|
@@ -0,0 +1,558 @@
|
|
|
+/*
|
|
|
+ * linux/fs/ext4/crypto.c
|
|
|
+ *
|
|
|
+ * Copyright (C) 2015, Google, Inc.
|
|
|
+ *
|
|
|
+ * This contains encryption functions for ext4
|
|
|
+ *
|
|
|
+ * Written by Michael Halcrow, 2014.
|
|
|
+ *
|
|
|
+ * Filename encryption additions
|
|
|
+ * Uday Savagaonkar, 2014
|
|
|
+ * Encryption policy handling additions
|
|
|
+ * Ildar Muslukhov, 2014
|
|
|
+ *
|
|
|
+ * This has not yet undergone a rigorous security audit.
|
|
|
+ *
|
|
|
+ * The usage of AES-XTS should conform to recommendations in NIST
|
|
|
+ * Special Publication 800-38E and IEEE P1619/D16.
|
|
|
+ */
|
|
|
+
|
|
|
+#include <crypto/hash.h>
|
|
|
+#include <crypto/sha.h>
|
|
|
+#include <keys/user-type.h>
|
|
|
+#include <keys/encrypted-type.h>
|
|
|
+#include <linux/crypto.h>
|
|
|
+#include <linux/ecryptfs.h>
|
|
|
+#include <linux/gfp.h>
|
|
|
+#include <linux/kernel.h>
|
|
|
+#include <linux/key.h>
|
|
|
+#include <linux/list.h>
|
|
|
+#include <linux/mempool.h>
|
|
|
+#include <linux/module.h>
|
|
|
+#include <linux/mutex.h>
|
|
|
+#include <linux/random.h>
|
|
|
+#include <linux/scatterlist.h>
|
|
|
+#include <linux/spinlock_types.h>
|
|
|
+
|
|
|
+#include "ext4_extents.h"
|
|
|
+#include "xattr.h"
|
|
|
+
|
|
|
+/* Encryption added and removed here! (L: */
|
|
|
+
|
|
|
+static unsigned int num_prealloc_crypto_pages = 32;
|
|
|
+static unsigned int num_prealloc_crypto_ctxs = 128;
|
|
|
+
|
|
|
+module_param(num_prealloc_crypto_pages, uint, 0444);
|
|
|
+MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
|
|
+ "Number of crypto pages to preallocate");
|
|
|
+module_param(num_prealloc_crypto_ctxs, uint, 0444);
|
|
|
+MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
|
|
|
+ "Number of crypto contexts to preallocate");
|
|
|
+
|
|
|
+static mempool_t *ext4_bounce_page_pool;
|
|
|
+
|
|
|
+static LIST_HEAD(ext4_free_crypto_ctxs);
|
|
|
+static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
|
|
|
+
|
|
|
+/**
|
|
|
+ * ext4_release_crypto_ctx() - Releases an encryption context
|
|
|
+ * @ctx: The encryption context to release.
|
|
|
+ *
|
|
|
+ * If the encryption context was allocated from the pre-allocated pool, returns
|
|
|
+ * it to that pool. Else, frees it.
|
|
|
+ *
|
|
|
+ * If there's a bounce page in the context, this frees that.
|
|
|
+ */
|
|
|
+void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
|
|
|
+{
|
|
|
+ unsigned long flags;
|
|
|
+
|
|
|
+ if (ctx->bounce_page) {
|
|
|
+ if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL)
|
|
|
+ __free_page(ctx->bounce_page);
|
|
|
+ else
|
|
|
+ mempool_free(ctx->bounce_page, ext4_bounce_page_pool);
|
|
|
+ ctx->bounce_page = NULL;
|
|
|
+ }
|
|
|
+ ctx->control_page = NULL;
|
|
|
+ if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
|
|
+ if (ctx->tfm)
|
|
|
+ crypto_free_tfm(ctx->tfm);
|
|
|
+ kfree(ctx);
|
|
|
+ } else {
|
|
|
+ spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
|
+ list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
|
+ spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
|
|
|
+ * @mask: The allocation mask.
