|
@@ -25,17 +25,12 @@
|
|
|
#include <asm/bootparam.h>
|
|
|
#include <asm/set_memory.h>
|
|
|
#include <asm/cacheflush.h>
|
|
|
-#include <asm/sections.h>
|
|
|
#include <asm/processor-flags.h>
|
|
|
#include <asm/msr.h>
|
|
|
#include <asm/cmdline.h>
|
|
|
|
|
|
#include "mm_internal.h"
|
|
|
|
|
|
-static char sme_cmdline_arg[] __initdata = "mem_encrypt";
|
|
|
-static char sme_cmdline_on[] __initdata = "on";
|
|
|
-static char sme_cmdline_off[] __initdata = "off";
|
|
|
-
|
|
|
/*
|
|
|
* Since SME related variables are set early in the boot process they must
|
|
|
* reside in the .data section so as not to be zeroed out when the .bss
|
|
@@ -46,7 +41,7 @@ EXPORT_SYMBOL(sme_me_mask);
|
|
|
DEFINE_STATIC_KEY_FALSE(sev_enable_key);
|
|
|
EXPORT_SYMBOL_GPL(sev_enable_key);
|
|
|
|
|
|
-static bool sev_enabled __section(.data);
|
|
|
+bool sev_enabled __section(.data);
|
|
|
|
|
|
/* Buffer used for early in-place encryption by BSP, no locking needed */
|
|
|
static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
|
|
@@ -463,574 +458,3 @@ void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
|
|
|
/* Make the SWIOTLB buffer area decrypted */
|
|
|
set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
|
|
|
}
|
|
|
-
|
|
|
-struct sme_populate_pgd_data {
|
|
|
- void *pgtable_area;
|
|
|
- pgd_t *pgd;
|
|
|
-
|
|
|
- pmdval_t pmd_flags;
|
|
|
- pteval_t pte_flags;
|
|
|
- unsigned long paddr;
|
|
|
-
|
|
|
- unsigned long vaddr;
|
|
|
- unsigned long vaddr_end;
|
|
|
-};
|
|
|
-
|
|
|
-static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
|
|
|
-{
|
|
|
- unsigned long pgd_start, pgd_end, pgd_size;
|
|
|
- pgd_t *pgd_p;
|
|
|
-
|
|
|
- pgd_start = ppd->vaddr & PGDIR_MASK;
|
|
|
- pgd_end = ppd->vaddr_end & PGDIR_MASK;
|
|
|
-
|
|
|
- pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
|
|
|
-
|
|
|
- pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
|
|
|
-
|
|
|
- memset(pgd_p, 0, pgd_size);
|
|
|
-}
|
|
|
-
|
|
|
-#define PGD_FLAGS _KERNPG_TABLE_NOENC
|
|
|
-#define P4D_FLAGS _KERNPG_TABLE_NOENC
|
|
|
-#define PUD_FLAGS _KERNPG_TABLE_NOENC
|
|
|
-#define PMD_FLAGS _KERNPG_TABLE_NOENC
|
|
|
-
|
|
|
-#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
|
|
|
-
|
|
|
-#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
|
|
|
-#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
|
|
|
- (_PAGE_PAT | _PAGE_PWT))
|
|
|
-
|
|
|
-#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
|
|
|
-
|
|
|
-#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
|
|
|
-
|
|
|
-#define PTE_FLAGS_DEC PTE_FLAGS
|
|
|
-#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
|
|
|
- (_PAGE_PAT | _PAGE_PWT))
|
|
|
-
|
|
|
-#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
|
|
|
-
|
|
|
-static pmd_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
|
|
|
-{
|
|
|
- pgd_t *pgd_p;
|
|
|
- p4d_t *p4d_p;
|
|
|
- pud_t *pud_p;
|
|
|
- pmd_t *pmd_p;
|
|
|
-
|
|
|
- pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
|
|
|
- if (native_pgd_val(*pgd_p)) {
|
|
|
- if (IS_ENABLED(CONFIG_X86_5LEVEL))
|
|
|
- p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
|
|
|
- else
|
|
|
- pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
|
|
|
- } else {
|
|
|
- pgd_t pgd;
|
|
|
-
|
|
|
- if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
|
- p4d_p = ppd->pgtable_area;
|
|
|
- memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
|
|
|
- ppd->pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
|
|
|
-
|
|
|
- pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
|
|
|
- } else {
|
|
|
- pud_p = ppd->pgtable_area;
|
|
|
- memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
|
|
|
- ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
|
|
|
-
|
|
|
- pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
|
|
|
- }
|
|
|
- native_set_pgd(pgd_p, pgd);
|
|
|
- }
|
|
|
-
|
|
|
- if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
|
- p4d_p += p4d_index(ppd->vaddr);
|
|
|
- if (native_p4d_val(*p4d_p)) {
|
|
|
- pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
|
|
|
- } else {
|
|
|
- p4d_t p4d;
|
|
|
-
|
|
|
- pud_p = ppd->pgtable_area;
|
|
|
- memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
|
|
|
- ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
|
|
|
-
|
|
|
- p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
|
|
|
- native_set_p4d(p4d_p, p4d);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- pud_p += pud_index(ppd->vaddr);
|
|
|
- if (native_pud_val(*pud_p)) {
|
|
|
- if (native_pud_val(*pud_p) & _PAGE_PSE)
|
|
|
- return NULL;
|
|
|
-
|
|
|
- pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
|
|
|
- } else {
|
|
|
- pud_t pud;
|
|
|
-
|
|
|
- pmd_p = ppd->pgtable_area;
|
|
|
- memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
|
|
|
- ppd->pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
|
|
|
-
|
|
|
- pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
|
|
|
- native_set_pud(pud_p, pud);
|
|
|
- }
|
|
|
-
|
|
|
- return pmd_p;
|
|
|
-}
|
|
|
-
|
|
|
-static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
|
|
|
-{
|
|
|
- pmd_t *pmd_p;
|
|
|
-
|
|
|
- pmd_p = sme_prepare_pgd(ppd);
|
|
|
- if (!pmd_p)
|
|
|
- return;
|
|
|
-
|
|
|
- pmd_p += pmd_index(ppd->vaddr);
|
|
|
- if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
|
|
|
- native_set_pmd(pmd_p, native_make_pmd(ppd->paddr | ppd->pmd_flags));
|
|
|
-}
|
|
|
-
|
|
|
-static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
|
|
|
-{
|
|
|
- pmd_t *pmd_p;
|
|
|
- pte_t *pte_p;
|
|
|
-
|
|
|
- pmd_p = sme_prepare_pgd(ppd);
|
|
|
- if (!pmd_p)
|
|
|
- return;
|
|
|
-
|
|
|
- pmd_p += pmd_index(ppd->vaddr);
|
|
|
- if (native_pmd_val(*pmd_p)) {
|
|
|
- if (native_pmd_val(*pmd_p) & _PAGE_PSE)
|
|
|
- return;
|
|
|
-
|
|
|
- pte_p = (pte_t *)(native_pmd_val(*pmd_p) & ~PTE_FLAGS_MASK);
|
|
|
- } else {
|
|
|
- pmd_t pmd;
|
|
|
-
|
|
|
- pte_p = ppd->pgtable_area;
|
|
|
- memset(pte_p, 0, sizeof(*pte_p) * PTRS_PER_PTE);
|
|
|
- ppd->pgtable_area += sizeof(*pte_p) * PTRS_PER_PTE;
|
|
|
-
|
|
|
- pmd = native_make_pmd((pteval_t)pte_p + PMD_FLAGS);
|
|
|
- native_set_pmd(pmd_p, pmd);
|
|
|
- }
|
|
|
-
|
|
|
- pte_p += pte_index(ppd->vaddr);
|
|
|
- if (!native_pte_val(*pte_p))
|
|
|
- native_set_pte(pte_p, native_make_pte(ppd->paddr | ppd->pte_flags));
|
|
|
-}
|
|
|
-
|
|
|
-static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
|
|
|
-{
|
|
|
- while (ppd->vaddr < ppd->vaddr_end) {
|
|
|
- sme_populate_pgd_large(ppd);
|
|
|
-
|
|
|
- ppd->vaddr += PMD_PAGE_SIZE;
|
|
|
- ppd->paddr += PMD_PAGE_SIZE;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
|
|
|
-{
|
|
|
- while (ppd->vaddr < ppd->vaddr_end) {
|
|
|
- sme_populate_pgd(ppd);
|
|
|
-
|
|
|
- ppd->vaddr += PAGE_SIZE;
|
|
|
- ppd->paddr += PAGE_SIZE;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
|
|
|
- pmdval_t pmd_flags, pteval_t pte_flags)
|
|
|
-{
|
|
|
- unsigned long vaddr_end;
|
|
|
-
|
|
|
- ppd->pmd_flags = pmd_flags;
|
|
|
- ppd->pte_flags = pte_flags;
|
|
|
-
|
|
|
- /* Save original end value since we modify the struct value */
|
|
|
- vaddr_end = ppd->vaddr_end;
|
|
|
-
|
|
|
- /* If start is not 2MB aligned, create PTE entries */
|
|
|
- ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
|
|
|
- __sme_map_range_pte(ppd);
|
|
|
-
|
|
|
- /* Create PMD entries */
|
|
|
- ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
|
|
|
- __sme_map_range_pmd(ppd);
|
|
|
-
|
|
|
- /* If end is not 2MB aligned, create PTE entries */
