|
@@ -35,6 +35,9 @@ static struct device *cpu_dev;
|
|
|
static struct cpufreq_frequency_table *freq_table;
|
|
|
static unsigned int transition_latency;
|
|
|
|
|
|
+static u32 *imx6_soc_volt;
|
|
|
+static u32 soc_opp_count;
|
|
|
+
|
|
|
static unsigned int imx6q_get_speed(unsigned int cpu)
|
|
|
{
|
|
|
return clk_get_rate(arm_clk) / 1000;
|
|
@@ -69,23 +72,22 @@ static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
|
|
|
|
|
|
/* scaling up? scale voltage before frequency */
|
|
|
if (new_freq > old_freq) {
|
|
|
+ ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
|
|
+ if (ret) {
|
|
|
+ dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+ ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
|
|
+ if (ret) {
|
|
|
+ dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
|
|
|
if (ret) {
|
|
|
dev_err(cpu_dev,
|
|
|
"failed to scale vddarm up: %d\n", ret);
|
|
|
return ret;
|
|
|
}
|
|
|
-
|
|
|
- /*
|
|
|
- * Need to increase vddpu and vddsoc for safety
|
|
|
- * if we are about to run at 1.2 GHz.
|
|
|
- */
|
|
|
- if (new_freq == FREQ_1P2_GHZ / 1000) {
|
|
|
- regulator_set_voltage_tol(pu_reg,
|
|
|
- PU_SOC_VOLTAGE_HIGH, 0);
|
|
|
- regulator_set_voltage_tol(soc_reg,
|
|
|
- PU_SOC_VOLTAGE_HIGH, 0);
|
|
|
- }
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -120,12 +122,15 @@ static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
|
|
|
"failed to scale vddarm down: %d\n", ret);
|
|
|
ret = 0;
|
|
|
}
|
|
|
-
|
|
|
- if (old_freq == FREQ_1P2_GHZ / 1000) {
|
|
|
- regulator_set_voltage_tol(pu_reg,
|
|
|
- PU_SOC_VOLTAGE_NORMAL, 0);
|
|
|
- regulator_set_voltage_tol(soc_reg,
|
|
|
- PU_SOC_VOLTAGE_NORMAL, 0);
|
|
|
+ ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
|
|
+ if (ret) {
|
|
|
+ dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
|
|
|
+ ret = 0;
|
|
|
+ }
|
|
|
+ ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
|
|
+ if (ret) {
|
|
|
+ dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
|
|
|
+ ret = 0;
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -153,6 +158,9 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
|
|
|
struct dev_pm_opp *opp;
|
|
|
unsigned long min_volt, max_volt;
|
|
|
int num, ret;
|
|
|
+ const struct property *prop;
|
|
|
+ const __be32 *val;
|
|
|
+ u32 nr, i, j;
|
|
|
|
|
|
cpu_dev = get_cpu_device(0);
|
|
|
if (!cpu_dev) {
|
|
@@ -201,9 +209,61 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
|
|
|
goto put_node;
|
|
|
}
|
|
|
|
|
|
+ /* Make imx6_soc_volt array's size same as arm opp number */
|
|
|
+ imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
|
|
|
+ if (imx6_soc_volt == NULL) {
|
|
|
+ ret = -ENOMEM;
|
|
|
+ goto free_freq_table;
|
|
|
+ }
|
|
|
+
|
|
|
+ prop = of_find_property(np, "fsl,soc-operating-points", NULL);
|
|
|
+ if (!prop || !prop->value)
|
|
|
+ goto soc_opp_out;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Each OPP is a set of tuples consisting of frequency and
|
|
|
+ * voltage like <freq-kHz vol-uV>.
|
|
|
+ */
|
|
|
+ nr = prop->length / sizeof(u32);
|
|
|
+ if (nr % 2 || (nr / 2) < num)
|
|
|
+ goto soc_opp_out;
|
|
|
+
|
|
|
+ for (j = 0; j < num; j++) {
|
|
|
+ val = prop->value;
|
|
|
+ for (i = 0; i < nr / 2; i++) {
|
|
|
+ unsigned long freq = be32_to_cpup(val++);
|
|
|
+ unsigned long volt = be32_to_cpup(val++);
|
|
|
+ if (freq_table[j].frequency == freq) {
|
|
|
+ imx6_soc_volt[soc_opp_count++] = volt;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+soc_opp_out:
|
|
|
+ /* use fixed soc opp volt if no valid soc opp info found in dtb */
|
|
|
+ if (soc_opp_count != num) {
|
|
|
+ dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
|
|
|
+ for (j = 0; j < num; j++)
|
|
|
+ imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
|
|
|
+ if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
|
|
|
+ imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
|
|
|
+ }
|
|
|
+
|
|
|
if (of_property_read_u32(np, "clock-latency", &transition_latency))
|
|
|
transition_latency = CPUFREQ_ETERNAL;
|
|
|
|
|
|
+ /*
|
|
|
+ * Calculate the ramp time for max voltage change in the
|
|
|
+ * VDDSOC and VDDPU regulators.
|
|
|
+ */
|
|
|
+ ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
|
|
+ if (ret > 0)
|
|
|
+ transition_latency += ret * 1000;
|
|
|
+ ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
|
|
+ if (ret > 0)
|
|
|
+ transition_latency += ret * 1000;
|
|
|
+
|
|
|
/*
|
|
|
* OPP is maintained in order of increasing frequency, and
|
|
|
* freq_table initialised from OPP is therefore sorted in the
|
|
@@ -221,18 +281,6 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
|
|
|
if (ret > 0)
|
|
|
transition_latency += ret * 1000;
|
|
|
|
|
|
- /* Count vddpu and vddsoc latency in for 1.2 GHz support */
|
|
|
- if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
|
|
|
- ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
|
|
|
- PU_SOC_VOLTAGE_HIGH);
|
|
|
- if (ret > 0)
|
|
|
- transition_latency += ret * 1000;
|
|
|
- ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
|
|
|
- PU_SOC_VOLTAGE_HIGH);
|
|
|
- if (ret > 0)
|
|
|
- transition_latency += ret * 1000;
|
|
|
- }
|
|
|
-
|
|
|
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
|
|
|
if (ret) {
|
|
|
dev_err(cpu_dev, "failed register driver: %d\n", ret);
|