|
@@ -0,0 +1,1324 @@
|
|
|
+/*
|
|
|
+ * Copyright (C) 2015 IT University of Copenhagen
|
|
|
+ * Initial release: Matias Bjorling <m@bjorling.me>
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or
|
|
|
+ * modify it under the terms of the GNU General Public License version
|
|
|
+ * 2 as published by the Free Software Foundation.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful, but
|
|
|
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
+ * General Public License for more details.
|
|
|
+ *
|
|
|
+ * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
|
|
|
+ */
|
|
|
+
|
|
|
+#include "rrpc.h"
|
|
|
+
|
|
|
+static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
|
|
|
+static DECLARE_RWSEM(rrpc_lock);
|
|
|
+
|
|
|
+static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
|
|
|
+ struct nvm_rq *rqd, unsigned long flags);
|
|
|
+
|
|
|
+#define rrpc_for_each_lun(rrpc, rlun, i) \
|
|
|
+ for ((i) = 0, rlun = &(rrpc)->luns[0]; \
|
|
|
+ (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
|
|
|
+
|
|
|
+static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
|
|
|
+{
|
|
|
+ struct rrpc_block *rblk = a->rblk;
|
|
|
+ unsigned int pg_offset;
|
|
|
+
|
|
|
+ lockdep_assert_held(&rrpc->rev_lock);
|
|
|
+
|
|
|
+ if (a->addr == ADDR_EMPTY || !rblk)
|
|
|
+ return;
|
|
|
+
|
|
|
+ spin_lock(&rblk->lock);
|
|
|
+
|
|
|
+ div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
|
|
|
+ WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
|
|
|
+ rblk->nr_invalid_pages++;
|
|
|
+
|
|
|
+ spin_unlock(&rblk->lock);
|
|
|
+
|
|
|
+ rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
|
|
|
+ unsigned len)
|
|
|
+{
|
|
|
+ sector_t i;
|
|
|
+
|
|
|
+ spin_lock(&rrpc->rev_lock);
|
|
|
+ for (i = slba; i < slba + len; i++) {
|
|
|
+ struct rrpc_addr *gp = &rrpc->trans_map[i];
|
|
|
+
|
|
|
+ rrpc_page_invalidate(rrpc, gp);
|
|
|
+ gp->rblk = NULL;
|
|
|
+ }
|
|
|
+ spin_unlock(&rrpc->rev_lock);
|
|
|
+}
|
|
|
+
|
|
|
+static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
|
|
|
+ sector_t laddr, unsigned int pages)
|
|
|
+{
|
|
|
+ struct nvm_rq *rqd;
|
|
|
+ struct rrpc_inflight_rq *inf;
|
|
|
+
|
|
|
+ rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
|
|
|
+ if (!rqd)
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
+
|
|
|
+ inf = rrpc_get_inflight_rq(rqd);
|
|
|
+ if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
|
|
|
+ mempool_free(rqd, rrpc->rq_pool);
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ return rqd;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
|
|
|
+{
|
|
|
+ struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
|
|
|
+
|
|
|
+ rrpc_unlock_laddr(rrpc, inf);
|
|
|
+
|
|
|
+ mempool_free(rqd, rrpc->rq_pool);
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
|
|
|
+{
|
|
|
+ sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
|
|
|
+ sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
|
|
|
+ struct nvm_rq *rqd;
|
|
|
+
|
|
|
+ do {
|
|
|
+ rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
|
|
|
+ schedule();
|
|
|
+ } while (!rqd);
|
|
|
+
|
|
|
+ if (IS_ERR(rqd)) {
|
|
|
+ pr_err("rrpc: unable to acquire inflight IO\n");
|
|
|
+ bio_io_error(bio);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ rrpc_invalidate_range(rrpc, slba, len);
|
|
|
+ rrpc_inflight_laddr_release(rrpc, rqd);
|
|
|
+}
|
|
|
+
|
|
|
+static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
|
+{
|
|
|
+ return (rblk->next_page == rrpc->dev->pgs_per_blk);
|
|
|
+}
|
|
|
+
|
|
|
+static sector_t block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
|
+{
|
|
|
+ struct nvm_block *blk = rblk->parent;
|
|
|
+
|
|
|
+ return blk->id * rrpc->dev->pgs_per_blk;
|
|
|
+}
|
|
|
+
|
|
|
+static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev,
|
|
|
+ sector_t addr)
|
|
|
+{
|
|
|
+ struct ppa_addr paddr;
|
|
|
+
|
|
|
+ paddr.ppa = addr;
|
|
|
+ return __linear_to_generic_addr(dev, paddr);
|
|
|
+}
|
|
|
+
|
|
|
+/* requires lun->lock taken */
|
|
|
+static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
|
|
|
+{
|
|
|
+ struct rrpc *rrpc = rlun->rrpc;
|
|
|
+
|
|
|
+ BUG_ON(!rblk);
|
|
|
+
|
|
|
+ if (rlun->cur) {
|
|
|
+ spin_lock(&rlun->cur->lock);
|
|
|
+ WARN_ON(!block_is_full(rrpc, rlun->cur));
|
|
|
+ spin_unlock(&rlun->cur->lock);
|
|
|
+ }
|
|
|
+ rlun->cur = rblk;
|
|
|
+}
|
|
|
+
|
|
|
+static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
|
|
|
+ unsigned long flags)
|
|
|
+{
|
|
|
+ struct nvm_block *blk;
|
|
|
+ struct rrpc_block *rblk;
|
|
|
+
|
|
|
+ blk = nvm_get_blk(rrpc->dev, rlun->parent, 0);
|
|
|
+ if (!blk)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ rblk = &rlun->blocks[blk->id];
|
|
|
+ blk->priv = rblk;
|
|
|
+
|
|
|
+ bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
|
|
|
+ rblk->next_page = 0;
|
|
|
+ rblk->nr_invalid_pages = 0;
|
|
|
+ atomic_set(&rblk->data_cmnt_size, 0);
|
|
|
+
|
|
|
+ return rblk;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
|
+{
|
|
|
+ nvm_put_blk(rrpc->dev, rblk->parent);
|
|
|
+}
|
|
|
+
|
|
|
+static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ int next = atomic_inc_return(&rrpc->next_lun);
|
|
|
+
|
|
|
+ return &rrpc->luns[next % rrpc->nr_luns];
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_gc_kick(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ struct rrpc_lun *rlun;
|
|
|
+ unsigned int i;
|
|
|
+
|
|
|
+ for (i = 0; i < rrpc->nr_luns; i++) {
|
|
|
+ rlun = &rrpc->luns[i];
|
|
|
+ queue_work(rrpc->krqd_wq, &rlun->ws_gc);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * timed GC every interval.
