+ *
|
|
|
|
+ * Most of the time the registers have UNKNOWN_VALUE type, which
|
|
|
|
+ * means the register has some value, but it's not a valid pointer.
|
|
|
|
+ * (like pointer plus pointer becomes UNKNOWN_VALUE type)
|
|
|
|
+ *
|
|
|
|
+ * When verifier sees load or store instructions the type of base register
|
|
|
|
+ * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
|
|
|
|
+ * types recognized by check_mem_access() function.
|
|
|
|
+ *
|
|
|
|
+ * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
|
|
|
|
+ * and the range of [ptr, ptr + map's value_size) is accessible.
|
|
|
|
+ *
|
|
|
|
+ * registers used to pass values to function calls are checked against
|
|
|
|
+ * function argument constraints.
|
|
|
|
+ *
|
|
|
|
+ * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
|
|
|
|
+ * It means that the register type passed to this function must be
|
|
|
|
+ * PTR_TO_STACK and it will be used inside the function as
|
|
|
|
+ * 'pointer to map element key'
|
|
|
|
+ *
|
|
|
|
+ * For example the argument constraints for bpf_map_lookup_elem():
|
|
|
|
+ * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
|
|
|
|
+ * .arg1_type = ARG_CONST_MAP_PTR,
|
|
|
|
+ * .arg2_type = ARG_PTR_TO_MAP_KEY,
|
|
|
|
+ *
|
|
|
|
+ * ret_type says that this function returns 'pointer to map elem value or null'
|
|
|
|
+ * function expects 1st argument to be a const pointer to 'struct bpf_map' and
|
|
|
|
+ * 2nd argument should be a pointer to stack, which will be used inside
|
|
|
|
+ * the helper function as a pointer to map element key.
|
|
|
|
+ *
|
|
|
|
+ * On the kernel side the helper function looks like:
|
|
|
|
+ * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
|
|
|
|
+ * {
|
|
|
|
+ * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
|
|
|
|
+ * void *key = (void *) (unsigned long) r2;
|
|
|
|
+ * void *value;
|
|
|
|
+ *
|
|
|
|
+ * here kernel can access 'key' and 'map' pointers safely, knowing that
|
|
|
|
+ * [key, key + map->key_size) bytes are valid and were initialized on
|
|
|
|
+ * the stack of eBPF program.
|
|
|
|
+ * }
|
|
|
|
+ *
|
|
|
|
+ * Corresponding eBPF program may look like:
|
|
|
|
+ * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
|
|
|
|
+ * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
|
|
|
|
+ * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
|
|
|
|
+ * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
|
|
|
|
+ * here verifier looks at prototype of map_lookup_elem() and sees:
|
|
|
|
+ * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
|
|
|
|
+ * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
|
|
|
|
+ *
|
|
|
|
+ * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
|
|
|
|
+ * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
|
|
|
|
+ * and were initialized prior to this call.
|
|
|
|
+ * If it's ok, then verifier allows this BPF_CALL insn and looks at
|
|
|
|
+ * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
|
|
|
|
+ * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
|
|
|
|
+ * returns ether pointer to map value or NULL.
|
|
|
|
+ *
|
|
|
|
+ * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
|
|
|
|
+ * insn, the register holding that pointer in the true branch changes state to
|
|
|
|
+ * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
|
|
|
|
+ * branch. See check_cond_jmp_op().
|
|
|
|
+ *
|
|
|
|
+ * After the call R0 is set to return type of the function and registers R1-R5
|
|
|
|
+ * are set to NOT_INIT to indicate that they are no longer readable.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+/* types of values stored in eBPF registers */
|
|
|
|
+enum bpf_reg_type {
|
|
|
|
+ NOT_INIT = 0, /* nothing was written into register */
|
|
|
|
+ UNKNOWN_VALUE, /* reg doesn't contain a valid pointer */
|
|
|
|
+ PTR_TO_CTX, /* reg points to bpf_context */
|
|
|
|
+ CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
|
|
|
|
+ PTR_TO_MAP_VALUE, /* reg points to map element value */
|
|
|
|
+ PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
|
|
|
|
+ FRAME_PTR, /* reg == frame_pointer */
|
|
|
|
+ PTR_TO_STACK, /* reg == frame_pointer + imm */
|
|
|
|
+ CONST_IMM, /* constant integer value */
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+struct reg_state {
|
|
|
|
+ enum bpf_reg_type type;
|
|
|
|
+ union {
|
|
|
|
+ /* valid when type == CONST_IMM | PTR_TO_STACK */
|
|
|
|
+ int imm;
|
|
|
|
+
|
|
|
|
+ /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
|
|
|
|
+ * PTR_TO_MAP_VALUE_OR_NULL
|
|
|
|
+ */
|
|
|
|
+ struct bpf_map *map_ptr;
|
|
|
|
+ };
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+enum bpf_stack_slot_type {
|
|
|
|
+ STACK_INVALID, /* nothing was stored in this stack slot */
|
|
|
|
+ STACK_SPILL, /* 1st byte of register spilled into stack */
|
|
|
|
+ STACK_SPILL_PART, /* other 7 bytes of register spill */
|
|
|
|
+ STACK_MISC /* BPF program wrote some data into this slot */
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+struct bpf_stack_slot {
|
|
|
|
+ enum bpf_stack_slot_type stype;
|
|
|
|
+ struct reg_state reg_st;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/* state of the program:
|
|
|
|
+ * type of all registers and stack info
|
|
|
|
+ */
|
|
|
|
+struct verifier_state {
|
|
|
|
+ struct reg_state regs[MAX_BPF_REG];
|
|
|
|
+ struct bpf_stack_slot stack[MAX_BPF_STACK];
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/* linked list of verifier states used to prune search */
|
|
|
|
+struct verifier_state_list {
|
|
|
|
+ struct verifier_state state;
|
|
|
|
+ struct verifier_state_list *next;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/* verifier_state + insn_idx are pushed to stack when branch is encountered */
|
|
|
|
+struct verifier_stack_elem {
|
|
|
|
+ /* verifer state is 'st'
|
|
|
|
+ * before processing instruction 'insn_idx'
|
|
|
|
+ * and after processing instruction 'prev_insn_idx'
|
|
|
|
+ */
|
|
|
|
+ struct verifier_state st;
|
|
|
|
+ int insn_idx;
|
|
|
|
+ int prev_insn_idx;
|
|
|
|
+ struct verifier_stack_elem *next;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
|
|
|
|
+
|
|
|
|
+/* single container for all structs
|
|
|
|
+ * one verifier_env per bpf_check() call
|
|
|
|
+ */
|
|
|
|
+struct verifier_env {
|
|
|
|
+ struct bpf_prog *prog; /* eBPF program being verified */
|
|
|
|
+ struct verifier_stack_elem *head; /* stack of verifier states to be processed */
|
|
|
|
+ int stack_size; /* number of states to be processed */
|
|
|
|
+ struct verifier_state cur_state; /* current verifier state */
|
|
|
|
+ struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
|
|
|
|
+ u32 used_map_cnt; /* number of used maps */
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/* verbose verifier prints what it's seeing
|
|
|
|
+ * bpf_check() is called under lock, so no race to access these global vars
|
|
|
|
+ */
|
|
|
|
+static u32 log_level, log_size, log_len;
|
|
|
|
+static char *log_buf;
|
|
|
|
+
|
|
|
|
+static DEFINE_MUTEX(bpf_verifier_lock);
|
|
|
|
+
|
|
|
|
+/* log_level controls verbosity level of eBPF verifier.
|
|
|
|
+ * verbose() is used to dump the verification trace to the log, so the user
|
|
|
|
+ * can figure out what's wrong with the program
|
|
|
|
+ */
|
|
|
|
+static void verbose(const char *fmt, ...)
