|
@@ -283,9 +283,6 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
|
|
|
return grp->my_q;
|
|
|
}
|
|
|
|
|
|
-static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
|
|
|
- int force_update);
|
|
|
-
|
|
|
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
|
|
|
{
|
|
|
if (!cfs_rq->on_list) {
|
|
@@ -305,8 +302,6 @@ static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
|
|
|
}
|
|
|
|
|
|
cfs_rq->on_list = 1;
|
|
|
- /* We should have no load, but we need to update last_decay. */
|
|
|
- update_cfs_rq_blocked_load(cfs_rq, 0);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -616,15 +611,10 @@ static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
|
|
|
*/
|
|
|
static u64 __sched_period(unsigned long nr_running)
|
|
|
{
|
|
|
- u64 period = sysctl_sched_latency;
|
|
|
- unsigned long nr_latency = sched_nr_latency;
|
|
|
-
|
|
|
- if (unlikely(nr_running > nr_latency)) {
|
|
|
- period = sysctl_sched_min_granularity;
|
|
|
- period *= nr_running;
|
|
|
- }
|
|
|
-
|
|
|
- return period;
|
|
|
+ if (unlikely(nr_running > sched_nr_latency))
|
|
|
+ return nr_running * sysctl_sched_min_granularity;
|
|
|
+ else
|
|
|
+ return sysctl_sched_latency;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -669,22 +659,37 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
|
static int select_idle_sibling(struct task_struct *p, int cpu);
|
|
|
static unsigned long task_h_load(struct task_struct *p);
|
|
|
|
|
|
-static inline void __update_task_entity_contrib(struct sched_entity *se);
|
|
|
-static inline void __update_task_entity_utilization(struct sched_entity *se);
|
|
|
+/*
|
|
|
+ * We choose a half-life close to 1 scheduling period.
|
|
|
+ * Note: The tables below are dependent on this value.
|
|
|
+ */
|
|
|
+#define LOAD_AVG_PERIOD 32
|
|
|
+#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
|
|
|
+#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
|
|
|
|
|
|
-/* Give new task start runnable values to heavy its load in infant time */
|
|
|
-void init_task_runnable_average(struct task_struct *p)
|
|
|
+/* Give new sched_entity start runnable values to heavy its load in infant time */
|
|
|
+void init_entity_runnable_average(struct sched_entity *se)
|
|
|
{
|
|
|
- u32 slice;
|
|
|
+ struct sched_avg *sa = &se->avg;
|
|
|
|
|
|
- slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
|
|
|
- p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
|
|
|
- p->se.avg.avg_period = slice;
|
|
|
- __update_task_entity_contrib(&p->se);
|
|
|
- __update_task_entity_utilization(&p->se);
|
|
|
+ sa->last_update_time = 0;
|
|
|
+ /*
|
|
|
+ * sched_avg's period_contrib should be strictly less then 1024, so
|
|
|
+ * we give it 1023 to make sure it is almost a period (1024us), and
|
|
|
+ * will definitely be update (after enqueue).
|
|
|
+ */
|
|
|
+ sa->period_contrib = 1023;
|
|
|
+ sa->load_avg = scale_load_down(se->load.weight);
|
|
|
+ sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
|
|
|
+ sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
|
|
|
+ sa->util_sum = LOAD_AVG_MAX;
|
|
|
+ /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
|
|
|
}
|
|
|
+
|
|
|
+static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
|
|
|
+static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
|
|
|
#else
|
|
|
-void init_task_runnable_average(struct task_struct *p)
|
|
|
+void init_entity_runnable_average(struct sched_entity *se)
|
|
|
{
|
|
|
}
|
|
|
#endif
|
|
@@ -1415,8 +1420,9 @@ static bool numa_has_capacity(struct task_numa_env *env)
|
|
|
* --------------------- vs ---------------------
|
|
|
* src->compute_capacity dst->compute_capacity
|
|
|
*/
|
|
|
- if (src->load * dst->compute_capacity >
|
|
|
- dst->load * src->compute_capacity)
|
|
|
+ if (src->load * dst->compute_capacity * env->imbalance_pct >
|
|
|
+
|
|
|
+ dst->load * src->compute_capacity * 100)
|
|
|
return true;
|
|
|
|
|
|
return false;
|
|
@@ -1702,8 +1708,8 @@ static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
|
|
|
delta = runtime - p->last_sum_exec_runtime;
|
|
|
*period = now - p->last_task_numa_placement;
|
|
|
} else {
|
|
|
- delta = p->se.avg.runnable_avg_sum;
|
|
|
- *period = p->se.avg.avg_period;
|
|
|
+ delta = p->se.avg.load_sum / p->se.load.weight;
|
|
|
+ *period = LOAD_AVG_MAX;
|
|
|
}
|
|
|
|
|
|
p->last_sum_exec_runtime = runtime;
|
|
@@ -2351,13 +2357,13 @@ static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
|
|
|
long tg_weight;
|
|
|
|
|
|
/*
|
|
|
- * Use this CPU's actual weight instead of the last load_contribution
|
|
|
- * to gain a more accurate current total weight. See
|
|
|
- * update_cfs_rq_load_contribution().