|
|
|
- ppd->vaddr_end = vaddr_end;
|
|
|
- __sme_map_range_pte(ppd);
|
|
|
-}
|
|
|
-
|
|
|
-static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
|
|
|
-{
|
|
|
- __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
|
|
|
-}
|
|
|
-
|
|
|
-static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
|
|
|
-{
|
|
|
- __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
|
|
|
-}
|
|
|
-
|
|
|
-static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
|
|
|
-{
|
|
|
- __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
|
|
|
-}
|
|
|
-
|
|
|
-static unsigned long __init sme_pgtable_calc(unsigned long len)
|
|
|
-{
|
|
|
- unsigned long p4d_size, pud_size, pmd_size, pte_size;
|
|
|
- unsigned long total;
|
|
|
-
|
|
|
- /*
|
|
|
- * Perform a relatively simplistic calculation of the pagetable
|
|
|
- * entries that are needed. Those mappings will be covered mostly
|
|
|
- * by 2MB PMD entries so we can conservatively calculate the required
|
|
|
- * number of P4D, PUD and PMD structures needed to perform the
|
|
|
- * mappings. For mappings that are not 2MB aligned, PTE mappings
|
|
|
- * would be needed for the start and end portion of the address range
|
|
|
- * that fall outside of the 2MB alignment. This results in, at most,
|
|
|
- * two extra pages to hold PTE entries for each range that is mapped.
|
|
|
- * Incrementing the count for each covers the case where the addresses
|
|
|
- * cross entries.
|
|
|
- */
|
|
|
- if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
|
- p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
|
|
|
- p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
|
|
|
- pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
|
|
|
- pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
|
|
|
- } else {
|
|
|
- p4d_size = 0;
|
|
|
- pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
|
|
|
- pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
|
|
|
- }
|
|
|
- pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
|
|
|
- pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
|
|
|
- pte_size = 2 * sizeof(pte_t) * PTRS_PER_PTE;
|
|
|
-
|
|
|
- total = p4d_size + pud_size + pmd_size + pte_size;
|
|
|
-
|
|
|
- /*
|
|
|
- * Now calculate the added pagetable structures needed to populate
|
|
|
- * the new pagetables.
|
|
|
- */
|
|
|
- if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
|
- p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
|
|
|
- p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
|
|
|
- pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
|
|
|
- pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
|
|
|
- } else {
|
|
|
- p4d_size = 0;
|
|
|
- pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
|
|
|
- pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
|
|
|
- }
|
|
|
- pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
|
|
|
- pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
|
|
|
-
|
|
|
- total += p4d_size + pud_size + pmd_size;
|
|
|
-
|
|
|
- return total;
|
|
|
-}
|
|
|
-
|
|
|
-void __init __nostackprotector sme_encrypt_kernel(struct boot_params *bp)
|
|
|
-{
|
|
|
- unsigned long workarea_start, workarea_end, workarea_len;
|
|
|
- unsigned long execute_start, execute_end, execute_len;
|
|
|
- unsigned long kernel_start, kernel_end, kernel_len;
|
|
|
- unsigned long initrd_start, initrd_end, initrd_len;
|
|
|
- struct sme_populate_pgd_data ppd;
|
|
|
- unsigned long pgtable_area_len;
|
|
|
- unsigned long decrypted_base;
|
|
|
-
|
|
|
- if (!sme_active())
|
|
|
- return;
|
|
|
-
|
|
|
- /*
|
|
|
- * Prepare for encrypting the kernel and initrd by building new
|
|
|
- * pagetables with the necessary attributes needed to encrypt the
|
|
|
- * kernel in place.