|
|
|
+ */
|
|
|
+static void rrpc_gc_timer(unsigned long data)
|
|
|
+{
|
|
|
+ struct rrpc *rrpc = (struct rrpc *)data;
|
|
|
+
|
|
|
+ rrpc_gc_kick(rrpc);
|
|
|
+ mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_end_sync_bio(struct bio *bio)
|
|
|
+{
|
|
|
+ struct completion *waiting = bio->bi_private;
|
|
|
+
|
|
|
+ if (bio->bi_error)
|
|
|
+ pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
|
|
|
+
|
|
|
+ complete(waiting);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * rrpc_move_valid_pages -- migrate live data off the block
|
|
|
+ * @rrpc: the 'rrpc' structure
|
|
|
+ * @block: the block from which to migrate live pages
|
|
|
+ *
|
|
|
+ * Description:
|
|
|
+ * GC algorithms may call this function to migrate remaining live
|
|
|
+ * pages off the block prior to erasing it. This function blocks
|
|
|
+ * further execution until the operation is complete.
|
|
|
+ */
|
|
|
+static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
|
+{
|
|
|
+ struct request_queue *q = rrpc->dev->q;
|
|
|
+ struct rrpc_rev_addr *rev;
|
|
|
+ struct nvm_rq *rqd;
|
|
|
+ struct bio *bio;
|
|
|
+ struct page *page;
|
|
|
+ int slot;
|
|
|
+ int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
|
|
|
+ sector_t phys_addr;
|
|
|
+ DECLARE_COMPLETION_ONSTACK(wait);
|
|
|
+
|
|
|
+ if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ bio = bio_alloc(GFP_NOIO, 1);
|
|
|
+ if (!bio) {
|
|
|
+ pr_err("nvm: could not alloc bio to gc\n");
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
|
|
|
+
|
|
|
+ while ((slot = find_first_zero_bit(rblk->invalid_pages,
|
|
|
+ nr_pgs_per_blk)) < nr_pgs_per_blk) {
|
|
|
+
|
|
|
+ /* Lock laddr */
|
|
|
+ phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
|
|
|
+
|
|
|
+try:
|
|
|
+ spin_lock(&rrpc->rev_lock);
|
|
|
+ /* Get logical address from physical to logical table */
|
|
|
+ rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
|
|
|
+ /* already updated by previous regular write */
|
|
|
+ if (rev->addr == ADDR_EMPTY) {
|
|
|
+ spin_unlock(&rrpc->rev_lock);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
|
|
|
+ if (IS_ERR_OR_NULL(rqd)) {
|
|
|
+ spin_unlock(&rrpc->rev_lock);
|
|
|
+ schedule();
|
|
|
+ goto try;
|
|
|
+ }
|
|
|
+
|
|
|
+ spin_unlock(&rrpc->rev_lock);
|
|
|
+
|
|
|
+ /* Perform read to do GC */
|
|
|
+ bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
|
|
|
+ bio->bi_rw = READ;
|
|
|
+ bio->bi_private = &wait;
|
|
|
+ bio->bi_end_io = rrpc_end_sync_bio;
|
|
|
+
|
|
|
+ /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
|
|
|
+ bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
|
|
|
+
|
|
|
+ if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
|
|
|
+ pr_err("rrpc: gc read failed.\n");
|
|
|
+ rrpc_inflight_laddr_release(rrpc, rqd);
|
|
|
+ goto finished;
|
|
|
+ }
|
|
|
+ wait_for_completion_io(&wait);
|
|
|
+
|
|
|
+ bio_reset(bio);
|
|
|
+ reinit_completion(&wait);
|
|
|
+
|
|
|
+ bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
|
|
|
+ bio->bi_rw = WRITE;
|
|
|
+ bio->bi_private = &wait;
|
|
|
+ bio->bi_end_io = rrpc_end_sync_bio;
|
|
|
+
|
|
|
+ bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
|
|
|
+
|
|
|
+ /* turn the command around and write the data back to a new
|
|
|
+ * address
|
|
|
+ */
|
|
|
+ if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
|
|
|
+ pr_err("rrpc: gc write failed.\n");
|
|
|
+ rrpc_inflight_laddr_release(rrpc, rqd);
|
|
|
+ goto finished;
|
|
|
+ }
|
|
|
+ wait_for_completion_io(&wait);
|
|
|
+
|
|
|
+ rrpc_inflight_laddr_release(rrpc, rqd);
|
|
|
+
|
|
|
+ bio_reset(bio);
|
|
|
+ }
|
|
|
+
|
|
|
+finished:
|
|
|
+ mempool_free(page, rrpc->page_pool);
|
|
|
+ bio_put(bio);
|
|
|
+
|
|
|
+ if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
|
|
|
+ pr_err("nvm: failed to garbage collect block\n");
|
|
|
+ return -EIO;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_block_gc(struct work_struct *work)
|
|
|
+{
|
|
|
+ struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
|
|
|
+ ws_gc);
|
|
|
+ struct rrpc *rrpc = gcb->rrpc;