|
|
|
+ *
|
|
|
+ * Return: An allocated and initialized encryption context on success. An error
|
|
|
+ * value or NULL otherwise.
|
|
|
+ */
|
|
|
+static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask)
|
|
|
+{
|
|
|
+ struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx),
|
|
|
+ mask);
|
|
|
+
|
|
|
+ if (!ctx)
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
+ return ctx;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ext4_get_crypto_ctx() - Gets an encryption context
|
|
|
+ * @inode: The inode for which we are doing the crypto
|
|
|
+ *
|
|
|
+ * Allocates and initializes an encryption context.
|
|
|
+ *
|
|
|
+ * Return: An allocated and initialized encryption context on success; error
|
|
|
+ * value or NULL otherwise.
|
|
|
+ */
|
|
|
+struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
|
|
|
+{
|
|
|
+ struct ext4_crypto_ctx *ctx = NULL;
|
|
|
+ int res = 0;
|
|
|
+ unsigned long flags;
|
|
|
+ struct ext4_encryption_key *key = &EXT4_I(inode)->i_encryption_key;
|
|
|
+
|
|
|
+ if (!ext4_read_workqueue)
|
|
|
+ ext4_init_crypto();
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We first try getting the ctx from a free list because in
|
|
|
+ * the common case the ctx will have an allocated and
|
|
|
+ * initialized crypto tfm, so it's probably a worthwhile
|
|
|
+ * optimization. For the bounce page, we first try getting it
|
|
|
+ * from the kernel allocator because that's just about as fast
|
|
|
+ * as getting it from a list and because a cache of free pages
|
|
|
+ * should generally be a "last resort" option for a filesystem
|
|
|
+ * to be able to do its job.
|
|
|
+ */
|
|
|
+ spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
|
+ ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
|
|
|
+ struct ext4_crypto_ctx, free_list);
|
|
|
+ if (ctx)
|
|
|
+ list_del(&ctx->free_list);
|
|
|
+ spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
|
+ if (!ctx) {
|
|
|
+ ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS);
|
|
|
+ if (IS_ERR(ctx)) {
|
|
|
+ res = PTR_ERR(ctx);
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+ ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
+ } else {
|
|
|
+ ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Allocate a new Crypto API context if we don't already have
|
|
|
+ * one or if it isn't the right mode. */
|
|
|
+ BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID);
|
|
|
+ if (ctx->tfm && (ctx->mode != key->mode)) {
|
|
|
+ crypto_free_tfm(ctx->tfm);
|
|
|
+ ctx->tfm = NULL;
|
|
|
+ ctx->mode = EXT4_ENCRYPTION_MODE_INVALID;
|
|
|
+ }
|
|
|
+ if (!ctx->tfm) {
|
|
|
+ switch (key->mode) {
|
|
|
+ case EXT4_ENCRYPTION_MODE_AES_256_XTS:
|
|
|
+ ctx->tfm = crypto_ablkcipher_tfm(
|
|
|
+ crypto_alloc_ablkcipher("xts(aes)", 0, 0));
|
|
|
+ break;
|
|
|
+ case EXT4_ENCRYPTION_MODE_AES_256_GCM:
|
|
|
+ /* TODO(mhalcrow): AEAD w/ gcm(aes);
|
|
|
+ * crypto_aead_setauthsize() */
|
|
|
+ ctx->tfm = ERR_PTR(-ENOTSUPP);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ BUG();
|
|
|
+ }
|
|
|
+ if (IS_ERR_OR_NULL(ctx->tfm)) {
|
|
|
+ res = PTR_ERR(ctx->tfm);
|
|
|
+ ctx->tfm = NULL;
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+ ctx->mode = key->mode;
|
|
|
+ }
|
|
|
+ BUG_ON(key->size != ext4_encryption_key_size(key->mode));