|
|
|
- *
|
|
|
- * One range of virtual addresses will map the memory occupied
|
|
|
- * by the kernel and initrd as encrypted.
|
|
|
- *
|
|
|
- * Another range of virtual addresses will map the memory occupied
|
|
|
- * by the kernel and initrd as decrypted and write-protected.
|
|
|
- *
|
|
|
- * The use of write-protect attribute will prevent any of the
|
|
|
- * memory from being cached.
|
|
|
- */
|
|
|
-
|
|
|
- /* Physical addresses gives us the identity mapped virtual addresses */
|
|
|
- kernel_start = __pa_symbol(_text);
|
|
|
- kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
|
|
|
- kernel_len = kernel_end - kernel_start;
|
|
|
-
|
|
|
- initrd_start = 0;
|
|
|
- initrd_end = 0;
|
|
|
- initrd_len = 0;
|
|
|
-#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
- initrd_len = (unsigned long)bp->hdr.ramdisk_size |
|
|
|
- ((unsigned long)bp->ext_ramdisk_size << 32);
|
|
|
- if (initrd_len) {
|
|
|
- initrd_start = (unsigned long)bp->hdr.ramdisk_image |
|
|
|
- ((unsigned long)bp->ext_ramdisk_image << 32);
|
|
|
- initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
|
|
|
- initrd_len = initrd_end - initrd_start;
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
- /* Set the encryption workarea to be immediately after the kernel */
|
|
|
- workarea_start = kernel_end;
|
|
|
-
|
|
|
- /*
|
|
|
- * Calculate required number of workarea bytes needed:
|
|
|
- * executable encryption area size:
|
|
|
- * stack page (PAGE_SIZE)
|
|
|
- * encryption routine page (PAGE_SIZE)
|
|
|
- * intermediate copy buffer (PMD_PAGE_SIZE)
|
|
|
- * pagetable structures for the encryption of the kernel
|
|
|
- * pagetable structures for workarea (in case not currently mapped)
|
|
|
- */
|
|
|
- execute_start = workarea_start;
|
|
|
- execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
|
|
|
- execute_len = execute_end - execute_start;
|
|
|
-
|
|
|
- /*
|
|
|
- * One PGD for both encrypted and decrypted mappings and a set of
|
|
|
- * PUDs and PMDs for each of the encrypted and decrypted mappings.
|
|
|
- */
|
|
|
- pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
|
|
|
- pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
|
|
|
- if (initrd_len)
|
|
|
- pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
|
|
|
-
|
|
|
- /* PUDs and PMDs needed in the current pagetables for the workarea */
|
|
|
- pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
|
|
|
-
|
|
|
- /*
|
|
|
- * The total workarea includes the executable encryption area and
|
|
|
- * the pagetable area. The start of the workarea is already 2MB
|
|
|
- * aligned, align the end of the workarea on a 2MB boundary so that
|
|
|
- * we don't try to create/allocate PTE entries from the workarea
|
|
|
- * before it is mapped.
|
|
|
- */
|
|
|
- workarea_len = execute_len + pgtable_area_len;
|
|
|
- workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
|
|
|
-
|
|
|
- /*
|
|
|
- * Set the address to the start of where newly created pagetable
|
|
|
- * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
|
|
|
- * structures are created when the workarea is added to the current
|
|
|
- * pagetables and when the new encrypted and decrypted kernel
|
|
|
- * mappings are populated.
|
|
|
- */
|
|
|
- ppd.pgtable_area = (void *)execute_end;
|
|
|
-
|
|
|
- /*
|
|
|
- * Make sure the current pagetable structure has entries for
|
|
|
- * addressing the workarea.
|
|
|
- */
|
|
|
- ppd.pgd = (pgd_t *)native_read_cr3_pa();
|
|
|
- ppd.paddr = workarea_start;
|
|
|
- ppd.vaddr = workarea_start;
|
|
|
- ppd.vaddr_end = workarea_end;
|
|
|
- sme_map_range_decrypted(&ppd);
|
|
|
-
|
|
|
- /* Flush the TLB - no globals so cr3 is enough */
|
|
|
- native_write_cr3(__native_read_cr3());
|
|
|
-
|
|
|
- /*
|
|
|
- * A new pagetable structure is being built to allow for the kernel
|
|
|
- * and initrd to be encrypted. It starts with an empty PGD that will
|
|
|
- * then be populated with new PUDs and PMDs as the encrypted and
|
|
|
- * decrypted kernel mappings are created.