|
|
|
+ struct rrpc_block *rblk = gcb->rblk;
|
|
|
+ struct nvm_dev *dev = rrpc->dev;
|
|
|
+
|
|
|
+ pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
|
|
|
+
|
|
|
+ if (rrpc_move_valid_pages(rrpc, rblk))
|
|
|
+ goto done;
|
|
|
+
|
|
|
+ nvm_erase_blk(dev, rblk->parent);
|
|
|
+ rrpc_put_blk(rrpc, rblk);
|
|
|
+done:
|
|
|
+ mempool_free(gcb, rrpc->gcb_pool);
|
|
|
+}
|
|
|
+
|
|
|
+/* the block with highest number of invalid pages, will be in the beginning
|
|
|
+ * of the list
|
|
|
+ */
|
|
|
+static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
|
|
|
+ struct rrpc_block *rb)
|
|
|
+{
|
|
|
+ if (ra->nr_invalid_pages == rb->nr_invalid_pages)
|
|
|
+ return ra;
|
|
|
+
|
|
|
+ return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
|
|
|
+}
|
|
|
+
|
|
|
+/* linearly find the block with highest number of invalid pages
|
|
|
+ * requires lun->lock
|
|
|
+ */
|
|
|
+static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
|
|
|
+{
|
|
|
+ struct list_head *prio_list = &rlun->prio_list;
|
|
|
+ struct rrpc_block *rblock, *max;
|
|
|
+
|
|
|
+ BUG_ON(list_empty(prio_list));
|
|
|
+
|
|
|
+ max = list_first_entry(prio_list, struct rrpc_block, prio);
|
|
|
+ list_for_each_entry(rblock, prio_list, prio)
|
|
|
+ max = rblock_max_invalid(max, rblock);
|
|
|
+
|
|
|
+ return max;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_lun_gc(struct work_struct *work)
|
|
|
+{
|
|
|
+ struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
|
|
|
+ struct rrpc *rrpc = rlun->rrpc;
|
|
|
+ struct nvm_lun *lun = rlun->parent;
|
|
|
+ struct rrpc_block_gc *gcb;
|
|
|
+ unsigned int nr_blocks_need;
|
|
|
+
|
|
|
+ nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
|
|
|
+
|
|
|
+ if (nr_blocks_need < rrpc->nr_luns)
|
|
|
+ nr_blocks_need = rrpc->nr_luns;
|
|
|
+
|
|
|
+ spin_lock(&lun->lock);
|
|
|
+ while (nr_blocks_need > lun->nr_free_blocks &&
|
|
|
+ !list_empty(&rlun->prio_list)) {
|
|
|
+ struct rrpc_block *rblock = block_prio_find_max(rlun);
|
|
|
+ struct nvm_block *block = rblock->parent;
|
|
|
+
|
|
|
+ if (!rblock->nr_invalid_pages)
|
|
|
+ break;
|
|
|
+
|
|
|
+ list_del_init(&rblock->prio);
|
|
|
+
|
|
|
+ BUG_ON(!block_is_full(rrpc, rblock));
|
|
|
+
|
|
|
+ pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
|
|
|
+
|
|
|
+ gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
|
|
|
+ if (!gcb)
|
|
|
+ break;
|
|
|
+
|
|
|
+ gcb->rrpc = rrpc;
|
|
|
+ gcb->rblk = rblock;
|
|
|
+ INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
|
|
|
+
|
|
|
+ queue_work(rrpc->kgc_wq, &gcb->ws_gc);
|
|
|
+
|
|
|
+ nr_blocks_need--;
|
|
|
+ }
|
|
|
+ spin_unlock(&lun->lock);
|
|
|
+
|
|
|
+ /* TODO: Hint that request queue can be started again */
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_gc_queue(struct work_struct *work)
|
|
|
+{
|
|
|
+ struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
|
|
|
+ ws_gc);
|
|
|
+ struct rrpc *rrpc = gcb->rrpc;
|
|
|
+ struct rrpc_block *rblk = gcb->rblk;
|
|
|
+ struct nvm_lun *lun = rblk->parent->lun;
|
|
|
+ struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
|
|
|
+
|
|
|
+ spin_lock(&rlun->lock);
|
|
|
+ list_add_tail(&rblk->prio, &rlun->prio_list);
|
|
|
+ spin_unlock(&rlun->lock);
|
|
|
+
|
|
|
+ mempool_free(gcb, rrpc->gcb_pool);
|
|
|
+ pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
|
|
|
+ rblk->parent->id);
|
|
|
+}
|
|
|
+
|
|
|
+static const struct block_device_operations rrpc_fops = {
|
|
|
+ .owner = THIS_MODULE,
|
|
|
+};
|
|
|
+
|
|
|
+static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
|
|
|
+{
|
|
|
+ unsigned int i;
|
|
|
+ struct rrpc_lun *rlun, *max_free;
|
|
|
+
|
|
|
+ if (!is_gc)
|
|
|
+ return get_next_lun(rrpc);
|
|
|
+
|
|
|
+ /* during GC, we don't care about RR, instead we want to make
|
|
|
+ * sure that we maintain evenness between the block luns.
|
|
|
+ */
|
|
|
+ max_free = &rrpc->luns[0];
|
|
|
+ /* prevent GC-ing lun from devouring pages of a lun with
|
|
|
+ * little free blocks. We don't take the lock as we only need an
|
|
|
+ * estimate.