|
|
|
+
|
|
|
+ /* There shouldn't be a bounce page attached to the crypto
|
|
|
+ * context at this point. */
|
|
|
+ BUG_ON(ctx->bounce_page);
|
|
|
+
|
|
|
+out:
|
|
|
+ if (res) {
|
|
|
+ if (!IS_ERR_OR_NULL(ctx))
|
|
|
+ ext4_release_crypto_ctx(ctx);
|
|
|
+ ctx = ERR_PTR(res);
|
|
|
+ }
|
|
|
+ return ctx;
|
|
|
+}
|
|
|
+
|
|
|
+struct workqueue_struct *ext4_read_workqueue;
|
|
|
+static DEFINE_MUTEX(crypto_init);
|
|
|
+
|
|
|
+/**
|
|
|
+ * ext4_exit_crypto() - Shutdown the ext4 encryption system
|
|
|
+ */
|
|
|
+void ext4_exit_crypto(void)
|
|
|
+{
|
|
|
+ struct ext4_crypto_ctx *pos, *n;
|
|
|
+
|
|
|
+ list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) {
|
|
|
+ if (pos->bounce_page) {
|
|
|
+ if (pos->flags &
|
|
|
+ EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) {
|
|
|
+ __free_page(pos->bounce_page);
|
|
|
+ } else {
|
|
|
+ mempool_free(pos->bounce_page,
|
|
|
+ ext4_bounce_page_pool);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (pos->tfm)
|
|
|
+ crypto_free_tfm(pos->tfm);
|
|
|
+ kfree(pos);
|
|
|
+ }
|
|
|
+ INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
|
|
|
+ if (ext4_bounce_page_pool)
|
|
|
+ mempool_destroy(ext4_bounce_page_pool);
|
|
|
+ ext4_bounce_page_pool = NULL;
|
|
|
+ if (ext4_read_workqueue)
|
|
|
+ destroy_workqueue(ext4_read_workqueue);
|
|
|
+ ext4_read_workqueue = NULL;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ext4_init_crypto() - Set up for ext4 encryption.
|
|
|
+ *
|
|
|
+ * We only call this when we start accessing encrypted files, since it
|
|
|
+ * results in memory getting allocated that wouldn't otherwise be used.
|
|
|
+ *
|
|
|
+ * Return: Zero on success, non-zero otherwise.
|
|
|
+ */
|
|
|
+int ext4_init_crypto(void)
|
|
|
+{
|
|
|
+ int i, res;
|
|
|
+
|
|
|
+ mutex_lock(&crypto_init);
|
|
|
+ if (ext4_read_workqueue)
|
|
|
+ goto already_initialized;
|
|
|
+ ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
|
|
|
+ if (!ext4_read_workqueue) {
|
|
|
+ res = -ENOMEM;
|
|
|
+ goto fail;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
|
|
+ struct ext4_crypto_ctx *ctx;
|
|
|
+
|
|
|
+ ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL);
|
|
|
+ if (IS_ERR(ctx)) {
|
|
|
+ res = PTR_ERR(ctx);
|
|
|
+ goto fail;
|
|
|
+ }
|
|
|
+ list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
|
+ }
|
|
|
+
|
|
|
+ ext4_bounce_page_pool =
|
|
|
+ mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
|
|
+ if (!ext4_bounce_page_pool) {
|
|
|
+ res = -ENOMEM;
|
|
|
+ goto fail;
|
|
|
+ }
|
|
|
+already_initialized:
|
|
|
+ mutex_unlock(&crypto_init);
|
|
|
+ return 0;
|
|
|
+fail:
|
|
|
+ ext4_exit_crypto();
|
|
|
+ mutex_unlock(&crypto_init);
|
|
|
+ return res;
|
|
|
+}
|
|
|
+
|
|
|
+void ext4_restore_control_page(struct page *data_page)
|
|
|
+{
|
|
|
+ struct ext4_crypto_ctx *ctx =
|
|
|
+ (struct ext4_crypto_ctx *)page_private(data_page);
|
|
|
+
|
|
|
+ set_page_private(data_page, (unsigned long)NULL);
|
|
|
+ ClearPagePrivate(data_page);
|
|
|
+ unlock_page(data_page);
|
|
|
+ ext4_release_crypto_ctx(ctx);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ext4_crypt_complete() - The completion callback for page encryption
|
|
|
+ * @req: The asynchronous encryption request context
|
|
|
+ * @res: The result of the encryption operation