|
|
|
|
+{
|
|
|
|
+ va_list args;
|
|
|
|
+
|
|
|
|
+ if (log_level == 0 || log_len >= log_size - 1)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ va_start(args, fmt);
|
|
|
|
+ log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
|
|
|
|
+ va_end(args);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* string representation of 'enum bpf_reg_type' */
|
|
|
|
+static const char * const reg_type_str[] = {
|
|
|
|
+ [NOT_INIT] = "?",
|
|
|
|
+ [UNKNOWN_VALUE] = "inv",
|
|
|
|
+ [PTR_TO_CTX] = "ctx",
|
|
|
|
+ [CONST_PTR_TO_MAP] = "map_ptr",
|
|
|
|
+ [PTR_TO_MAP_VALUE] = "map_value",
|
|
|
|
+ [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
|
|
|
|
+ [FRAME_PTR] = "fp",
|
|
|
|
+ [PTR_TO_STACK] = "fp",
|
|
|
|
+ [CONST_IMM] = "imm",
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static void print_verifier_state(struct verifier_env *env)
|
|
|
|
+{
|
|
|
|
+ enum bpf_reg_type t;
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < MAX_BPF_REG; i++) {
|
|
|
|
+ t = env->cur_state.regs[i].type;
|
|
|
|
+ if (t == NOT_INIT)
|
|
|
|
+ continue;
|
|
|
|
+ verbose(" R%d=%s", i, reg_type_str[t]);
|
|
|
|
+ if (t == CONST_IMM || t == PTR_TO_STACK)
|
|
|
|
+ verbose("%d", env->cur_state.regs[i].imm);
|
|
|
|
+ else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
|
|
|
|
+ t == PTR_TO_MAP_VALUE_OR_NULL)
|
|
|
|
+ verbose("(ks=%d,vs=%d)",
|
|
|
|
+ env->cur_state.regs[i].map_ptr->key_size,
|
|
|
|
+ env->cur_state.regs[i].map_ptr->value_size);
|
|
|
|
+ }
|
|
|
|
+ for (i = 0; i < MAX_BPF_STACK; i++) {
|
|
|
|
+ if (env->cur_state.stack[i].stype == STACK_SPILL)
|
|
|
|
+ verbose(" fp%d=%s", -MAX_BPF_STACK + i,
|
|
|
|
+ reg_type_str[env->cur_state.stack[i].reg_st.type]);
|
|
|
|
+ }
|
|
|
|
+ verbose("\n");
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static const char *const bpf_class_string[] = {
|
|
|
|
+ [BPF_LD] = "ld",
|
|
|
|
+ [BPF_LDX] = "ldx",
|
|
|
|
+ [BPF_ST] = "st",
|
|
|
|
+ [BPF_STX] = "stx",
|
|
|
|
+ [BPF_ALU] = "alu",
|
|
|
|
+ [BPF_JMP] = "jmp",
|
|
|
|
+ [BPF_RET] = "BUG",
|
|
|
|
+ [BPF_ALU64] = "alu64",
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static const char *const bpf_alu_string[] = {
|
|
|
|
+ [BPF_ADD >> 4] = "+=",
|
|
|
|
+ [BPF_SUB >> 4] = "-=",
|
|
|
|
+ [BPF_MUL >> 4] = "*=",
|
|
|
|
+ [BPF_DIV >> 4] = "/=",
|
|
|
|
+ [BPF_OR >> 4] = "|=",
|
|
|
|
+ [BPF_AND >> 4] = "&=",
|
|
|
|
+ [BPF_LSH >> 4] = "<<=",
|
|
|
|
+ [BPF_RSH >> 4] = ">>=",
|
|
|
|
+ [BPF_NEG >> 4] = "neg",
|
|
|
|
+ [BPF_MOD >> 4] = "%=",
|
|
|
|
+ [BPF_XOR >> 4] = "^=",
|
|
|
|
+ [BPF_MOV >> 4] = "=",
|
|
|
|
+ [BPF_ARSH >> 4] = "s>>=",
|
|
|
|
+ [BPF_END >> 4] = "endian",
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static const char *const bpf_ldst_string[] = {
|
|
|
|
+ [BPF_W >> 3] = "u32",
|
|
|
|
+ [BPF_H >> 3] = "u16",
|
|
|
|
+ [BPF_B >> 3] = "u8",
|
|
|
|
+ [BPF_DW >> 3] = "u64",
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static const char *const bpf_jmp_string[] = {
|
|
|
|
+ [BPF_JA >> 4] = "jmp",
|
|
|
|
+ [BPF_JEQ >> 4] = "==",
|
|
|
|
+ [BPF_JGT >> 4] = ">",
|
|
|
|
+ [BPF_JGE >> 4] = ">=",
|
|
|
|
+ [BPF_JSET >> 4] = "&",
|
|
|
|
+ [BPF_JNE >> 4] = "!=",
|
|
|
|
+ [BPF_JSGT >> 4] = "s>",
|
|
|
|
+ [BPF_JSGE >> 4] = "s>=",
|
|
|
|
+ [BPF_CALL >> 4] = "call",
|
|
|
|
+ [BPF_EXIT >> 4] = "exit",
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static void print_bpf_insn(struct bpf_insn *insn)
|
|
|
|
+{
|
|
|
|
+ u8 class = BPF_CLASS(insn->code);
|
|
|
|
+
|
|
|
|
+ if (class == BPF_ALU || class == BPF_ALU64) {
|
|
|
|
+ if (BPF_SRC(insn->code) == BPF_X)
|
|
|
|
+ verbose("(%02x) %sr%d %s %sr%d\n",
|
|
|
|
+ insn->code, class == BPF_ALU ? "(u32) " : "",
|
|
|
|
+ insn->dst_reg,
|
|
|
|
+ bpf_alu_string[BPF_OP(insn->code) >> 4],
|
|
|
|
+ class == BPF_ALU ? "(u32) " : "",
|
|
|
|
+ insn->src_reg);
|
|
|
|
+ else
|
|
|
|
+ verbose("(%02x) %sr%d %s %s%d\n",
|
|
|
|
+ insn->code, class == BPF_ALU ? "(u32) " : "",
|
|
|
|
+ insn->dst_reg,
|
|
|
|
+ bpf_alu_string[BPF_OP(insn->code) >> 4],
|
|
|
|
+ class == BPF_ALU ? "(u32) " : "",
|
|
|
|
+ insn->imm);
|
|
|
|
+ } else if (class == BPF_STX) {
|
|
|
|
+ if (BPF_MODE(insn->code) == BPF_MEM)
|
|
|
|
+ verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
|
|
|
|
+ insn->code,
|
|
|
|
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
|
|
+ insn->dst_reg,
|
|
|
|
+ insn->off, insn->src_reg);
|
|
|
|
+ else if (BPF_MODE(insn->code) == BPF_XADD)
|
|
|
|
+ verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
|
|
|
|
+ insn->code,
|
|
|
|
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
|
|
+ insn->dst_reg, insn->off,
|
|
|
|
+ insn->src_reg);
|
|
|
|
+ else
|
|
|
|
+ verbose("BUG_%02x\n", insn->code);
|
|
|
|
+ } else if (class == BPF_ST) {
|
|
|
|
+ if (BPF_MODE(insn->code) != BPF_MEM) {
|
|
|
|
+ verbose("BUG_st_%02x\n", insn->code);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
|
|
|
|
+ insn->code,
|
|
|
|
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
|
|
+ insn->dst_reg,
|
|
|
|
+ insn->off, insn->imm);
|
|
|
|
+ } else if (class == BPF_LDX) {
|
|
|
|
+ if (BPF_MODE(insn->code) != BPF_MEM) {
|
|
|
|
+ verbose("BUG_ldx_%02x\n", insn->code);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
|
|
|
|
+ insn->code, insn->dst_reg,
|
|
|
|
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
|
|
+ insn->src_reg, insn->off);
|
|
|
|
+ } else if (class == BPF_LD) {
|
|
|
|
+ if (BPF_MODE(insn->code) == BPF_ABS) {
|
|
|
|
+ verbose("(%02x) r0 = *(%s *)skb[%d]\n",
|
|
|
|
+ insn->code,
|
|
|
|
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
|
|
+ insn->imm);
|
|
|
|
+ } else if (BPF_MODE(insn->code) == BPF_IND) {
|
|
|
|
+ verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
|
|
|
|
+ insn->code,
|
|
|
|
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
|
|
|
|
+ insn->src_reg, insn->imm);
|
|
|
|
+ } else if (BPF_MODE(insn->code) == BPF_IMM) {
|
|
|
|
+ verbose("(%02x) r%d = 0x%x\n",
|
|
|
|
+ insn->code, insn->dst_reg, insn->imm);
|
|
|
|
+ } else {
|
|
|
|
+ verbose("BUG_ld_%02x\n", insn->code);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ } else if (class == BPF_JMP) {
|
|
|
|
+ u8 opcode = BPF_OP(insn->code);
|
|
|
|
+
|
|
|
|
+ if (opcode == BPF_CALL) {
|
|
|
|
+ verbose("(%02x) call %d\n", insn->code, insn->imm);
|
|
|
|
+ } else if (insn->code == (BPF_JMP | BPF_JA)) {
|
|
|
|
+ verbose("(%02x) goto pc%+d\n",
|
|
|
|
+ insn->code, insn->off);
|
|
|
|
+ } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
|
|
|
|
+ verbose("(%02x) exit\n", insn->code);
|
|
|
|
+ } else if (BPF_SRC(insn->code) == BPF_X) {
|
|
|
|
+ verbose("(%02x) if r%d %s r%d goto pc%+d\n",
|
|
|
|
+ insn->code, insn->dst_reg,
|
|
|
|
+ bpf_jmp_string[BPF_OP(insn->code) >> 4],
|
|
|
|
+ insn->src_reg, insn->off);
|
|
|
|
+ } else {
|
|
|
|
+ verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
|
|
|
|
+ insn->code, insn->dst_reg,
|
|
|
|
+ bpf_jmp_string[BPF_OP(insn->code) >> 4],
|
|
|
|
+ insn->imm, insn->off);