|
|
|
+ */
|
|
|
+ rrpc_for_each_lun(rrpc, rlun, i) {
|
|
|
+ if (rlun->parent->nr_free_blocks >
|
|
|
+ max_free->parent->nr_free_blocks)
|
|
|
+ max_free = rlun;
|
|
|
+ }
|
|
|
+
|
|
|
+ return max_free;
|
|
|
+}
|
|
|
+
|
|
|
+static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
|
|
|
+ struct rrpc_block *rblk, sector_t paddr)
|
|
|
+{
|
|
|
+ struct rrpc_addr *gp;
|
|
|
+ struct rrpc_rev_addr *rev;
|
|
|
+
|
|
|
+ BUG_ON(laddr >= rrpc->nr_pages);
|
|
|
+
|
|
|
+ gp = &rrpc->trans_map[laddr];
|
|
|
+ spin_lock(&rrpc->rev_lock);
|
|
|
+ if (gp->rblk)
|
|
|
+ rrpc_page_invalidate(rrpc, gp);
|
|
|
+
|
|
|
+ gp->addr = paddr;
|
|
|
+ gp->rblk = rblk;
|
|
|
+
|
|
|
+ rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
|
|
|
+ rev->addr = laddr;
|
|
|
+ spin_unlock(&rrpc->rev_lock);
|
|
|
+
|
|
|
+ return gp;
|
|
|
+}
|
|
|
+
|
|
|
+static sector_t rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
|
+{
|
|
|
+ sector_t addr = ADDR_EMPTY;
|
|
|
+
|
|
|
+ spin_lock(&rblk->lock);
|
|
|
+ if (block_is_full(rrpc, rblk))
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ addr = block_to_addr(rrpc, rblk) + rblk->next_page;
|
|
|
+
|
|
|
+ rblk->next_page++;
|
|
|
+out:
|
|
|
+ spin_unlock(&rblk->lock);
|
|
|
+ return addr;
|
|
|
+}
|
|
|
+
|
|
|
+/* Simple round-robin Logical to physical address translation.
|
|
|
+ *
|
|
|
+ * Retrieve the mapping using the active append point. Then update the ap for
|
|
|
+ * the next write to the disk.
|
|
|
+ *
|
|
|
+ * Returns rrpc_addr with the physical address and block. Remember to return to
|
|
|
+ * rrpc->addr_cache when request is finished.
|
|
|
+ */
|
|
|
+static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
|
|
|
+ int is_gc)
|
|
|
+{
|
|
|
+ struct rrpc_lun *rlun;
|
|
|
+ struct rrpc_block *rblk;
|
|
|
+ struct nvm_lun *lun;
|
|
|
+ sector_t paddr;
|
|
|
+
|
|
|
+ rlun = rrpc_get_lun_rr(rrpc, is_gc);
|
|
|
+ lun = rlun->parent;
|
|
|
+
|
|
|
+ if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ spin_lock(&rlun->lock);
|
|
|
+
|
|
|
+ rblk = rlun->cur;
|
|
|
+retry:
|
|
|
+ paddr = rrpc_alloc_addr(rrpc, rblk);
|
|
|
+
|
|
|
+ if (paddr == ADDR_EMPTY) {
|
|
|
+ rblk = rrpc_get_blk(rrpc, rlun, 0);
|
|
|
+ if (rblk) {
|
|
|
+ rrpc_set_lun_cur(rlun, rblk);
|
|
|
+ goto retry;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (is_gc) {
|
|
|
+ /* retry from emergency gc block */
|
|
|
+ paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
|
|
|
+ if (paddr == ADDR_EMPTY) {
|
|
|
+ rblk = rrpc_get_blk(rrpc, rlun, 1);
|
|
|
+ if (!rblk) {
|
|
|
+ pr_err("rrpc: no more blocks");
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ rlun->gc_cur = rblk;
|
|
|
+ paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
|
|
|
+ }
|
|
|
+ rblk = rlun->gc_cur;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ spin_unlock(&rlun->lock);
|
|
|
+ return rrpc_update_map(rrpc, laddr, rblk, paddr);
|
|
|
+err:
|
|
|
+ spin_unlock(&rlun->lock);
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
|
+{
|
|
|
+ struct rrpc_block_gc *gcb;
|
|
|
+
|
|
|
+ gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
|
|
|
+ if (!gcb) {
|
|
|
+ pr_err("rrpc: unable to queue block for gc.");
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ gcb->rrpc = rrpc;
|
|
|
+ gcb->rblk = rblk;
|
|
|
+
|
|
|
+ INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
|
|
|
+ queue_work(rrpc->kgc_wq, &gcb->ws_gc);
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
|
|
|
+ sector_t laddr, uint8_t npages)
|
|
|
+{
|
|
|
+ struct rrpc_addr *p;
|
|
|
+ struct rrpc_block *rblk;
|
|
|
+ struct nvm_lun *lun;
|
|
|
+ int cmnt_size, i;
|
|
|
+
|
|
|
+ for (i = 0; i < npages; i++) {
|
|
|
+ p = &rrpc->trans_map[laddr + i];
|
|
|
+ rblk = p->rblk;
|
|
|
+ lun = rblk->parent->lun;
|
|
|
+
|
|
|
+ cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
|
|
|
+ if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk))
|
|
|
+ rrpc_run_gc(rrpc, rblk);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_end_io(struct nvm_rq *rqd, int error)
|
|
|
+{
|
|
|
+ struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
|
|
|
+ struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
|
|
|
+ uint8_t npages = rqd->nr_pages;
|
|
|
+ sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
|
|
|
+
|
|
|
+ if (bio_data_dir(rqd->bio) == WRITE)
|
|
|
+ rrpc_end_io_write(rrpc, rrqd, laddr, npages);
|
|
|
+
|
|
|
+ if (rrqd->flags & NVM_IOTYPE_GC)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ rrpc_unlock_rq(rrpc, rqd);
|
|
|
+ bio_put(rqd->bio);
|
|
|
+
|
|
|
+ if (npages > 1)
|
|
|
+ nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
|
|
|
+ if (rqd->metadata)
|
|
|
+ nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
|
|
|
+
|
|
|
+ mempool_free(rqd, rrpc->rq_pool);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
|
|
|
+ struct nvm_rq *rqd, unsigned long flags, int npages)
|
|
|
+{
|
|
|
+ struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
|
|
|
+ struct rrpc_addr *gp;
|
|
|
+ sector_t laddr = rrpc_get_laddr(bio);
|
|
|
+ int is_gc = flags & NVM_IOTYPE_GC;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
|
|
|
+ nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
|
|
|
+ return NVM_IO_REQUEUE;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = 0; i < npages; i++) {
|
|
|
+ /* We assume that mapping occurs at 4KB granularity */
|
|
|
+ BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
|
|
|
+ gp = &rrpc->trans_map[laddr + i];
|
|
|
+
|
|
|
+ if (gp->rblk) {
|
|
|
+ rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
|
|
|
+ gp->addr);
|
|
|
+ } else {
|
|
|
+ BUG_ON(is_gc);
|
|
|
+ rrpc_unlock_laddr(rrpc, r);
|
|
|
+ nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
|
|
|
+ rqd->dma_ppa_list);
|
|
|
+ return NVM_IO_DONE;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ rqd->opcode = NVM_OP_HBREAD;
|
|
|
+
|
|
|
+ return NVM_IO_OK;
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
|
|
|
+ unsigned long flags)
|
|
|
+{
|
|
|
+ struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
|
|
|
+ int is_gc = flags & NVM_IOTYPE_GC;
|
|
|
+ sector_t laddr = rrpc_get_laddr(bio);
|
|
|
+ struct rrpc_addr *gp;
|
|
|
+
|
|
|
+ if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
|
|
|
+ return NVM_IO_REQUEUE;
|
|
|
+
|
|
|
+ BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
|
|
|
+ gp = &rrpc->trans_map[laddr];
|
|
|
+
|
|
|
+ if (gp->rblk) {
|
|
|
+ rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
|
|
|
+ } else {
|
|
|
+ BUG_ON(is_gc);
|
|
|
+ rrpc_unlock_rq(rrpc, rqd);
|
|
|
+ return NVM_IO_DONE;
|
|
|
+ }
|
|
|
+
|
|
|
+ rqd->opcode = NVM_OP_HBREAD;
|
|
|
+ rrqd->addr = gp;
|
|
|
+
|
|
|
+ return NVM_IO_OK;
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
|
|
|
+ struct nvm_rq *rqd, unsigned long flags, int npages)
|
|
|
+{
|
|
|
+ struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
|
|
|
+ struct rrpc_addr *p;
|
|
|
+ sector_t laddr = rrpc_get_laddr(bio);
|
|
|
+ int is_gc = flags & NVM_IOTYPE_GC;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
|
|
|
+ nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
|
|
|
+ return NVM_IO_REQUEUE;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = 0; i < npages; i++) {
|
|
|
+ /* We assume that mapping occurs at 4KB granularity */
|
|
|
+ p = rrpc_map_page(rrpc, laddr + i, is_gc);
|
|
|
+ if (!p) {
|
|
|
+ BUG_ON(is_gc);
|
|
|
+ rrpc_unlock_laddr(rrpc, r);
|
|
|
+ nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
|
|
|
+ rqd->dma_ppa_list);
|
|
|
+ rrpc_gc_kick(rrpc);
|
|
|
+ return NVM_IO_REQUEUE;
|
|
|
+ }
|
|
|
+
|
|
|
+ rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
|
|
|
+ p->addr);
|
|
|
+ }
|
|
|
+
|
|
|
+ rqd->opcode = NVM_OP_HBWRITE;
|
|
|
+
|
|
|
+ return NVM_IO_OK;
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
|
|
|
+ struct nvm_rq *rqd, unsigned long flags)
|
|
|
+{
|
|
|
+ struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
|
|
|
+ struct rrpc_addr *p;
|
|
|
+ int is_gc = flags & NVM_IOTYPE_GC;
|
|
|
+ sector_t laddr = rrpc_get_laddr(bio);
|
|
|
+
|
|
|
+ if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
|
|
|
+ return NVM_IO_REQUEUE;
|
|
|
+
|
|
|
+ p = rrpc_map_page(rrpc, laddr, is_gc);
|
|
|
+ if (!p) {
|
|
|
+ BUG_ON(is_gc);
|
|
|
+ rrpc_unlock_rq(rrpc, rqd);
|
|
|
+ rrpc_gc_kick(rrpc);
|
|
|
+ return NVM_IO_REQUEUE;
|
|
|
+ }
|
|
|
+
|
|
|
+ rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
|
|
|
+ rqd->opcode = NVM_OP_HBWRITE;
|
|
|
+ rrqd->addr = p;
|
|
|
+
|
|
|
+ return NVM_IO_OK;
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
|
|
|
+ struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
|
|
|
+{
|
|
|
+ if (npages > 1) {
|
|
|
+ rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
|
|
|
+ &rqd->dma_ppa_list);
|
|
|
+ if (!rqd->ppa_list) {
|
|
|
+ pr_err("rrpc: not able to allocate ppa list\n");
|
|
|
+ return NVM_IO_ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (bio_rw(bio) == WRITE)
|
|
|
+ return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
|
|
|
+ npages);
|
|
|
+
|
|
|
+ return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (bio_rw(bio) == WRITE)
|
|
|
+ return rrpc_write_rq(rrpc, bio, rqd, flags);