|
|
|
+ */
|
|
|
+static void ext4_crypt_complete(struct crypto_async_request *req, int res)
|
|
|
+{
|
|
|
+ struct ext4_completion_result *ecr = req->data;
|
|
|
+
|
|
|
+ if (res == -EINPROGRESS)
|
|
|
+ return;
|
|
|
+ ecr->res = res;
|
|
|
+ complete(&ecr->completion);
|
|
|
+}
|
|
|
+
|
|
|
+typedef enum {
|
|
|
+ EXT4_DECRYPT = 0,
|
|
|
+ EXT4_ENCRYPT,
|
|
|
+} ext4_direction_t;
|
|
|
+
|
|
|
+static int ext4_page_crypto(struct ext4_crypto_ctx *ctx,
|
|
|
+ struct inode *inode,
|
|
|
+ ext4_direction_t rw,
|
|
|
+ pgoff_t index,
|
|
|
+ struct page *src_page,
|
|
|
+ struct page *dest_page)
|
|
|
+
|
|
|
+{
|
|
|
+ u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
|
|
|
+ struct ablkcipher_request *req = NULL;
|
|
|
+ DECLARE_EXT4_COMPLETION_RESULT(ecr);
|
|
|
+ struct scatterlist dst, src;
|
|
|
+ struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
+ struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm);
|
|
|
+ int res = 0;
|
|
|
+
|
|
|
+ BUG_ON(!ctx->tfm);
|
|
|
+ BUG_ON(ctx->mode != ei->i_encryption_key.mode);
|
|
|
+
|
|
|
+ if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) {
|
|
|
+ printk_ratelimited(KERN_ERR
|
|
|
+ "%s: unsupported crypto algorithm: %d\n",
|
|
|
+ __func__, ctx->mode);
|
|
|
+ return -ENOTSUPP;
|
|
|
+ }
|
|
|
+
|
|
|
+ crypto_ablkcipher_clear_flags(atfm, ~0);
|
|
|
+ crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
|
|
|
+
|
|
|
+ res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw,
|
|
|
+ ei->i_encryption_key.size);
|
|
|
+ if (res) {
|
|
|
+ printk_ratelimited(KERN_ERR
|
|
|
+ "%s: crypto_ablkcipher_setkey() failed\n",
|
|
|
+ __func__);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ req = ablkcipher_request_alloc(atfm, GFP_NOFS);
|
|
|
+ if (!req) {
|
|
|
+ printk_ratelimited(KERN_ERR
|
|
|
+ "%s: crypto_request_alloc() failed\n",
|
|
|
+ __func__);
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+ ablkcipher_request_set_callback(
|
|
|
+ req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
|
+ ext4_crypt_complete, &ecr);
|
|
|
+
|
|
|
+ BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
|
|
|
+ memcpy(xts_tweak, &index, sizeof(index));
|
|
|
+ memset(&xts_tweak[sizeof(index)], 0,
|
|
|
+ EXT4_XTS_TWEAK_SIZE - sizeof(index));
|
|
|
+
|
|
|
+ sg_init_table(&dst, 1);
|
|
|
+ sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
|
|
|
+ sg_init_table(&src, 1);
|
|
|
+ sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
|
|
|
+ ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
|
|
|
+ xts_tweak);
|
|
|
+ if (rw == EXT4_DECRYPT)
|
|
|
+ res = crypto_ablkcipher_decrypt(req);
|
|
|
+ else
|
|
|
+ res = crypto_ablkcipher_encrypt(req);
|
|
|
+ if (res == -EINPROGRESS || res == -EBUSY) {
|
|
|
+ BUG_ON(req->base.data != &ecr);
|
|
|
+ wait_for_completion(&ecr.completion);
|
|
|
+ res = ecr.res;
|
|
|
+ }
|
|
|
+ ablkcipher_request_free(req);
|
|
|
+ if (res) {
|
|
|
+ printk_ratelimited(
|
|
|
+ KERN_ERR
|
|
|
+ "%s: crypto_ablkcipher_encrypt() returned %d\n",
|
|
|
+ __func__, res);
|
|
|
+ return res;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ext4_encrypt() - Encrypts a page
|
|
|
+ * @inode: The inode for which the encryption should take place
|
|
|
+ * @plaintext_page: The page to encrypt. Must be locked.