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
|
|
|
|
+{
|
|
|
|
+ struct verifier_stack_elem *elem;
|
|
|
|
+ int insn_idx;
|
|
|
|
+
|
|
|
|
+ if (env->head == NULL)
|
|
|
|
+ return -1;
|
|
|
|
+
|
|
|
|
+ memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
|
|
|
|
+ insn_idx = env->head->insn_idx;
|
|
|
|
+ if (prev_insn_idx)
|
|
|
|
+ *prev_insn_idx = env->head->prev_insn_idx;
|
|
|
|
+ elem = env->head->next;
|
|
|
|
+ kfree(env->head);
|
|
|
|
+ env->head = elem;
|
|
|
|
+ env->stack_size--;
|
|
|
|
+ return insn_idx;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
|
|
|
|
+ int prev_insn_idx)
|
|
|
|
+{
|
|
|
|
+ struct verifier_stack_elem *elem;
|
|
|
|
+
|
|
|
|
+ elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
|
|
|
|
+ if (!elem)
|
|
|
|
+ goto err;
|
|
|
|
+
|
|
|
|
+ memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
|
|
|
|
+ elem->insn_idx = insn_idx;
|
|
|
|
+ elem->prev_insn_idx = prev_insn_idx;
|
|
|
|
+ elem->next = env->head;
|
|
|
|
+ env->head = elem;
|
|
|
|
+ env->stack_size++;
|
|
|
|
+ if (env->stack_size > 1024) {
|
|
|
|
+ verbose("BPF program is too complex\n");
|
|
|
|
+ goto err;
|
|
|
|
+ }
|
|
|
|
+ return &elem->st;
|
|
|
|
+err:
|
|
|
|
+ /* pop all elements and return */
|
|
|
|
+ while (pop_stack(env, NULL) >= 0);
|
|
|
|
+ return NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#define CALLER_SAVED_REGS 6
|
|
|
|
+static const int caller_saved[CALLER_SAVED_REGS] = {
|
|
|
|
+ BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static void init_reg_state(struct reg_state *regs)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < MAX_BPF_REG; i++) {
|
|
|
|
+ regs[i].type = NOT_INIT;
|
|
|
|
+ regs[i].imm = 0;
|
|
|
|
+ regs[i].map_ptr = NULL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* frame pointer */
|
|
|
|
+ regs[BPF_REG_FP].type = FRAME_PTR;
|
|
|
|
+
|
|
|
|
+ /* 1st arg to a function */
|
|
|
|
+ regs[BPF_REG_1].type = PTR_TO_CTX;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
|
|
|
|
+{
|
|
|
|
+ BUG_ON(regno >= MAX_BPF_REG);
|
|
|
|
+ regs[regno].type = UNKNOWN_VALUE;
|
|
|
|
+ regs[regno].imm = 0;
|
|
|
|
+ regs[regno].map_ptr = NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+enum reg_arg_type {
|
|
|
|
+ SRC_OP, /* register is used as source operand */
|
|
|
|
+ DST_OP, /* register is used as destination operand */
|
|
|
|
+ DST_OP_NO_MARK /* same as above, check only, don't mark */
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static int check_reg_arg(struct reg_state *regs, u32 regno,
|
|
|
|
+ enum reg_arg_type t)
|
|
|
|
+{
|
|
|
|
+ if (regno >= MAX_BPF_REG) {
|
|
|
|
+ verbose("R%d is invalid\n", regno);
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (t == SRC_OP) {
|
|
|
|
+ /* check whether register used as source operand can be read */
|
|
|
|
+ if (regs[regno].type == NOT_INIT) {
|
|
|
|
+ verbose("R%d !read_ok\n", regno);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ /* check whether register used as dest operand can be written to */
|
|
|
|
+ if (regno == BPF_REG_FP) {
|
|
|
|
+ verbose("frame pointer is read only\n");
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ if (t == DST_OP)
|
|
|
|
+ mark_reg_unknown_value(regs, regno);
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int bpf_size_to_bytes(int bpf_size)
|
|
|
|
+{
|
|
|
|
+ if (bpf_size == BPF_W)
|
|
|
|
+ return 4;
|
|
|
|
+ else if (bpf_size == BPF_H)
|
|
|
|
+ return 2;
|
|
|
|
+ else if (bpf_size == BPF_B)
|
|
|
|
+ return 1;
|
|
|
|
+ else if (bpf_size == BPF_DW)
|
|
|
|
+ return 8;
|
|
|
|
+ else
|
|
|
|
+ return -EINVAL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* check_stack_read/write functions track spill/fill of registers,
|
|
|
|
+ * stack boundary and alignment are checked in check_mem_access()
|
|
|
|
+ */
|
|
|
|
+static int check_stack_write(struct verifier_state *state, int off, int size,
|
|
|
|
+ int value_regno)
|
|
|
|
+{
|
|
|
|
+ struct bpf_stack_slot *slot;
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ if (value_regno >= 0 &&
|
|
|
|
+ (state->regs[value_regno].type == PTR_TO_MAP_VALUE ||
|
|
|
|
+ state->regs[value_regno].type == PTR_TO_STACK ||
|
|
|
|
+ state->regs[value_regno].type == PTR_TO_CTX)) {
|
|
|
|
+
|
|
|
|
+ /* register containing pointer is being spilled into stack */
|
|
|
|
+ if (size != 8) {
|
|
|
|
+ verbose("invalid size of register spill\n");
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ slot = &state->stack[MAX_BPF_STACK + off];
|
|
|
|
+ slot->stype = STACK_SPILL;
|
|
|
|
+ /* save register state */
|
|
|
|
+ slot->reg_st = state->regs[value_regno];
|
|
|
|
+ for (i = 1; i < 8; i++) {
|
|
|
|
+ slot = &state->stack[MAX_BPF_STACK + off + i];
|
|
|
|
+ slot->stype = STACK_SPILL_PART;
|
|
|
|
+ slot->reg_st.type = UNKNOWN_VALUE;
|
|
|
|
+ slot->reg_st.map_ptr = NULL;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+
|
|
|
|
+ /* regular write of data into stack */
|
|
|
|
+ for (i = 0; i < size; i++) {
|
|
|
|
+ slot = &state->stack[MAX_BPF_STACK + off + i];
|
|
|
|
+ slot->stype = STACK_MISC;
|
|
|
|
+ slot->reg_st.type = UNKNOWN_VALUE;
|
|
|
|
+ slot->reg_st.map_ptr = NULL;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int check_stack_read(struct verifier_state *state, int off, int size,
|
|
|
|
+ int value_regno)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+ struct bpf_stack_slot *slot;
|
|
|
|
+
|
|
|
|
+ slot = &state->stack[MAX_BPF_STACK + off];
|
|
|
|
+
|
|
|
|
+ if (slot->stype == STACK_SPILL) {
|
|
|
|
+ if (size != 8) {
|
|
|
|
+ verbose("invalid size of register spill\n");
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ for (i = 1; i < 8; i++) {
|
|
|
|
+ if (state->stack[MAX_BPF_STACK + off + i].stype !=
|
|
|
|
+ STACK_SPILL_PART) {
|
|
|
|
+ verbose("corrupted spill memory\n");
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (value_regno >= 0)
|
|
|
|
+ /* restore register state from stack */
|
|
|
|
+ state->regs[value_regno] = slot->reg_st;
|
|
|
|
+ return 0;
|
|
|
|
+ } else {
|
|
|
|
+ for (i = 0; i < size; i++) {
|
|
|
|
+ if (state->stack[MAX_BPF_STACK + off + i].stype !=
|
|
|
|
+ STACK_MISC) {
|
|
|
|
+ verbose("invalid read from stack off %d+%d size %d\n",
|
|
|
|
+ off, i, size);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (value_regno >= 0)
|
|
|
|
+ /* have read misc data from the stack */
|
|
|
|
+ mark_reg_unknown_value(state->regs, value_regno);
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* check read/write into map element returned by bpf_map_lookup_elem() */
|
|
|
|
+static int check_map_access(struct verifier_env *env, u32 regno, int off,
|
|
|
|
+ int size)
|
|
|
|
+{
|
|
|
|
+ struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
|
|
|
|
+
|
|
|
|
+ if (off < 0 || off + size > map->value_size) {
|
|
|
|
+ verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
|
|
|
|
+ map->value_size, off, size);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* check access to 'struct bpf_context' fields */
|
|
|