|
|
|
+
|
|
|
+ return rrpc_read_rq(rrpc, bio, rqd, flags);
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
|
|
|
+ struct nvm_rq *rqd, unsigned long flags)
|
|
|
+{
|
|
|
+ int err;
|
|
|
+ struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
|
|
|
+ uint8_t nr_pages = rrpc_get_pages(bio);
|
|
|
+ int bio_size = bio_sectors(bio) << 9;
|
|
|
+
|
|
|
+ if (bio_size < rrpc->dev->sec_size)
|
|
|
+ return NVM_IO_ERR;
|
|
|
+ else if (bio_size > rrpc->dev->max_rq_size)
|
|
|
+ return NVM_IO_ERR;
|
|
|
+
|
|
|
+ err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
|
|
|
+ if (err)
|
|
|
+ return err;
|
|
|
+
|
|
|
+ bio_get(bio);
|
|
|
+ rqd->bio = bio;
|
|
|
+ rqd->ins = &rrpc->instance;
|
|
|
+ rqd->nr_pages = nr_pages;
|
|
|
+ rrq->flags = flags;
|
|
|
+
|
|
|
+ err = nvm_submit_io(rrpc->dev, rqd);
|
|
|
+ if (err) {
|
|
|
+ pr_err("rrpc: I/O submission failed: %d\n", err);
|
|
|
+ return NVM_IO_ERR;
|
|
|
+ }
|
|
|
+
|
|
|
+ return NVM_IO_OK;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_make_rq(struct request_queue *q, struct bio *bio)
|
|
|
+{
|
|
|
+ struct rrpc *rrpc = q->queuedata;
|
|
|
+ struct nvm_rq *rqd;
|
|
|
+ int err;
|
|
|
+
|
|
|
+ if (bio->bi_rw & REQ_DISCARD) {
|
|
|
+ rrpc_discard(rrpc, bio);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
|
|
|
+ if (!rqd) {
|
|
|
+ pr_err_ratelimited("rrpc: not able to queue bio.");
|
|
|
+ bio_io_error(bio);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ memset(rqd, 0, sizeof(struct nvm_rq));
|
|
|
+
|
|
|
+ err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
|
|
|
+ switch (err) {
|
|
|
+ case NVM_IO_OK:
|
|
|
+ return;
|
|
|
+ case NVM_IO_ERR:
|
|
|
+ bio_io_error(bio);
|
|
|
+ break;
|
|
|
+ case NVM_IO_DONE:
|
|
|
+ bio_endio(bio);
|
|
|
+ break;
|
|
|
+ case NVM_IO_REQUEUE:
|
|
|
+ spin_lock(&rrpc->bio_lock);
|
|
|
+ bio_list_add(&rrpc->requeue_bios, bio);
|
|
|
+ spin_unlock(&rrpc->bio_lock);
|
|
|
+ queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ mempool_free(rqd, rrpc->rq_pool);
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_requeue(struct work_struct *work)
|
|
|
+{
|
|
|
+ struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
|
|
|
+ struct bio_list bios;
|
|
|
+ struct bio *bio;
|
|
|
+
|
|
|
+ bio_list_init(&bios);
|
|
|
+
|
|
|
+ spin_lock(&rrpc->bio_lock);
|
|
|
+ bio_list_merge(&bios, &rrpc->requeue_bios);
|
|
|
+ bio_list_init(&rrpc->requeue_bios);
|
|
|
+ spin_unlock(&rrpc->bio_lock);
|
|
|
+
|
|
|
+ while ((bio = bio_list_pop(&bios)))
|
|
|
+ rrpc_make_rq(rrpc->disk->queue, bio);
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_gc_free(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ struct rrpc_lun *rlun;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ if (rrpc->krqd_wq)
|
|
|
+ destroy_workqueue(rrpc->krqd_wq);
|
|
|
+
|
|
|
+ if (rrpc->kgc_wq)
|
|
|
+ destroy_workqueue(rrpc->kgc_wq);
|
|
|
+
|
|
|
+ if (!rrpc->luns)
|
|
|
+ return;
|
|
|
+
|
|
|
+ for (i = 0; i < rrpc->nr_luns; i++) {
|
|
|
+ rlun = &rrpc->luns[i];
|
|
|
+
|
|
|
+ if (!rlun->blocks)
|
|
|
+ break;
|
|
|
+ vfree(rlun->blocks);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_gc_init(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
|
|
|
+ rrpc->nr_luns);
|
|
|
+ if (!rrpc->krqd_wq)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
|
|
|
+ if (!rrpc->kgc_wq)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_map_free(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ vfree(rrpc->rev_trans_map);
|
|
|
+ vfree(rrpc->trans_map);
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
|
|
|
+{
|
|
|
+ struct rrpc *rrpc = (struct rrpc *)private;
|
|
|
+ struct nvm_dev *dev = rrpc->dev;
|
|
|
+ struct rrpc_addr *addr = rrpc->trans_map + slba;
|
|
|
+ struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
|
|
|
+ sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
|
|
|
+ u64 elba = slba + nlb;
|
|
|
+ u64 i;
|
|
|
+
|
|
|
+ if (unlikely(elba > dev->total_pages)) {
|
|
|
+ pr_err("nvm: L2P data from device is out of bounds!\n");
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = 0; i < nlb; i++) {
|
|
|
+ u64 pba = le64_to_cpu(entries[i]);
|
|
|
+ /* LNVM treats address-spaces as silos, LBA and PBA are
|
|
|
+ * equally large and zero-indexed.
|
|
|
+ */
|
|
|
+ if (unlikely(pba >= max_pages && pba != U64_MAX)) {
|
|
|
+ pr_err("nvm: L2P data entry is out of bounds!\n");
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Address zero is a special one. The first page on a disk is
|
|
|
+ * protected. As it often holds internal device boot
|
|
|
+ * information.