|
|
|
+ * Use this CPU's real-time load instead of the last load contribution
|
|
|
+ * as the updating of the contribution is delayed, and we will use the
|
|
|
+ * the real-time load to calc the share. See update_tg_load_avg().
|
|
|
*/
|
|
|
tg_weight = atomic_long_read(&tg->load_avg);
|
|
|
- tg_weight -= cfs_rq->tg_load_contrib;
|
|
|
- tg_weight += cfs_rq->load.weight;
|
|
|
+ tg_weight -= cfs_rq->tg_load_avg_contrib;
|
|
|
+ tg_weight += cfs_rq_load_avg(cfs_rq);
|
|
|
|
|
|
return tg_weight;
|
|
|
}
|
|
@@ -2367,7 +2373,7 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
|
|
|
long tg_weight, load, shares;
|
|
|
|
|
|
tg_weight = calc_tg_weight(tg, cfs_rq);
|
|
|
- load = cfs_rq->load.weight;
|
|
|
+ load = cfs_rq_load_avg(cfs_rq);
|
|
|
|
|
|
shares = (tg->shares * load);
|
|
|
if (tg_weight)
|
|
@@ -2429,14 +2435,6 @@ static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
|
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
-/*
|
|
|
- * We choose a half-life close to 1 scheduling period.
|
|
|
- * Note: The tables below are dependent on this value.
|
|
|
- */
|
|
|
-#define LOAD_AVG_PERIOD 32
|
|
|
-#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
|
|
|
-#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
|
|
|
-
|
|
|
/* Precomputed fixed inverse multiplies for multiplication by y^n */
|
|
|
static const u32 runnable_avg_yN_inv[] = {
|
|
|
0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
|
|
@@ -2485,9 +2483,8 @@ static __always_inline u64 decay_load(u64 val, u64 n)
|
|
|
local_n %= LOAD_AVG_PERIOD;
|
|
|
}
|
|
|
|
|
|
- val *= runnable_avg_yN_inv[local_n];
|
|
|
- /* We don't use SRR here since we always want to round down. */
|
|
|
- return val >> 32;
|
|
|
+ val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
|
|
|
+ return val;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -2546,23 +2543,22 @@ static u32 __compute_runnable_contrib(u64 n)
|
|
|
* load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
|
|
|
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
|
|
|
*/
|
|
|
-static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
|
|
|
- struct sched_avg *sa,
|
|
|
- int runnable,
|
|
|
- int running)
|
|
|
+static __always_inline int
|
|
|
+__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
|
|
|
+ unsigned long weight, int running, struct cfs_rq *cfs_rq)
|
|
|
{
|
|
|
u64 delta, periods;
|
|
|
- u32 runnable_contrib;
|
|
|
+ u32 contrib;
|
|
|
int delta_w, decayed = 0;
|
|
|
unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
|
|
|
|
|
|
- delta = now - sa->last_runnable_update;
|
|
|
+ delta = now - sa->last_update_time;
|
|
|
/*
|
|
|
* This should only happen when time goes backwards, which it
|
|
|
* unfortunately does during sched clock init when we swap over to TSC.