|
+static int check_ctx_access(struct verifier_env *env, int off, int size,
|
|
|
|
+ enum bpf_access_type t)
|
|
|
|
+{
|
|
|
|
+ if (env->prog->aux->ops->is_valid_access &&
|
|
|
|
+ env->prog->aux->ops->is_valid_access(off, size, t))
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ verbose("invalid bpf_context access off=%d size=%d\n", off, size);
|
|
|
|
+ return -EACCES;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* check whether memory at (regno + off) is accessible for t = (read | write)
|
|
|
|
+ * if t==write, value_regno is a register which value is stored into memory
|
|
|
|
+ * if t==read, value_regno is a register which will receive the value from memory
|
|
|
|
+ * if t==write && value_regno==-1, some unknown value is stored into memory
|
|
|
|
+ * if t==read && value_regno==-1, don't care what we read from memory
|
|
|
|
+ */
|
|
|
|
+static int check_mem_access(struct verifier_env *env, u32 regno, int off,
|
|
|
|
+ int bpf_size, enum bpf_access_type t,
|
|
|
|
+ int value_regno)
|
|
|
|
+{
|
|
|
|
+ struct verifier_state *state = &env->cur_state;
|
|
|
|
+ int size, err = 0;
|
|
|
|
+
|
|
|
|
+ size = bpf_size_to_bytes(bpf_size);
|
|
|
|
+ if (size < 0)
|
|
|
|
+ return size;
|
|
|
|
+
|
|
|
|
+ if (off % size != 0) {
|
|
|
|
+ verbose("misaligned access off %d size %d\n", off, size);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
|
|
|
|
+ err = check_map_access(env, regno, off, size);
|
|
|
|
+ if (!err && t == BPF_READ && value_regno >= 0)
|
|
|
|
+ mark_reg_unknown_value(state->regs, value_regno);
|
|
|
|
+
|
|
|
|
+ } else if (state->regs[regno].type == PTR_TO_CTX) {
|
|
|
|
+ err = check_ctx_access(env, off, size, t);
|
|
|
|
+ if (!err && t == BPF_READ && value_regno >= 0)
|
|
|
|
+ mark_reg_unknown_value(state->regs, value_regno);
|
|
|
|
+
|
|
|
|
+ } else if (state->regs[regno].type == FRAME_PTR) {
|
|
|
|
+ if (off >= 0 || off < -MAX_BPF_STACK) {
|
|
|
|
+ verbose("invalid stack off=%d size=%d\n", off, size);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ if (t == BPF_WRITE)
|
|
|
|
+ err = check_stack_write(state, off, size, value_regno);
|
|
|
|
+ else
|
|
|
|
+ err = check_stack_read(state, off, size, value_regno);
|
|
|
|
+ } else {
|
|
|
|
+ verbose("R%d invalid mem access '%s'\n",
|
|
|
|
+ regno, reg_type_str[state->regs[regno].type]);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ return err;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
|
|
|
|
+{
|
|
|
|
+ struct reg_state *regs = env->cur_state.regs;
|
|
|
|
+ int err;
|
|
|
|
+
|
|
|
|
+ if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
|
|
|
|
+ insn->imm != 0) {
|
|
|
|
+ verbose("BPF_XADD uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* check src1 operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ /* check src2 operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ /* check whether atomic_add can read the memory */
|
|
|
|
+ err = check_mem_access(env, insn->dst_reg, insn->off,
|
|
|
|
+ BPF_SIZE(insn->code), BPF_READ, -1);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ /* check whether atomic_add can write into the same memory */
|
|
|
|
+ return check_mem_access(env, insn->dst_reg, insn->off,
|
|
|
|
+ BPF_SIZE(insn->code), BPF_WRITE, -1);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* when register 'regno' is passed into function that will read 'access_size'
|
|
|
|
+ * bytes from that pointer, make sure that it's within stack boundary
|
|
|
|
+ * and all elements of stack are initialized
|
|
|
|
+ */
|
|
|
|
+static int check_stack_boundary(struct verifier_env *env,
|
|
|
|
+ int regno, int access_size)
|
|
|
|
+{
|
|
|
|
+ struct verifier_state *state = &env->cur_state;
|
|
|
|
+ struct reg_state *regs = state->regs;
|
|
|
|
+ int off, i;
|
|
|
|
+
|
|
|
|
+ if (regs[regno].type != PTR_TO_STACK)
|
|
|
|
+ return -EACCES;
|
|
|
|
+
|
|
|
|
+ off = regs[regno].imm;
|
|
|
|
+ if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
|
|
|
|
+ access_size <= 0) {
|
|
|
|
+ verbose("invalid stack type R%d off=%d access_size=%d\n",
|
|
|
|
+ regno, off, access_size);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < access_size; i++) {
|
|
|
|
+ if (state->stack[MAX_BPF_STACK + off + i].stype != STACK_MISC) {
|
|
|
|
+ verbose("invalid indirect read from stack off %d+%d size %d\n",
|
|
|
|
+ off, i, access_size);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int check_func_arg(struct verifier_env *env, u32 regno,
|
|
|
|
+ enum bpf_arg_type arg_type, struct bpf_map **mapp)
|
|
|
|
+{
|
|
|
|
+ struct reg_state *reg = env->cur_state.regs + regno;
|
|
|
|
+ enum bpf_reg_type expected_type;
|
|
|
|
+ int err = 0;
|
|
|
|
+
|
|
|
|
+ if (arg_type == ARG_ANYTHING)
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ if (reg->type == NOT_INIT) {
|
|
|
|
+ verbose("R%d !read_ok\n", regno);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY ||
|
|
|
|
+ arg_type == ARG_PTR_TO_MAP_VALUE) {
|
|
|
|
+ expected_type = PTR_TO_STACK;
|
|
|
|
+ } else if (arg_type == ARG_CONST_STACK_SIZE) {
|
|
|
|
+ expected_type = CONST_IMM;
|
|
|
|
+ } else if (arg_type == ARG_CONST_MAP_PTR) {
|
|
|
|
+ expected_type = CONST_PTR_TO_MAP;
|
|
|
|
+ } else {
|
|
|
|
+ verbose("unsupported arg_type %d\n", arg_type);
|
|
|
|
+ return -EFAULT;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (reg->type != expected_type) {
|
|
|
|
+ verbose("R%d type=%s expected=%s\n", regno,
|
|
|
|
+ reg_type_str[reg->type], reg_type_str[expected_type]);
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (arg_type == ARG_CONST_MAP_PTR) {
|
|
|
|
+ /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
|
|
|
|
+ *mapp = reg->map_ptr;
|
|
|
|
+
|
|
|
|
+ } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
|
|
|
|
+ /* bpf_map_xxx(..., map_ptr, ..., key) call:
|
|
|
|
+ * check that [key, key + map->key_size) are within
|
|
|
|
+ * stack limits and initialized
|
|
|
|
+ */
|
|
|
|
+ if (!*mapp) {
|
|
|
|
+ /* in function declaration map_ptr must come before
|
|
|
|
+ * map_key, so that it's verified and known before
|
|
|
|
+ * we have to check map_key here. Otherwise it means
|
|
|
|
+ * that kernel subsystem misconfigured verifier
|
|
|
|
+ */
|
|
|
|
+ verbose("invalid map_ptr to access map->key\n");
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ err = check_stack_boundary(env, regno, (*mapp)->key_size);
|
|
|
|
+
|
|
|
|
+ } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
|
|
|
|
+ /* bpf_map_xxx(..., map_ptr, ..., value) call:
|
|
|
|
+ * check [value, value + map->value_size) validity
|
|
|
|
+ */
|
|
|
|
+ if (!*mapp) {
|
|
|
|
+ /* kernel subsystem misconfigured verifier */
|
|
|
|
+ verbose("invalid map_ptr to access map->value\n");
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ err = check_stack_boundary(env, regno, (*mapp)->value_size);
|
|
|
|
+
|
|
|
|
+ } else if (arg_type == ARG_CONST_STACK_SIZE) {
|
|
|
|
+ /* bpf_xxx(..., buf, len) call will access 'len' bytes
|
|
|
|
+ * from stack pointer 'buf'. Check it