|
|
|
- */
|
|
|
- ppd.pgd = ppd.pgtable_area;
|
|
|
- memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
|
|
|
- ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
|
|
|
-
|
|
|
- /*
|
|
|
- * A different PGD index/entry must be used to get different
|
|
|
- * pagetable entries for the decrypted mapping. Choose the next
|
|
|
- * PGD index and convert it to a virtual address to be used as
|
|
|
- * the base of the mapping.
|
|
|
- */
|
|
|
- decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
|
|
|
- if (initrd_len) {
|
|
|
- unsigned long check_base;
|
|
|
-
|
|
|
- check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
|
|
|
- decrypted_base = max(decrypted_base, check_base);
|
|
|
- }
|
|
|
- decrypted_base <<= PGDIR_SHIFT;
|
|
|
-
|
|
|
- /* Add encrypted kernel (identity) mappings */
|
|
|
- ppd.paddr = kernel_start;
|
|
|
- ppd.vaddr = kernel_start;
|
|
|
- ppd.vaddr_end = kernel_end;
|
|
|
- sme_map_range_encrypted(&ppd);
|
|
|
-
|
|
|
- /* Add decrypted, write-protected kernel (non-identity) mappings */
|
|
|
- ppd.paddr = kernel_start;
|
|
|
- ppd.vaddr = kernel_start + decrypted_base;
|
|
|
- ppd.vaddr_end = kernel_end + decrypted_base;
|
|
|
- sme_map_range_decrypted_wp(&ppd);
|
|
|
-
|
|
|
- if (initrd_len) {
|
|
|
- /* Add encrypted initrd (identity) mappings */
|
|
|
- ppd.paddr = initrd_start;
|
|
|
- ppd.vaddr = initrd_start;
|
|
|
- ppd.vaddr_end = initrd_end;
|
|
|
- sme_map_range_encrypted(&ppd);
|
|
|
- /*
|
|
|
- * Add decrypted, write-protected initrd (non-identity) mappings
|
|
|
- */
|
|
|
- ppd.paddr = initrd_start;
|
|
|
- ppd.vaddr = initrd_start + decrypted_base;
|
|
|
- ppd.vaddr_end = initrd_end + decrypted_base;
|
|
|
- sme_map_range_decrypted_wp(&ppd);
|
|
|
- }
|
|
|
-
|
|
|
- /* Add decrypted workarea mappings to both kernel mappings */
|
|
|
- ppd.paddr = workarea_start;
|
|
|
- ppd.vaddr = workarea_start;
|
|
|
- ppd.vaddr_end = workarea_end;
|
|
|
- sme_map_range_decrypted(&ppd);
|
|
|
-
|
|
|
- ppd.paddr = workarea_start;
|
|
|
- ppd.vaddr = workarea_start + decrypted_base;
|
|
|
- ppd.vaddr_end = workarea_end + decrypted_base;
|
|
|
- sme_map_range_decrypted(&ppd);
|
|
|
-
|
|
|
- /* Perform the encryption */
|
|
|
- sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
|
|
|
- kernel_len, workarea_start, (unsigned long)ppd.pgd);
|
|
|
-
|
|
|
- if (initrd_len)
|
|
|
- sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
|
|
|
- initrd_len, workarea_start,
|
|
|
- (unsigned long)ppd.pgd);
|
|
|
-
|
|
|
- /*
|
|
|
- * At this point we are running encrypted. Remove the mappings for
|
|
|
- * the decrypted areas - all that is needed for this is to remove
|
|
|
- * the PGD entry/entries.