|
|
|
*/
|
|
|
if ((s64)delta < 0) {
|
|
|
- sa->last_runnable_update = now;
|
|
|
+ sa->last_update_time = now;
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -2573,26 +2569,29 @@ static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
|
|
|
delta >>= 10;
|
|
|
if (!delta)
|
|
|
return 0;
|
|
|
- sa->last_runnable_update = now;
|
|
|
+ sa->last_update_time = now;
|
|
|
|
|
|
/* delta_w is the amount already accumulated against our next period */
|
|
|
- delta_w = sa->avg_period % 1024;
|
|
|
+ delta_w = sa->period_contrib;
|
|
|
if (delta + delta_w >= 1024) {
|
|
|
- /* period roll-over */
|
|
|
decayed = 1;
|
|
|
|
|
|
+ /* how much left for next period will start over, we don't know yet */
|
|
|
+ sa->period_contrib = 0;
|
|
|
+
|
|
|
/*
|
|
|
* Now that we know we're crossing a period boundary, figure
|
|
|
* out how much from delta we need to complete the current
|
|
|
* period and accrue it.
|
|
|
*/
|
|
|
delta_w = 1024 - delta_w;
|
|
|
- if (runnable)
|
|
|
- sa->runnable_avg_sum += delta_w;
|
|
|
+ if (weight) {
|
|
|
+ sa->load_sum += weight * delta_w;
|
|
|
+ if (cfs_rq)
|
|
|
+ cfs_rq->runnable_load_sum += weight * delta_w;
|
|
|
+ }
|
|
|
if (running)
|
|
|
- sa->running_avg_sum += delta_w * scale_freq
|
|
|
- >> SCHED_CAPACITY_SHIFT;
|
|
|
- sa->avg_period += delta_w;
|
|
|
+ sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
|
|
|
|
|
|
delta -= delta_w;
|
|
|
|
|
@@ -2600,341 +2599,186 @@ static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
|
|
|
periods = delta / 1024;
|
|
|
delta %= 1024;
|
|
|
|
|
|
- sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
|
|
|
- periods + 1);
|
|
|
- sa->running_avg_sum = decay_load(sa->running_avg_sum,
|
|
|
- periods + 1);
|
|
|
- sa->avg_period = decay_load(sa->avg_period,
|
|
|
- periods + 1);
|
|
|
+ sa->load_sum = decay_load(sa->load_sum, periods + 1);
|
|
|
+ if (cfs_rq) {
|
|
|
+ cfs_rq->runnable_load_sum =
|
|
|
+ decay_load(cfs_rq->runnable_load_sum, periods + 1);
|
|
|
+ }
|
|
|
+ sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
|
|
|
|
|
|
/* Efficiently calculate \sum (1..n_period) 1024*y^i */
|
|
|
- runnable_contrib = __compute_runnable_contrib(periods);
|
|
|
- if (runnable)
|
|
|
- sa->runnable_avg_sum += runnable_contrib;
|
|
|
+ contrib = __compute_runnable_contrib(periods);
|
|
|
+ if (weight) {
|
|
|
+ sa->load_sum += weight * contrib;
|
|
|
+ if (cfs_rq)
|
|
|
+ cfs_rq->runnable_load_sum += weight * contrib;
|
|
|
+ }
|
|
|
if (running)
|
|
|
- sa->running_avg_sum += runnable_contrib * scale_freq
|
|
|
- >> SCHED_CAPACITY_SHIFT;
|
|
|
- sa->avg_period += runnable_contrib;
|
|
|
+ sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
|
|
|
}
|
|
|
|
|
|
/* Remainder of delta accrued against u_0` */
|
|
|
- if (runnable)
|
|
|
- sa->runnable_avg_sum += delta;
|
|
|
+ if (weight) {
|
|
|
+ sa->load_sum += weight * delta;
|
|
|
+ if (cfs_rq)
|
|
|
+ cfs_rq->runnable_load_sum += weight * delta;
|
|
|
+ }
|
|
|
if (running)
|
|
|
- sa->running_avg_sum += delta * scale_freq
|
|
|
- >> SCHED_CAPACITY_SHIFT;
|
|
|
- sa->avg_period += delta;
|
|
|
-
|
|
|
- return decayed;
|
|
|
-}
|
|
|
+ sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
|
|
|
|
|
|
-/* Synchronize an entity's decay with its parenting cfs_rq.*/
|
|
|
-static inline u64 __synchronize_entity_decay(struct sched_entity *se)
|
|
|
-{
|
|
|