|
|
|
|
+ * note: regno == len, regno - 1 == buf
|
|
|
|
+ */
|
|
|
|
+ if (regno == 0) {
|
|
|
|
+ /* kernel subsystem misconfigured verifier */
|
|
|
|
+ verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
|
|
|
|
+ return -EACCES;
|
|
|
|
+ }
|
|
|
|
+ err = check_stack_boundary(env, regno - 1, reg->imm);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return err;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int check_call(struct verifier_env *env, int func_id)
|
|
|
|
+{
|
|
|
|
+ struct verifier_state *state = &env->cur_state;
|
|
|
|
+ const struct bpf_func_proto *fn = NULL;
|
|
|
|
+ struct reg_state *regs = state->regs;
|
|
|
|
+ struct bpf_map *map = NULL;
|
|
|
|
+ struct reg_state *reg;
|
|
|
|
+ int i, err;
|
|
|
|
+
|
|
|
|
+ /* find function prototype */
|
|
|
|
+ if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
|
|
|
|
+ verbose("invalid func %d\n", func_id);
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (env->prog->aux->ops->get_func_proto)
|
|
|
|
+ fn = env->prog->aux->ops->get_func_proto(func_id);
|
|
|
|
+
|
|
|
|
+ if (!fn) {
|
|
|
|
+ verbose("unknown func %d\n", func_id);
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* eBPF programs must be GPL compatible to use GPL-ed functions */
|
|
|
|
+ if (!env->prog->aux->is_gpl_compatible && fn->gpl_only) {
|
|
|
|
+ verbose("cannot call GPL only function from proprietary program\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* check args */
|
|
|
|
+ err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ /* reset caller saved regs */
|
|
|
|
+ for (i = 0; i < CALLER_SAVED_REGS; i++) {
|
|
|
|
+ reg = regs + caller_saved[i];
|
|
|
|
+ reg->type = NOT_INIT;
|
|
|
|
+ reg->imm = 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* update return register */
|
|
|
|
+ if (fn->ret_type == RET_INTEGER) {
|
|
|
|
+ regs[BPF_REG_0].type = UNKNOWN_VALUE;
|
|
|
|
+ } else if (fn->ret_type == RET_VOID) {
|
|
|
|
+ regs[BPF_REG_0].type = NOT_INIT;
|
|
|
|
+ } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
|
|
|
|
+ regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
|
|
|
|
+ /* remember map_ptr, so that check_map_access()
|
|
|
|
+ * can check 'value_size' boundary of memory access
|
|
|
|
+ * to map element returned from bpf_map_lookup_elem()
|
|
|
|
+ */
|
|
|
|
+ if (map == NULL) {
|
|
|
|
+ verbose("kernel subsystem misconfigured verifier\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ regs[BPF_REG_0].map_ptr = map;
|
|
|
|
+ } else {
|
|
|
|
+ verbose("unknown return type %d of func %d\n",
|
|
|
|
+ fn->ret_type, func_id);
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* check validity of 32-bit and 64-bit arithmetic operations */
|
|
|
|
+static int check_alu_op(struct reg_state *regs, struct bpf_insn *insn)
|
|
|
|
+{
|
|
|
|
+ u8 opcode = BPF_OP(insn->code);
|
|
|
|
+ int err;
|
|
|
|
+
|
|
|
|
+ if (opcode == BPF_END || opcode == BPF_NEG) {
|
|
|
|
+ if (opcode == BPF_NEG) {
|
|
|
|
+ if (BPF_SRC(insn->code) != 0 ||
|
|
|
|
+ insn->src_reg != BPF_REG_0 ||
|
|
|
|
+ insn->off != 0 || insn->imm != 0) {
|
|
|
|
+ verbose("BPF_NEG uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
|
|
|
|
+ (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
|
|
|
|
+ verbose("BPF_END uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* check src operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ /* check dest operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, DST_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ } else if (opcode == BPF_MOV) {
|
|
|
|
+
|
|
|
|
+ if (BPF_SRC(insn->code) == BPF_X) {
|
|
|
|
+ if (insn->imm != 0 || insn->off != 0) {
|
|
|
|
+ verbose("BPF_MOV uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* check src operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ } else {
|
|
|
|
+ if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
|
|
|
|
+ verbose("BPF_MOV uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* check dest operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, DST_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ if (BPF_SRC(insn->code) == BPF_X) {
|
|
|
|
+ if (BPF_CLASS(insn->code) == BPF_ALU64) {
|
|
|
|
+ /* case: R1 = R2
|
|
|
|
+ * copy register state to dest reg
|
|
|
|
+ */
|
|
|
|
+ regs[insn->dst_reg] = regs[insn->src_reg];
|
|
|
|
+ } else {
|
|
|
|
+ regs[insn->dst_reg].type = UNKNOWN_VALUE;
|
|
|
|
+ regs[insn->dst_reg].map_ptr = NULL;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ /* case: R = imm
|
|
|
|
+ * remember the value we stored into this reg
|
|
|
|
+ */
|
|
|
|
+ regs[insn->dst_reg].type = CONST_IMM;
|
|
|
|
+ regs[insn->dst_reg].imm = insn->imm;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ } else if (opcode > BPF_END) {
|
|
|
|
+ verbose("invalid BPF_ALU opcode %x\n", opcode);
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ } else { /* all other ALU ops: and, sub, xor, add, ... */
|
|
|
|
+
|
|
|
|
+ bool stack_relative = false;
|
|
|
|
+
|
|
|
|
+ if (BPF_SRC(insn->code) == BPF_X) {
|
|
|
|
+ if (insn->imm != 0 || insn->off != 0) {
|
|
|
|
+ verbose("BPF_ALU uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ /* check src1 operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ } else {
|
|
|
|
+ if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
|
|
|
|
+ verbose("BPF_ALU uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* check src2 operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
|
|
|
|
+ BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
|
|
|
|
+ verbose("div by zero\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* pattern match 'bpf_add Rx, imm' instruction */
|
|
|
|
+ if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
|
|
|
|
+ regs[insn->dst_reg].type == FRAME_PTR &&
|
|
|
|
+ BPF_SRC(insn->code) == BPF_K)
|
|
|
|
+ stack_relative = true;
|
|
|
|
+
|
|
|
|
+ /* check dest operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, DST_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ if (stack_relative) {
|
|
|
|
+ regs[insn->dst_reg].type = PTR_TO_STACK;
|
|
|
|
+ regs[insn->dst_reg].imm = insn->imm;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int check_cond_jmp_op(struct verifier_env *env,
|
|
|
|
+ struct bpf_insn *insn, int *insn_idx)
|
|
|
|
+{
|
|
|
|
+ struct reg_state *regs = env->cur_state.regs;
|
|
|
|
+ struct verifier_state *other_branch;
|
|
|
|
+ u8 opcode = BPF_OP(insn->code);
|
|
|
|
+ int err;
|
|
|
|
+
|
|
|
|
+ if (opcode > BPF_EXIT) {
|
|
|
|
+ verbose("invalid BPF_JMP opcode %x\n", opcode);
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (BPF_SRC(insn->code) == BPF_X) {
|
|
|
|
+ if (insn->imm != 0) {
|
|
|
|
+ verbose("BPF_JMP uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* check src1 operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ } else {
|
|
|
|
+ if (insn->src_reg != BPF_REG_0) {
|
|
|
|
+ verbose("BPF_JMP uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* check src2 operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ /* detect if R == 0 where R was initialized to zero earlier */