|
|
|
+ */
|
|
|
+ if (!pba)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ addr[i].addr = pba;
|
|
|
+ raddr[pba].addr = slba + i;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_map_init(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ struct nvm_dev *dev = rrpc->dev;
|
|
|
+ sector_t i;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
|
|
|
+ if (!rrpc->trans_map)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
|
|
|
+ * rrpc->nr_pages);
|
|
|
+ if (!rrpc->rev_trans_map)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ for (i = 0; i < rrpc->nr_pages; i++) {
|
|
|
+ struct rrpc_addr *p = &rrpc->trans_map[i];
|
|
|
+ struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
|
|
|
+
|
|
|
+ p->addr = ADDR_EMPTY;
|
|
|
+ r->addr = ADDR_EMPTY;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!dev->ops->get_l2p_tbl)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /* Bring up the mapping table from device */
|
|
|
+ ret = dev->ops->get_l2p_tbl(dev->q, 0, dev->total_pages,
|
|
|
+ rrpc_l2p_update, rrpc);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("nvm: rrpc: could not read L2P table.\n");
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/* Minimum pages needed within a lun */
|
|
|
+#define PAGE_POOL_SIZE 16
|
|
|
+#define ADDR_POOL_SIZE 64
|
|
|
+
|
|
|
+static int rrpc_core_init(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ down_write(&rrpc_lock);
|
|
|
+ if (!rrpc_gcb_cache) {
|
|
|
+ rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
|
|
|
+ sizeof(struct rrpc_block_gc), 0, 0, NULL);
|
|
|
+ if (!rrpc_gcb_cache) {
|
|
|
+ up_write(&rrpc_lock);
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ rrpc_rq_cache = kmem_cache_create("rrpc_rq",
|
|
|
+ sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
|
|
|
+ 0, 0, NULL);
|
|
|
+ if (!rrpc_rq_cache) {
|
|
|
+ kmem_cache_destroy(rrpc_gcb_cache);
|
|
|
+ up_write(&rrpc_lock);
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ up_write(&rrpc_lock);
|
|
|
+
|
|
|
+ rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
|
|
|
+ if (!rrpc->page_pool)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
|
|
|
+ rrpc_gcb_cache);
|
|
|
+ if (!rrpc->gcb_pool)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
|
|
|
+ if (!rrpc->rq_pool)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ spin_lock_init(&rrpc->inflights.lock);
|
|
|
+ INIT_LIST_HEAD(&rrpc->inflights.reqs);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_core_free(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ mempool_destroy(rrpc->page_pool);
|
|
|
+ mempool_destroy(rrpc->gcb_pool);
|
|
|
+ mempool_destroy(rrpc->rq_pool);
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_luns_free(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ kfree(rrpc->luns);
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
|
|
|
+{
|
|
|
+ struct nvm_dev *dev = rrpc->dev;
|
|
|
+ struct rrpc_lun *rlun;
|
|
|
+ int i, j;
|
|
|
+
|
|
|
+ spin_lock_init(&rrpc->rev_lock);
|
|
|
+
|
|
|
+ rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
|
|
|
+ GFP_KERNEL);
|
|
|
+ if (!rrpc->luns)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ /* 1:1 mapping */
|
|
|
+ for (i = 0; i < rrpc->nr_luns; i++) {
|
|
|
+ struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
|
|
|
+
|
|
|
+ if (dev->pgs_per_blk >
|
|
|
+ MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
|
|
|
+ pr_err("rrpc: number of pages per block too high.");
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ rlun = &rrpc->luns[i];
|
|
|
+ rlun->rrpc = rrpc;
|
|
|
+ rlun->parent = lun;
|
|
|
+ INIT_LIST_HEAD(&rlun->prio_list);
|
|
|
+ INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
|
|
|
+ spin_lock_init(&rlun->lock);
|
|
|
+
|
|
|
+ rrpc->total_blocks += dev->blks_per_lun;
|
|
|
+ rrpc->nr_pages += dev->sec_per_lun;
|
|
|
+
|
|
|
+ rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
|
|
|
+ rrpc->dev->blks_per_lun);
|
|
|
+ if (!rlun->blocks)
|
|
|
+ goto err;
|
|
|
+
|
|
|
+ for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
|
|
|
+ struct rrpc_block *rblk = &rlun->blocks[j];
|
|
|
+ struct nvm_block *blk = &lun->blocks[j];
|
|
|
+
|
|
|
+ rblk->parent = blk;
|
|
|
+ INIT_LIST_HEAD(&rblk->prio);
|
|
|
+ spin_lock_init(&rblk->lock);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+err:
|
|
|
+ return -ENOMEM;
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_free(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ rrpc_gc_free(rrpc);
|
|
|
+ rrpc_map_free(rrpc);
|
|
|
+ rrpc_core_free(rrpc);
|
|
|
+ rrpc_luns_free(rrpc);
|
|
|
+
|
|
|
+ kfree(rrpc);
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_exit(void *private)
|
|
|
+{
|
|
|
+ struct rrpc *rrpc = private;
|
|
|
+
|
|
|
+ del_timer(&rrpc->gc_timer);
|
|
|
+
|
|
|
+ flush_workqueue(rrpc->krqd_wq);
|
|
|
+ flush_workqueue(rrpc->kgc_wq);
|
|
|
+
|
|
|
+ rrpc_free(rrpc);
|
|
|
+}
|
|
|
+
|
|
|
+static sector_t rrpc_capacity(void *private)
|
|
|
+{
|
|
|
+ struct rrpc *rrpc = private;
|
|
|
+ struct nvm_dev *dev = rrpc->dev;
|
|
|
+ sector_t reserved, provisioned;
|
|
|
+
|
|
|
+ /* cur, gc, and two emergency blocks for each lun */
|
|
|
+ reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
|
|
|
+ provisioned = rrpc->nr_pages - reserved;
|
|
|
+
|
|
|
+ if (reserved > rrpc->nr_pages) {
|
|
|
+ pr_err("rrpc: not enough space available to expose storage.\n");
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ sector_div(provisioned, 10);
|
|
|
+ return provisioned * 9 * NR_PHY_IN_LOG;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Looks up the logical address from reverse trans map and check if its valid by
|
|
|
+ * comparing the logical to physical address with the physical address.