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
|
- u64 decays = atomic64_read(&cfs_rq->decay_counter);
|
|
|
-
|
|
|
- decays -= se->avg.decay_count;
|
|
|
- se->avg.decay_count = 0;
|
|
|
- if (!decays)
|
|
|
- return 0;
|
|
|
+ sa->period_contrib += delta;
|
|
|
|
|
|
- se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
|
|
|
- se->avg.utilization_avg_contrib =
|
|
|
- decay_load(se->avg.utilization_avg_contrib, decays);
|
|
|
+ if (decayed) {
|
|
|
+ sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
|
|
|
+ if (cfs_rq) {
|
|
|
+ cfs_rq->runnable_load_avg =
|
|
|
+ div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
|
|
|
+ }
|
|
|
+ sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
|
|
|
+ }
|
|
|
|
|
|
- return decays;
|
|
|
+ return decayed;
|
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
-static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
|
|
|
- int force_update)
|
|
|
-{
|
|
|
- struct task_group *tg = cfs_rq->tg;
|
|
|
- long tg_contrib;
|
|
|
-
|
|
|
- tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
|
|
|
- tg_contrib -= cfs_rq->tg_load_contrib;
|
|
|
-
|
|
|
- if (!tg_contrib)
|
|
|
- return;
|
|
|
-
|
|
|
- if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
|
|
|
- atomic_long_add(tg_contrib, &tg->load_avg);
|
|
|
- cfs_rq->tg_load_contrib += tg_contrib;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
- * Aggregate cfs_rq runnable averages into an equivalent task_group
|
|
|
- * representation for computing load contributions.
|
|
|
+ * Updating tg's load_avg is necessary before update_cfs_share (which is done)
|
|
|
+ * and effective_load (which is not done because it is too costly).
|
|
|
*/
|
|
|
-static inline void __update_tg_runnable_avg(struct sched_avg *sa,
|
|
|
- struct cfs_rq *cfs_rq)
|
|
|
+static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
|
|
|
{
|
|
|
- struct task_group *tg = cfs_rq->tg;
|
|
|
- long contrib;
|
|
|
+ long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
|
|
|
|
|
|
- /* The fraction of a cpu used by this cfs_rq */
|
|
|
- contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
|
|
|
- sa->avg_period + 1);
|
|
|
- contrib -= cfs_rq->tg_runnable_contrib;
|
|
|
-
|
|
|
- if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
|
|
|
- atomic_add(contrib, &tg->runnable_avg);
|
|
|
- cfs_rq->tg_runnable_contrib += contrib;
|
|
|
+ if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
|
|
|
+ atomic_long_add(delta, &cfs_rq->tg->load_avg);
|
|
|
+ cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-static inline void __update_group_entity_contrib(struct sched_entity *se)
|
|
|
-{
|
|
|
- struct cfs_rq *cfs_rq = group_cfs_rq(se);
|
|
|
- struct task_group *tg = cfs_rq->tg;
|
|
|
- int runnable_avg;
|
|
|
-
|
|
|
- u64 contrib;
|
|
|
-
|
|
|
- contrib = cfs_rq->tg_load_contrib * tg->shares;
|
|
|
- se->avg.load_avg_contrib = div_u64(contrib,
|
|
|
- atomic_long_read(&tg->load_avg) + 1);
|
|
|
-
|
|
|
- /*
|
|
|
- * For group entities we need to compute a correction term in the case
|
|
|
- * that they are consuming <1 cpu so that we would contribute the same
|
|
|
- * load as a task of equal weight.
|
|
|
- *
|
|
|
- * Explicitly co-ordinating this measurement would be expensive, but
|
|
|
- * fortunately the sum of each cpus contribution forms a usable
|
|
|
- * lower-bound on the true value.