|
|
|
|
+ if (BPF_SRC(insn->code) == BPF_K &&
|
|
|
|
+ (opcode == BPF_JEQ || opcode == BPF_JNE) &&
|
|
|
|
+ regs[insn->dst_reg].type == CONST_IMM &&
|
|
|
|
+ regs[insn->dst_reg].imm == insn->imm) {
|
|
|
|
+ if (opcode == BPF_JEQ) {
|
|
|
|
+ /* if (imm == imm) goto pc+off;
|
|
|
|
+ * only follow the goto, ignore fall-through
|
|
|
|
+ */
|
|
|
|
+ *insn_idx += insn->off;
|
|
|
|
+ return 0;
|
|
|
|
+ } else {
|
|
|
|
+ /* if (imm != imm) goto pc+off;
|
|
|
|
+ * only follow fall-through branch, since
|
|
|
|
+ * that's where the program will go
|
|
|
|
+ */
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
|
|
|
|
+ if (!other_branch)
|
|
|
|
+ return -EFAULT;
|
|
|
|
+
|
|
|
|
+ /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
|
|
|
|
+ if (BPF_SRC(insn->code) == BPF_K &&
|
|
|
|
+ insn->imm == 0 && (opcode == BPF_JEQ ||
|
|
|
|
+ opcode == BPF_JNE) &&
|
|
|
|
+ regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
|
|
|
|
+ if (opcode == BPF_JEQ) {
|
|
|
|
+ /* next fallthrough insn can access memory via
|
|
|
|
+ * this register
|
|
|
|
+ */
|
|
|
|
+ regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
|
|
|
|
+ /* branch targer cannot access it, since reg == 0 */
|
|
|
|
+ other_branch->regs[insn->dst_reg].type = CONST_IMM;
|
|
|
|
+ other_branch->regs[insn->dst_reg].imm = 0;
|
|
|
|
+ } else {
|
|
|
|
+ other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
|
|
|
|
+ regs[insn->dst_reg].type = CONST_IMM;
|
|
|
|
+ regs[insn->dst_reg].imm = 0;
|
|
|
|
+ }
|
|
|
|
+ } else if (BPF_SRC(insn->code) == BPF_K &&
|
|
|
|
+ (opcode == BPF_JEQ || opcode == BPF_JNE)) {
|
|
|
|
+
|
|
|
|
+ if (opcode == BPF_JEQ) {
|
|
|
|
+ /* detect if (R == imm) goto
|
|
|
|
+ * and in the target state recognize that R = imm
|
|
|
|
+ */
|
|
|
|
+ other_branch->regs[insn->dst_reg].type = CONST_IMM;
|
|
|
|
+ other_branch->regs[insn->dst_reg].imm = insn->imm;
|
|
|
|
+ } else {
|
|
|
|
+ /* detect if (R != imm) goto
|
|
|
|
+ * and in the fall-through state recognize that R = imm
|
|
|
|
+ */
|
|
|
|
+ regs[insn->dst_reg].type = CONST_IMM;
|
|
|
|
+ regs[insn->dst_reg].imm = insn->imm;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ if (log_level)
|
|
|
|
+ print_verifier_state(env);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* return the map pointer stored inside BPF_LD_IMM64 instruction */
|
|
|
|
+static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
|
|
|
|
+{
|
|
|
|
+ u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
|
|
|
|
+
|
|
|
|
+ return (struct bpf_map *) (unsigned long) imm64;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* verify BPF_LD_IMM64 instruction */
|
|
|
|
+static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
|
|
|
|
+{
|
|
|
|
+ struct reg_state *regs = env->cur_state.regs;
|
|
|
|
+ int err;
|
|
|
|
+
|
|
|
|
+ if (BPF_SIZE(insn->code) != BPF_DW) {
|
|
|
|
+ verbose("invalid BPF_LD_IMM insn\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ if (insn->off != 0) {
|
|
|
|
+ verbose("BPF_LD_IMM64 uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, DST_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ if (insn->src_reg == 0)
|
|
|
|
+ /* generic move 64-bit immediate into a register */
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
|
|
|
|
+ BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
|
|
|
|
+
|
|
|
|
+ regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
|
|
|
|
+ regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* non-recursive DFS pseudo code
|
|
|
|
+ * 1 procedure DFS-iterative(G,v):
|
|
|
|
+ * 2 label v as discovered
|
|
|
|
+ * 3 let S be a stack
|
|
|
|
+ * 4 S.push(v)
|
|
|
|
+ * 5 while S is not empty
|
|
|
|
+ * 6 t <- S.pop()
|
|
|
|
+ * 7 if t is what we're looking for:
|
|
|
|
+ * 8 return t
|
|
|
|
+ * 9 for all edges e in G.adjacentEdges(t) do
|
|
|
|
+ * 10 if edge e is already labelled
|
|
|
|
+ * 11 continue with the next edge
|
|
|
|
+ * 12 w <- G.adjacentVertex(t,e)
|
|
|
|
+ * 13 if vertex w is not discovered and not explored
|
|
|
|
+ * 14 label e as tree-edge
|
|
|
|
+ * 15 label w as discovered
|
|
|
|
+ * 16 S.push(w)
|
|
|
|
+ * 17 continue at 5
|
|
|
|
+ * 18 else if vertex w is discovered
|
|
|
|
+ * 19 label e as back-edge
|
|
|
|
+ * 20 else
|
|
|
|
+ * 21 // vertex w is explored
|
|
|
|
+ * 22 label e as forward- or cross-edge
|
|
|
|
+ * 23 label t as explored
|
|
|
|
+ * 24 S.pop()
|
|
|
|
+ *
|
|
|
|
+ * convention:
|
|
|
|
+ * 0x10 - discovered
|
|
|
|
+ * 0x11 - discovered and fall-through edge labelled
|
|
|
|
+ * 0x12 - discovered and fall-through and branch edges labelled
|
|
|
|
+ * 0x20 - explored
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+enum {
|
|
|
|
+ DISCOVERED = 0x10,
|
|
|
|
+ EXPLORED = 0x20,
|
|
|
|
+ FALLTHROUGH = 1,
|
|
|
|
+ BRANCH = 2,
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static int *insn_stack; /* stack of insns to process */
|
|
|
|
+static int cur_stack; /* current stack index */
|
|
|
|
+static int *insn_state;
|
|
|
|
+
|
|
|
|
+/* t, w, e - match pseudo-code above:
|
|
|
|
+ * t - index of current instruction
|
|
|
|
+ * w - next instruction
|
|
|
|
+ * e - edge
|
|
|
|
+ */
|
|
|
|
+static int push_insn(int t, int w, int e, struct verifier_env *env)
|
|
|
|
+{
|
|
|
|
+ if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ if (w < 0 || w >= env->prog->len) {
|
|
|
|
+ verbose("jump out of range from insn %d to %d\n", t, w);
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (insn_state[w] == 0) {
|
|
|
|
+ /* tree-edge */
|
|
|
|
+ insn_state[t] = DISCOVERED | e;
|
|
|
|
+ insn_state[w] = DISCOVERED;
|
|
|
|
+ if (cur_stack >= env->prog->len)
|
|
|
|
+ return -E2BIG;
|
|
|
|
+ insn_stack[cur_stack++] = w;
|
|
|
|
+ return 1;
|
|
|
|
+ } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
|
|
|
|
+ verbose("back-edge from insn %d to %d\n", t, w);
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ } else if (insn_state[w] == EXPLORED) {
|
|
|
|
+ /* forward- or cross-edge */
|
|
|
|
+ insn_state[t] = DISCOVERED | e;
|
|
|
|
+ } else {
|
|
|
|
+ verbose("insn state internal bug\n");
|
|
|
|
+ return -EFAULT;
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* non-recursive depth-first-search to detect loops in BPF program
|
|
|
|
+ * loop == back-edge in directed graph
|
|
|
|
+ */
|
|
|
|
+static int check_cfg(struct verifier_env *env)
|
|
|
|
+{
|
|
|
|
+ struct bpf_insn *insns = env->prog->insnsi;
|
|
|
|
+ int insn_cnt = env->prog->len;
|
|
|
|
+ int ret = 0;
|
|
|
|
+ int i, t;
|
|
|
|
+
|
|
|
|
+ insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
|
|
|
|
+ if (!insn_state)
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+
|
|
|
|
+ insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
|
|
|
|
+ if (!insn_stack) {
|
|
|
|
+ kfree(insn_state);
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
|
|
|
|
+ insn_stack[0] = 0; /* 0 is the first instruction */