|
|
|
- */
|
|
|
- ppd.vaddr = kernel_start + decrypted_base;
|
|
|
- ppd.vaddr_end = kernel_end + decrypted_base;
|
|
|
- sme_clear_pgd(&ppd);
|
|
|
-
|
|
|
- if (initrd_len) {
|
|
|
- ppd.vaddr = initrd_start + decrypted_base;
|
|
|
- ppd.vaddr_end = initrd_end + decrypted_base;
|
|
|
- sme_clear_pgd(&ppd);
|
|
|
- }
|
|
|
-
|
|
|
- ppd.vaddr = workarea_start + decrypted_base;
|
|
|
- ppd.vaddr_end = workarea_end + decrypted_base;
|
|
|
- sme_clear_pgd(&ppd);
|
|
|
-
|
|
|
- /* Flush the TLB - no globals so cr3 is enough */
|
|
|
- native_write_cr3(__native_read_cr3());
|
|
|
-}
|
|
|
-
|
|
|
-void __init __nostackprotector sme_enable(struct boot_params *bp)
|
|
|
-{
|
|
|
- const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
|
|
|
- unsigned int eax, ebx, ecx, edx;
|
|
|
- unsigned long feature_mask;
|
|
|
- bool active_by_default;
|
|
|
- unsigned long me_mask;
|
|
|
- char buffer[16];
|
|
|
- u64 msr;
|
|
|
-
|
|
|
- /* Check for the SME/SEV support leaf */
|
|
|
- eax = 0x80000000;
|
|
|
- ecx = 0;
|
|
|
- native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
- if (eax < 0x8000001f)
|
|
|
- return;
|
|
|
-
|
|
|
-#define AMD_SME_BIT BIT(0)
|
|
|
-#define AMD_SEV_BIT BIT(1)
|
|
|
- /*
|
|
|
- * Set the feature mask (SME or SEV) based on whether we are
|
|
|
- * running under a hypervisor.
|
|
|
- */
|
|
|
- eax = 1;
|
|
|
- ecx = 0;
|
|
|
- native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
- feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
|
|
|
-
|
|
|
- /*
|
|
|
- * Check for the SME/SEV feature:
|
|
|
- * CPUID Fn8000_001F[EAX]
|
|
|
- * - Bit 0 - Secure Memory Encryption support
|
|
|
- * - Bit 1 - Secure Encrypted Virtualization support
|
|
|
- * CPUID Fn8000_001F[EBX]
|
|
|
- * - Bits 5:0 - Pagetable bit position used to indicate encryption
|
|
|
- */
|
|
|
- eax = 0x8000001f;
|
|
|
- ecx = 0;
|
|
|
- native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
|
- if (!(eax & feature_mask))
|
|
|
- return;
|
|
|
-
|
|
|
- me_mask = 1UL << (ebx & 0x3f);
|
|
|
-
|
|
|
- /* Check if memory encryption is enabled */
|
|
|
- if (feature_mask == AMD_SME_BIT) {
|
|
|
- /* For SME, check the SYSCFG MSR */
|
|
|
- msr = __rdmsr(MSR_K8_SYSCFG);
|
|
|
- if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
|
|
|
- return;
|
|
|
- } else {
|
|
|
- /* For SEV, check the SEV MSR */
|
|
|
- msr = __rdmsr(MSR_AMD64_SEV);
|
|
|
- if (!(msr & MSR_AMD64_SEV_ENABLED))
|
|
|
- return;
|
|
|
-
|
|
|
- /* SEV state cannot be controlled by a command line option */
|
|
|
- sme_me_mask = me_mask;
|
|
|
- sev_enabled = true;
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Fixups have not been applied to phys_base yet and we're running
|
|
|
- * identity mapped, so we must obtain the address to the SME command
|
|
|
- * line argument data using rip-relative addressing.
|
|
|
- */
|
|
|
- asm ("lea sme_cmdline_arg(%%rip), %0"
|
|
|
- : "=r" (cmdline_arg)
|
|
|
- : "p" (sme_cmdline_arg));
|
|
|
- asm ("lea sme_cmdline_on(%%rip), %0"
|
|
|
- : "=r" (cmdline_on)
|
|
|
- : "p" (sme_cmdline_on));
|
|
|
- asm ("lea sme_cmdline_off(%%rip), %0"
|
|
|
- : "=r" (cmdline_off)
|
|
|
- : "p" (sme_cmdline_off));
|
|
|
-
|
|
|
- if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
|
|
|
- active_by_default = true;
|
|
|
- else
|
|
|
- active_by_default = false;
|
|
|
-
|
|
|
- cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
|
|
|
- ((u64)bp->ext_cmd_line_ptr << 32));
|
|
|
-
|
|
|
- cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
|
|
|
-
|
|
|
- if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
|
|
|
- sme_me_mask = me_mask;
|
|
|
- else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
|
|
|
- sme_me_mask = 0;
|
|
|
- else
|
|
|
- sme_me_mask = active_by_default ? me_mask : 0;
|
|
|
-}
|