|
|
|
- *
|
|
|
- * Consider the aggregate of 2 contributions. Either they are disjoint
|
|
|
- * (and the sum represents true value) or they are disjoint and we are
|
|
|
- * understating by the aggregate of their overlap.
|
|
|
- *
|
|
|
- * Extending this to N cpus, for a given overlap, the maximum amount we
|
|
|
- * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
|
|
|
- * cpus that overlap for this interval and w_i is the interval width.
|
|
|
- *
|
|
|
- * On a small machine; the first term is well-bounded which bounds the
|
|
|
- * total error since w_i is a subset of the period. Whereas on a
|
|
|
- * larger machine, while this first term can be larger, if w_i is the
|
|
|
- * of consequential size guaranteed to see n_i*w_i quickly converge to
|
|
|
- * our upper bound of 1-cpu.
|
|
|
- */
|
|
|
- runnable_avg = atomic_read(&tg->runnable_avg);
|
|
|
- if (runnable_avg < NICE_0_LOAD) {
|
|
|
- se->avg.load_avg_contrib *= runnable_avg;
|
|
|
- se->avg.load_avg_contrib >>= NICE_0_SHIFT;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
|
|
|
-{
|
|
|
- __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
|
|
|
- runnable, runnable);
|
|
|
- __update_tg_runnable_avg(&rq->avg, &rq->cfs);
|
|
|
-}
|
|
|
#else /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
-static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
|
|
|
- int force_update) {}
|
|
|
-static inline void __update_tg_runnable_avg(struct sched_avg *sa,
|
|
|
- struct cfs_rq *cfs_rq) {}
|
|
|
-static inline void __update_group_entity_contrib(struct sched_entity *se) {}
|
|
|
-static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
|
|
|
+static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
|
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
|
|
-static inline void __update_task_entity_contrib(struct sched_entity *se)
|
|
|
-{
|
|
|
- u32 contrib;
|
|
|
-
|
|
|
- /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
|
|
|
- contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
|
|
|
- contrib /= (se->avg.avg_period + 1);
|
|
|
- se->avg.load_avg_contrib = scale_load(contrib);
|
|
|
-}
|
|
|
+static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
|
|
|
|
|
|
-/* Compute the current contribution to load_avg by se, return any delta */
|
|
|
-static long __update_entity_load_avg_contrib(struct sched_entity *se)
|
|
|
+/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
|
|
|
+static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
|
|
|
{
|
|
|
- long old_contrib = se->avg.load_avg_contrib;
|
|
|
+ int decayed;
|
|
|
+ struct sched_avg *sa = &cfs_rq->avg;
|
|
|
|
|
|
- if (entity_is_task(se)) {
|
|
|
- __update_task_entity_contrib(se);
|
|
|
- } else {
|
|
|
- __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
|
|
|
- __update_group_entity_contrib(se);
|
|
|
+ if (atomic_long_read(&cfs_rq->removed_load_avg)) {
|
|
|
+ long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
|
|
|
+ sa->load_avg = max_t(long, sa->load_avg - r, 0);
|
|
|
+ sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
|
|
|
}
|
|
|
|
|
|
- return se->avg.load_avg_contrib - old_contrib;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-static inline void __update_task_entity_utilization(struct sched_entity *se)
|
|
|
-{
|
|
|
- u32 contrib;
|
|
|
+ if (atomic_long_read(&cfs_rq->removed_util_avg)) {
|
|
|
+ long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
|
|
|
+ sa->util_avg = max_t(long, sa->util_avg - r, 0);
|
|
|
+ sa->util_sum = max_t(s32, sa->util_sum -
|
|
|
+ ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
|
|
|
+ }
|
|
|
|
|
|
- /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
|
|
|
- contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
|
|
|
- contrib /= (se->avg.avg_period + 1);
|
|
|
- se->avg.utilization_avg_contrib = scale_load(contrib);