|
|
|
+ *
|
|
|
+ * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
|
|
|
+ * encryption context.
|
|
|
+ *
|
|
|
+ * Called on the page write path. The caller must call
|
|
|
+ * ext4_restore_control_page() on the returned ciphertext page to
|
|
|
+ * release the bounce buffer and the encryption context.
|
|
|
+ *
|
|
|
+ * Return: An allocated page with the encrypted content on success. Else, an
|
|
|
+ * error value or NULL.
|
|
|
+ */
|
|
|
+struct page *ext4_encrypt(struct inode *inode,
|
|
|
+ struct page *plaintext_page)
|
|
|
+{
|
|
|
+ struct ext4_crypto_ctx *ctx;
|
|
|
+ struct page *ciphertext_page = NULL;
|
|
|
+ int err;
|
|
|
+
|
|
|
+ BUG_ON(!PageLocked(plaintext_page));
|
|
|
+
|
|
|
+ ctx = ext4_get_crypto_ctx(inode);
|
|
|
+ if (IS_ERR(ctx))
|
|
|
+ return (struct page *) ctx;
|
|
|
+
|
|
|
+ /* The encryption operation will require a bounce page. */
|
|
|
+ ciphertext_page = alloc_page(GFP_NOFS);
|
|
|
+ if (!ciphertext_page) {
|
|
|
+ /* This is a potential bottleneck, but at least we'll have
|
|
|
+ * forward progress. */
|
|
|
+ ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
|
+ GFP_NOFS);
|
|
|
+ if (WARN_ON_ONCE(!ciphertext_page)) {
|
|
|
+ ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
|
+ GFP_NOFS | __GFP_WAIT);
|
|
|
+ }
|
|
|
+ ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
+ } else {
|
|
|
+ ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
+ }
|
|
|
+ ctx->bounce_page = ciphertext_page;
|
|
|
+ ctx->control_page = plaintext_page;
|
|
|
+ err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index,
|
|
|
+ plaintext_page, ciphertext_page);
|
|
|
+ if (err) {
|
|
|
+ ext4_release_crypto_ctx(ctx);
|
|
|
+ return ERR_PTR(err);
|
|
|
+ }
|
|
|
+ SetPagePrivate(ciphertext_page);
|
|
|
+ set_page_private(ciphertext_page, (unsigned long)ctx);
|
|
|
+ lock_page(ciphertext_page);
|
|
|
+ return ciphertext_page;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ext4_decrypt() - Decrypts a page in-place
|
|
|
+ * @ctx: The encryption context.
|
|
|
+ * @page: The page to decrypt. Must be locked.
|
|
|
+ *
|
|
|
+ * Decrypts page in-place using the ctx encryption context.
|
|
|
+ *
|
|
|
+ * Called from the read completion callback.
|
|
|
+ *
|
|
|
+ * Return: Zero on success, non-zero otherwise.