|
|
|
+ * Returns 0 on free, otherwise 1 if in use
|
|
|
+ */
|
|
|
+static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
|
+{
|
|
|
+ struct nvm_dev *dev = rrpc->dev;
|
|
|
+ int offset;
|
|
|
+ struct rrpc_addr *laddr;
|
|
|
+ sector_t paddr, pladdr;
|
|
|
+
|
|
|
+ for (offset = 0; offset < dev->pgs_per_blk; offset++) {
|
|
|
+ paddr = block_to_addr(rrpc, rblk) + offset;
|
|
|
+
|
|
|
+ pladdr = rrpc->rev_trans_map[paddr].addr;
|
|
|
+ if (pladdr == ADDR_EMPTY)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ laddr = &rrpc->trans_map[pladdr];
|
|
|
+
|
|
|
+ if (paddr == laddr->addr) {
|
|
|
+ laddr->rblk = rblk;
|
|
|
+ } else {
|
|
|
+ set_bit(offset, rblk->invalid_pages);
|
|
|
+ rblk->nr_invalid_pages++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_blocks_init(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ struct rrpc_lun *rlun;
|
|
|
+ struct rrpc_block *rblk;
|
|
|
+ int lun_iter, blk_iter;
|
|
|
+
|
|
|
+ for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
|
|
|
+ rlun = &rrpc->luns[lun_iter];
|
|
|
+
|
|
|
+ for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
|
|
|
+ blk_iter++) {
|
|
|
+ rblk = &rlun->blocks[blk_iter];
|
|
|
+ rrpc_block_map_update(rrpc, rblk);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int rrpc_luns_configure(struct rrpc *rrpc)
|
|
|
+{
|
|
|
+ struct rrpc_lun *rlun;
|
|
|
+ struct rrpc_block *rblk;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ for (i = 0; i < rrpc->nr_luns; i++) {
|
|
|
+ rlun = &rrpc->luns[i];
|
|
|
+
|
|
|
+ rblk = rrpc_get_blk(rrpc, rlun, 0);
|
|
|
+ if (!rblk)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ rrpc_set_lun_cur(rlun, rblk);
|
|
|
+
|
|
|
+ /* Emergency gc block */
|
|
|
+ rblk = rrpc_get_blk(rrpc, rlun, 1);
|
|
|
+ if (!rblk)
|
|
|
+ return -EINVAL;
|
|
|
+ rlun->gc_cur = rblk;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static struct nvm_tgt_type tt_rrpc;
|
|
|
+
|
|
|
+static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
|
|
|
+ int lun_begin, int lun_end)
|
|
|
+{
|
|
|
+ struct request_queue *bqueue = dev->q;
|
|
|
+ struct request_queue *tqueue = tdisk->queue;
|
|
|
+ struct rrpc *rrpc;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ if (!(dev->identity.dom & NVM_RSP_L2P)) {
|
|
|
+ pr_err("nvm: rrpc: device does not support l2p (%x)\n",
|
|
|
+ dev->identity.dom);
|
|
|
+ return ERR_PTR(-EINVAL);
|
|
|
+ }
|
|
|
+
|
|
|
+ rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
|
|
|
+ if (!rrpc)
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
+
|
|
|
+ rrpc->instance.tt = &tt_rrpc;
|
|
|
+ rrpc->dev = dev;
|
|
|
+ rrpc->disk = tdisk;
|
|
|
+
|
|
|
+ bio_list_init(&rrpc->requeue_bios);
|
|
|
+ spin_lock_init(&rrpc->bio_lock);
|
|
|
+ INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
|
|
|
+
|
|
|
+ rrpc->nr_luns = lun_end - lun_begin + 1;
|
|
|
+
|
|
|
+ /* simple round-robin strategy */
|
|
|
+ atomic_set(&rrpc->next_lun, -1);
|
|
|
+
|
|
|
+ ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("nvm: rrpc: could not initialize luns\n");
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ rrpc->poffset = dev->sec_per_lun * lun_begin;
|
|
|
+ rrpc->lun_offset = lun_begin;
|
|
|
+
|
|
|
+ ret = rrpc_core_init(rrpc);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("nvm: rrpc: could not initialize core\n");
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = rrpc_map_init(rrpc);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("nvm: rrpc: could not initialize maps\n");
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = rrpc_blocks_init(rrpc);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("nvm: rrpc: could not initialize state for blocks\n");
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = rrpc_luns_configure(rrpc);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = rrpc_gc_init(rrpc);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("nvm: rrpc: could not initialize gc\n");
|
|
|
+ goto err;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* inherit the size from the underlying device */
|
|
|
+ blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
|
|
|
+ blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
|
|
|
+
|
|
|
+ pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
|
|
|
+ rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
|
|
|
+
|
|
|
+ mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
|
|
|
+
|
|
|
+ return rrpc;
|
|
|
+err:
|
|
|
+ rrpc_free(rrpc);
|
|
|
+ return ERR_PTR(ret);
|
|
|
+}
|
|
|
+
|
|
|
+/* round robin, page-based FTL, and cost-based GC */
|
|
|
+static struct nvm_tgt_type tt_rrpc = {
|
|
|
+ .name = "rrpc",
|
|
|
+ .version = {1, 0, 0},
|
|
|
+
|
|
|
+ .make_rq = rrpc_make_rq,
|
|
|
+ .capacity = rrpc_capacity,
|
|
|
+ .end_io = rrpc_end_io,
|
|
|
+
|
|
|
+ .init = rrpc_init,
|
|
|
+ .exit = rrpc_exit,
|
|
|
+};
|
|
|
+
|
|
|
+static int __init rrpc_module_init(void)
|
|
|
+{
|
|
|
+ return nvm_register_target(&tt_rrpc);
|
|
|
+}
|
|
|
+
|
|
|
+static void rrpc_module_exit(void)
|
|
|
+{
|
|
|
+ nvm_unregister_target(&tt_rrpc);
|
|
|
+}
|
|
|
+
|
|
|
+module_init(rrpc_module_init);
|
|
|
+module_exit(rrpc_module_exit);
|
|
|
+MODULE_LICENSE("GPL v2");
|
|
|
+MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");
|