|
|
|
|
+ cur_stack = 1;
|
|
|
|
+
|
|
|
|
+peek_stack:
|
|
|
|
+ if (cur_stack == 0)
|
|
|
|
+ goto check_state;
|
|
|
|
+ t = insn_stack[cur_stack - 1];
|
|
|
|
+
|
|
|
|
+ if (BPF_CLASS(insns[t].code) == BPF_JMP) {
|
|
|
|
+ u8 opcode = BPF_OP(insns[t].code);
|
|
|
|
+
|
|
|
|
+ if (opcode == BPF_EXIT) {
|
|
|
|
+ goto mark_explored;
|
|
|
|
+ } else if (opcode == BPF_CALL) {
|
|
|
|
+ ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
|
|
|
+ if (ret == 1)
|
|
|
|
+ goto peek_stack;
|
|
|
|
+ else if (ret < 0)
|
|
|
|
+ goto err_free;
|
|
|
|
+ } else if (opcode == BPF_JA) {
|
|
|
|
+ if (BPF_SRC(insns[t].code) != BPF_K) {
|
|
|
|
+ ret = -EINVAL;
|
|
|
|
+ goto err_free;
|
|
|
|
+ }
|
|
|
|
+ /* unconditional jump with single edge */
|
|
|
|
+ ret = push_insn(t, t + insns[t].off + 1,
|
|
|
|
+ FALLTHROUGH, env);
|
|
|
|
+ if (ret == 1)
|
|
|
|
+ goto peek_stack;
|
|
|
|
+ else if (ret < 0)
|
|
|
|
+ goto err_free;
|
|
|
|
+ } else {
|
|
|
|
+ /* conditional jump with two edges */
|
|
|
|
+ ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
|
|
|
+ if (ret == 1)
|
|
|
|
+ goto peek_stack;
|
|
|
|
+ else if (ret < 0)
|
|
|
|
+ goto err_free;
|
|
|
|
+
|
|
|
|
+ ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
|
|
|
|
+ if (ret == 1)
|
|
|
|
+ goto peek_stack;
|
|
|
|
+ else if (ret < 0)
|
|
|
|
+ goto err_free;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ /* all other non-branch instructions with single
|
|
|
|
+ * fall-through edge
|
|
|
|
+ */
|
|
|
|
+ ret = push_insn(t, t + 1, FALLTHROUGH, env);
|
|
|
|
+ if (ret == 1)
|
|
|
|
+ goto peek_stack;
|
|
|
|
+ else if (ret < 0)
|
|
|
|
+ goto err_free;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+mark_explored:
|
|
|
|
+ insn_state[t] = EXPLORED;
|
|
|
|
+ if (cur_stack-- <= 0) {
|
|
|
|
+ verbose("pop stack internal bug\n");
|
|
|
|
+ ret = -EFAULT;
|
|
|
|
+ goto err_free;
|
|
|
|
+ }
|
|
|
|
+ goto peek_stack;
|
|
|
|
+
|
|
|
|
+check_state:
|
|
|
|
+ for (i = 0; i < insn_cnt; i++) {
|
|
|
|
+ if (insn_state[i] != EXPLORED) {
|
|
|
|
+ verbose("unreachable insn %d\n", i);
|
|
|
|
+ ret = -EINVAL;
|
|
|
|
+ goto err_free;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ ret = 0; /* cfg looks good */
|
|
|
|
+
|
|
|
|
+err_free:
|
|
|
|
+ kfree(insn_state);
|
|
|
|
+ kfree(insn_stack);
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int do_check(struct verifier_env *env)
|
|
|
|
+{
|
|
|
|
+ struct verifier_state *state = &env->cur_state;
|
|
|
|
+ struct bpf_insn *insns = env->prog->insnsi;
|
|
|
|
+ struct reg_state *regs = state->regs;
|
|
|
|
+ int insn_cnt = env->prog->len;
|
|
|
|
+ int insn_idx, prev_insn_idx = 0;
|
|
|
|
+ int insn_processed = 0;
|
|
|
|
+ bool do_print_state = false;
|
|
|
|
+
|
|
|
|
+ init_reg_state(regs);
|
|
|
|
+ insn_idx = 0;
|
|
|
|
+ for (;;) {
|
|
|
|
+ struct bpf_insn *insn;
|
|
|
|
+ u8 class;
|
|
|
|
+ int err;
|
|
|
|
+
|
|
|
|
+ if (insn_idx >= insn_cnt) {
|
|
|
|
+ verbose("invalid insn idx %d insn_cnt %d\n",
|
|
|
|
+ insn_idx, insn_cnt);
|
|
|
|
+ return -EFAULT;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ insn = &insns[insn_idx];
|
|
|
|
+ class = BPF_CLASS(insn->code);
|
|
|
|
+
|
|
|
|
+ if (++insn_processed > 32768) {
|
|
|
|
+ verbose("BPF program is too large. Proccessed %d insn\n",
|
|
|
|
+ insn_processed);
|
|
|
|
+ return -E2BIG;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (log_level && do_print_state) {
|
|
|
|
+ verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
|
|
|
|
+ print_verifier_state(env);
|
|
|
|
+ do_print_state = false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (log_level) {
|
|
|
|
+ verbose("%d: ", insn_idx);
|
|
|
|
+ print_bpf_insn(insn);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (class == BPF_ALU || class == BPF_ALU64) {
|
|
|
|
+ err = check_alu_op(regs, insn);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ } else if (class == BPF_LDX) {
|
|
|
|
+ if (BPF_MODE(insn->code) != BPF_MEM ||
|
|
|
|
+ insn->imm != 0) {
|
|
|
|
+ verbose("BPF_LDX uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ /* check src operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ /* check that memory (src_reg + off) is readable,
|
|
|
|
+ * the state of dst_reg will be updated by this func
|
|
|
|
+ */
|
|
|
|
+ err = check_mem_access(env, insn->src_reg, insn->off,
|
|
|
|
+ BPF_SIZE(insn->code), BPF_READ,
|
|
|
|
+ insn->dst_reg);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ } else if (class == BPF_STX) {
|
|
|
|
+ if (BPF_MODE(insn->code) == BPF_XADD) {
|
|
|
|
+ err = check_xadd(env, insn);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ insn_idx++;
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (BPF_MODE(insn->code) != BPF_MEM ||
|
|
|
|
+ insn->imm != 0) {
|
|
|
|
+ verbose("BPF_STX uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ /* check src1 operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->src_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ /* check src2 operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ /* check that memory (dst_reg + off) is writeable */
|
|
|
|
+ err = check_mem_access(env, insn->dst_reg, insn->off,
|
|
|
|
+ BPF_SIZE(insn->code), BPF_WRITE,
|
|
|
|
+ insn->src_reg);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ } else if (class == BPF_ST) {
|
|
|
|
+ if (BPF_MODE(insn->code) != BPF_MEM ||
|
|
|
|
+ insn->src_reg != BPF_REG_0) {
|
|
|
|
+ verbose("BPF_ST uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ /* check src operand */
|
|
|
|
+ err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ /* check that memory (dst_reg + off) is writeable */
|
|
|
|
+ err = check_mem_access(env, insn->dst_reg, insn->off,
|
|
|
|
+ BPF_SIZE(insn->code), BPF_WRITE,
|
|
|
|
+ -1);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ } else if (class == BPF_JMP) {
|
|
|
|
+ u8 opcode = BPF_OP(insn->code);
|
|
|
|
+
|
|
|
|
+ if (opcode == BPF_CALL) {
|
|
|
|
+ if (BPF_SRC(insn->code) != BPF_K ||
|
|
|
|
+ insn->off != 0 ||
|
|
|
|
+ insn->src_reg != BPF_REG_0 ||
|
|
|
|
+ insn->dst_reg != BPF_REG_0) {
|
|
|
|
+ verbose("BPF_CALL uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ err = check_call(env, insn->imm);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ } else if (opcode == BPF_JA) {
|
|
|
|
+ if (BPF_SRC(insn->code) != BPF_K ||
|
|
|
|
+ insn->imm != 0 ||
|
|
|
|
+ insn->src_reg != BPF_REG_0 ||
|
|
|
|
+ insn->dst_reg != BPF_REG_0) {
|
|
|
|
+ verbose("BPF_JA uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ insn_idx += insn->off + 1;
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ } else if (opcode == BPF_EXIT) {
|
|
|
|
+ if (BPF_SRC(insn->code) != BPF_K ||
|
|
|
|
+ insn->imm != 0 ||
|
|
|
|
+ insn->src_reg != BPF_REG_0 ||
|
|
|
|
+ insn->dst_reg != BPF_REG_0) {
|
|
|
|
+ verbose("BPF_EXIT uses reserved fields\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* eBPF calling convetion is such that R0 is used
|
|
|
|
+ * to return the value from eBPF program.