|
|
|
+ */
|
|
|
+int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page)
|
|
|
+{
|
|
|
+ BUG_ON(!PageLocked(page));
|
|
|
+
|
|
|
+ return ext4_page_crypto(ctx, page->mapping->host,
|
|
|
+ EXT4_DECRYPT, page->index, page, page);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Convenience function which takes care of allocating and
|
|
|
+ * deallocating the encryption context
|
|
|
+ */
|
|
|
+int ext4_decrypt_one(struct inode *inode, struct page *page)
|
|
|
+{
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode);
|
|
|
+
|
|
|
+ if (!ctx)
|
|
|
+ return -ENOMEM;
|
|
|
+ ret = ext4_decrypt(ctx, page);
|
|
|
+ ext4_release_crypto_ctx(ctx);
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
|
|
|
+{
|
|
|
+ struct ext4_crypto_ctx *ctx;
|
|
|
+ struct page *ciphertext_page = NULL;
|
|
|
+ struct bio *bio;
|
|
|
+ ext4_lblk_t lblk = ex->ee_block;
|
|
|
+ ext4_fsblk_t pblk = ext4_ext_pblock(ex);
|
|
|
+ unsigned int len = ext4_ext_get_actual_len(ex);
|
|
|
+ int err = 0;
|
|
|
+
|
|
|
+ BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
|
|
|
+
|
|
|
+ ctx = ext4_get_crypto_ctx(inode);
|
|
|
+ if (IS_ERR(ctx))
|
|
|
+ return PTR_ERR(ctx);
|
|
|
+
|
|
|
+ ciphertext_page = alloc_page(GFP_NOFS);
|
|
|
+ if (!ciphertext_page) {
|
|
|
+ /* This is a potential bottleneck, but at least we'll have
|
|
|
+ * forward progress. */
|
|
|
+ ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
|
+ GFP_NOFS);
|
|
|
+ if (WARN_ON_ONCE(!ciphertext_page)) {
|
|
|
+ ciphertext_page = mempool_alloc(ext4_bounce_page_pool,
|
|
|
+ GFP_NOFS | __GFP_WAIT);
|
|
|
+ }
|
|
|
+ ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
+ } else {
|
|
|
+ ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
+ }
|
|
|
+ ctx->bounce_page = ciphertext_page;
|
|
|
+
|
|
|
+ while (len--) {
|
|
|
+ err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk,
|
|
|
+ ZERO_PAGE(0), ciphertext_page);
|
|
|
+ if (err)
|
|
|
+ goto errout;
|
|
|
+
|
|
|
+ bio = bio_alloc(GFP_KERNEL, 1);
|
|
|
+ if (!bio) {
|
|
|
+ err = -ENOMEM;
|
|
|
+ goto errout;
|
|
|
+ }
|
|
|
+ bio->bi_bdev = inode->i_sb->s_bdev;
|
|
|
+ bio->bi_iter.bi_sector = pblk;
|
|
|
+ err = bio_add_page(bio, ciphertext_page,
|
|
|
+ inode->i_sb->s_blocksize, 0);
|
|
|
+ if (err) {
|
|
|
+ bio_put(bio);
|
|
|
+ goto errout;
|
|
|
+ }
|
|
|
+ err = submit_bio_wait(WRITE, bio);
|
|
|
+ if (err)
|
|
|
+ goto errout;
|
|
|
+ }
|
|
|
+ err = 0;
|
|
|
+errout:
|
|
|
+ ext4_release_crypto_ctx(ctx);
|
|
|
+ return err;
|
|
|
+}
|
|
|
+
|
|
|
+bool ext4_valid_contents_enc_mode(uint32_t mode)
|
|
|
+{
|
|
|
+ return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ext4_validate_encryption_key_size() - Validate the encryption key size
|
|
|
+ * @mode: The key mode.
|
|
|
+ * @size: The key size to validate.
|
|
|
+ *
|
|
|
+ * Return: The validated key size for @mode. Zero if invalid.
|
|
|
+ */
|
|
|
+uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
|
|
|
+{
|
|
|
+ if (size == ext4_encryption_key_size(mode))
|
|
|
+ return size;
|
|
|
+ return 0;
|
|
|
+}
|