|
|
|
|
+ * Make sure that it's readable at this time
|
|
|
|
+ * of bpf_exit, which means that program wrote
|
|
|
|
+ * something into it earlier
|
|
|
|
+ */
|
|
|
|
+ err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ insn_idx = pop_stack(env, &prev_insn_idx);
|
|
|
|
+ if (insn_idx < 0) {
|
|
|
|
+ break;
|
|
|
|
+ } else {
|
|
|
|
+ do_print_state = true;
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ err = check_cond_jmp_op(env, insn, &insn_idx);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+ }
|
|
|
|
+ } else if (class == BPF_LD) {
|
|
|
|
+ u8 mode = BPF_MODE(insn->code);
|
|
|
|
+
|
|
|
|
+ if (mode == BPF_ABS || mode == BPF_IND) {
|
|
|
|
+ verbose("LD_ABS is not supported yet\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ } else if (mode == BPF_IMM) {
|
|
|
|
+ err = check_ld_imm(env, insn);
|
|
|
|
+ if (err)
|
|
|
|
+ return err;
|
|
|
|
+
|
|
|
|
+ insn_idx++;
|
|
|
|
+ } else {
|
|
|
|
+ verbose("invalid BPF_LD mode\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ verbose("unknown insn class %d\n", class);
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ insn_idx++;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* look for pseudo eBPF instructions that access map FDs and
|
|
|
|
+ * replace them with actual map pointers
|
|
|
|
+ */
|
|
|
|
+static int replace_map_fd_with_map_ptr(struct verifier_env *env)
|
|
|
|
+{
|
|
|
|
+ struct bpf_insn *insn = env->prog->insnsi;
|
|
|
|
+ int insn_cnt = env->prog->len;
|
|
|
|
+ int i, j;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < insn_cnt; i++, insn++) {
|
|
|
|
+ if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
|
|
|
|
+ struct bpf_map *map;
|
|
|
|
+ struct fd f;
|
|
|
|
+
|
|
|
|
+ if (i == insn_cnt - 1 || insn[1].code != 0 ||
|
|
|
|
+ insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
|
|
|
|
+ insn[1].off != 0) {
|
|
|
|
+ verbose("invalid bpf_ld_imm64 insn\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (insn->src_reg == 0)
|
|
|
|
+ /* valid generic load 64-bit imm */
|
|
|
|
+ goto next_insn;
|
|
|
|
+
|
|
|
|
+ if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
|
|
|
|
+ verbose("unrecognized bpf_ld_imm64 insn\n");
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ f = fdget(insn->imm);
|
|
|
|
+
|
|
|
|
+ map = bpf_map_get(f);
|
|
|
|
+ if (IS_ERR(map)) {
|
|
|
|
+ verbose("fd %d is not pointing to valid bpf_map\n",
|
|
|
|
+ insn->imm);
|
|
|
|
+ fdput(f);
|
|
|
|
+ return PTR_ERR(map);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* store map pointer inside BPF_LD_IMM64 instruction */
|
|
|
|
+ insn[0].imm = (u32) (unsigned long) map;
|
|
|
|
+ insn[1].imm = ((u64) (unsigned long) map) >> 32;
|
|
|
|
+
|
|
|
|
+ /* check whether we recorded this map already */
|
|
|
|
+ for (j = 0; j < env->used_map_cnt; j++)
|
|
|
|
+ if (env->used_maps[j] == map) {
|
|
|
|
+ fdput(f);
|
|
|
|
+ goto next_insn;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (env->used_map_cnt >= MAX_USED_MAPS) {
|
|
|
|
+ fdput(f);
|
|
|
|
+ return -E2BIG;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* remember this map */
|
|
|
|
+ env->used_maps[env->used_map_cnt++] = map;
|
|
|
|
+
|
|
|
|
+ /* hold the map. If the program is rejected by verifier,
|
|
|
|
+ * the map will be released by release_maps() or it
|
|
|
|
+ * will be used by the valid program until it's unloaded
|
|
|
|
+ * and all maps are released in free_bpf_prog_info()
|
|
|
|
+ */
|
|
|
|
+ atomic_inc(&map->refcnt);
|
|
|
|
+
|
|
|
|
+ fdput(f);
|
|
|
|
+next_insn:
|
|
|
|
+ insn++;
|
|
|
|
+ i++;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* now all pseudo BPF_LD_IMM64 instructions load valid
|
|
|
|
+ * 'struct bpf_map *' into a register instead of user map_fd.
|
|
|
|
+ * These pointers will be used later by verifier to validate map access.
|
|
|
|
+ */
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* drop refcnt of maps used by the rejected program */
|
|
|
|
+static void release_maps(struct verifier_env *env)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < env->used_map_cnt; i++)
|
|
|
|
+ bpf_map_put(env->used_maps[i]);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
|
|
|
|
+static void convert_pseudo_ld_imm64(struct verifier_env *env)
|
|
|
|
+{
|
|
|
|
+ struct bpf_insn *insn = env->prog->insnsi;
|
|
|
|
+ int insn_cnt = env->prog->len;
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < insn_cnt; i++, insn++)
|
|
|
|
+ if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
|
|
|
|
+ insn->src_reg = 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int bpf_check(struct bpf_prog *prog, union bpf_attr *attr)
|
|
|
|
+{
|
|
|
|
+ char __user *log_ubuf = NULL;
|
|
|
|
+ struct verifier_env *env;
|
|
|
|
+ int ret = -EINVAL;
|
|
|
|
+
|
|
|
|
+ if (prog->len <= 0 || prog->len > BPF_MAXINSNS)
|
|
|
|
+ return -E2BIG;
|
|
|
|
+
|
|
|
|
+ /* 'struct verifier_env' can be global, but since it's not small,
|
|
|
|
+ * allocate/free it every time bpf_check() is called
|
|
|
|
+ */
|
|
|
|
+ env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
|
|
|
|
+ if (!env)
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+
|
|
|
|
+ env->prog = prog;
|
|
|
|
+
|
|
|
|
+ /* grab the mutex to protect few globals used by verifier */
|
|
|
|
+ mutex_lock(&bpf_verifier_lock);
|
|
|
|
+
|
|
|
|
+ if (attr->log_level || attr->log_buf || attr->log_size) {
|
|
|
|
+ /* user requested verbose verifier output
|
|
|
|
+ * and supplied buffer to store the verification trace
|
|
|
|
+ */
|
|
|
|
+ log_level = attr->log_level;
|
|
|
|
+ log_ubuf = (char __user *) (unsigned long) attr->log_buf;
|
|
|
|
+ log_size = attr->log_size;
|
|
|
|
+ log_len = 0;
|
|
|
|
+
|
|
|
|
+ ret = -EINVAL;
|
|
|
|
+ /* log_* values have to be sane */
|
|
|
|
+ if (log_size < 128 || log_size > UINT_MAX >> 8 ||
|
|
|
|
+ log_level == 0 || log_ubuf == NULL)
|
|
|
|
+ goto free_env;
|
|
|
|
+
|
|
|
|
+ ret = -ENOMEM;
|
|
|
|
+ log_buf = vmalloc(log_size);
|
|
|
|
+ if (!log_buf)
|
|
|
|
+ goto free_env;
|
|
|
|
+ } else {
|
|
|
|
+ log_level = 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ ret = replace_map_fd_with_map_ptr(env);
|
|
|
|
+ if (ret < 0)
|
|
|
|
+ goto skip_full_check;
|
|
|
|
+
|
|
|
|
+ ret = check_cfg(env);
|
|
|
|
+ if (ret < 0)
|
|
|
|
+ goto skip_full_check;
|
|
|
|
+
|
|
|
|
+ ret = do_check(env);
|
|
|
|
+
|
|
|
|
+skip_full_check:
|
|
|
|
+ while (pop_stack(env, NULL) >= 0);
|
|
|
|
+
|
|
|
|
+ if (log_level && log_len >= log_size - 1) {
|
|
|
|
+ BUG_ON(log_len >= log_size);
|
|
|
|
+ /* verifier log exceeded user supplied buffer */
|
|
|
|
+ ret = -ENOSPC;
|
|
|
|
+ /* fall through to return what was recorded */
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* copy verifier log back to user space including trailing zero */
|
|
|
|
+ if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
|
|
|
|
+ ret = -EFAULT;
|
|
|
|
+ goto free_log_buf;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (ret == 0 && env->used_map_cnt) {
|
|
|
|
+ /* if program passed verifier, update used_maps in bpf_prog_info */
|
|
|
|
+ prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
|
|
|
|
+ sizeof(env->used_maps[0]),
|
|
|
|
+ GFP_KERNEL);
|
|
|
|
+
|
|
|
|
+ if (!prog->aux->used_maps) {
|
|
|
|
+ ret = -ENOMEM;
|
|
|
|
+ goto free_log_buf;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ memcpy(prog->aux->used_maps, env->used_maps,
|
|
|
|
+ sizeof(env->used_maps[0]) * env->used_map_cnt);
|
|
|
|
+ prog->aux->used_map_cnt = env->used_map_cnt;
|
|
|
|
+
|
|
|
|
+ /* program is valid. Convert pseudo bpf_ld_imm64 into generic
|
|
|
|
+ * bpf_ld_imm64 instructions
|
|
|
|
+ */
|
|
|
|
+ convert_pseudo_ld_imm64(env);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+free_log_buf:
|
|
|
|
+ if (log_level)
|
|
|
|
+ vfree(log_buf);
|
|
|
|
+free_env:
|
|
|
|
+ if (!prog->aux->used_maps)
|
|
|
|
+ /* if we didn't copy map pointers into bpf_prog_info, release
|
|
|
|
+ * them now. Otherwise free_bpf_prog_info() will release them.
|
|
|
|
+ */
|
|
|
|
+ release_maps(env);
|
|
|
|
+ kfree(env);
|
|
|
|
+ mutex_unlock(&bpf_verifier_lock);
|
|
|
|
+ return ret;
|
|
|
|
+}
|