|
|
|
-}
|
|
|
+ decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
|
|
|
+ scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
|
|
|
|
|
|
-static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
|
|
|
-{
|
|
|
- long old_contrib = se->avg.utilization_avg_contrib;
|
|
|
-
|
|
|
- if (entity_is_task(se))
|
|
|
- __update_task_entity_utilization(se);
|
|
|
- else
|
|
|
- se->avg.utilization_avg_contrib =
|
|
|
- group_cfs_rq(se)->utilization_load_avg;
|
|
|
+#ifndef CONFIG_64BIT
|
|
|
+ smp_wmb();
|
|
|
+ cfs_rq->load_last_update_time_copy = sa->last_update_time;
|
|
|
+#endif
|
|
|
|
|
|
- return se->avg.utilization_avg_contrib - old_contrib;
|
|
|
+ return decayed;
|
|
|
}
|
|
|
|
|
|
-static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
|
|
|
- long load_contrib)
|
|
|
-{
|
|
|
- if (likely(load_contrib < cfs_rq->blocked_load_avg))
|
|
|
- cfs_rq->blocked_load_avg -= load_contrib;
|
|
|
- else
|
|
|
- cfs_rq->blocked_load_avg = 0;
|
|
|
-}
|
|
|
-
|
|
|
-static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
|
|
|
-
|
|
|
-/* Update a sched_entity's runnable average */
|
|
|
-static inline void update_entity_load_avg(struct sched_entity *se,
|
|
|
- int update_cfs_rq)
|
|
|
+/* Update task and its cfs_rq load average */
|
|
|
+static inline void update_load_avg(struct sched_entity *se, int update_tg)
|
|
|
{
|
|
|
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
|
- long contrib_delta, utilization_delta;
|
|
|
int cpu = cpu_of(rq_of(cfs_rq));
|
|
|
- u64 now;
|
|
|
+ u64 now = cfs_rq_clock_task(cfs_rq);
|
|
|
|
|
|
/*
|
|
|
- * For a group entity we need to use their owned cfs_rq_clock_task() in
|
|
|
- * case they are the parent of a throttled hierarchy.
|
|
|
+ * Track task load average for carrying it to new CPU after migrated, and
|
|
|
+ * track group sched_entity load average for task_h_load calc in migration
|
|
|
*/
|
|
|
- if (entity_is_task(se))
|
|
|
- now = cfs_rq_clock_task(cfs_rq);
|
|
|
- else
|
|
|
- now = cfs_rq_clock_task(group_cfs_rq(se));
|
|
|
-
|
|
|
- if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
|
|
|
- cfs_rq->curr == se))
|
|
|
- return;
|
|
|
-
|
|
|
- contrib_delta = __update_entity_load_avg_contrib(se);
|
|
|
- utilization_delta = __update_entity_utilization_avg_contrib(se);
|
|
|
-
|
|
|
- if (!update_cfs_rq)
|
|
|
- return;
|
|
|
+ __update_load_avg(now, cpu, &se->avg,
|
|
|
+ se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
|
|
|
|
|
|
- if (se->on_rq) {
|
|
|
- cfs_rq->runnable_load_avg += contrib_delta;
|
|
|
- cfs_rq->utilization_load_avg += utilization_delta;
|
|
|
- } else {
|
|
|
- subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
|
|
|
- }
|
|
|
+ if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
|
|
|
+ update_tg_load_avg(cfs_rq, 0);
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Decay the load contributed by all blocked children and account this so that
|
|
|
- * their contribution may appropriately discounted when they wake up.
|
|
|
- */
|
|
|
-static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
|
|
|
+/* Add the load generated by se into cfs_rq's load average */
|
|
|
+static inline void
|
|
|
+enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
|
{
|
|
|
- u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
|
|
|
- u64 decays;
|
|
|
-
|
|
|
- decays = now - cfs_rq->last_decay;
|
|
|
- if (!decays && !force_update)
|
|
|
- return;
|
|
|
+ struct sched_avg *sa = &se->avg;
|
|
|
+ u64 now = cfs_rq_clock_task(cfs_rq);
|
|
|
+ int migrated = 0, decayed;
|
|
|
|
|
|
- if (atomic_long_read(&cfs_rq->removed_load)) {
|
|
|
- unsigned long removed_load;
|
|
|
- removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
|
|
|
- subtract_blocked_load_contrib(cfs_rq, removed_load);
|
|
|
+ if (sa->last_update_time == 0) {
|
|
|
+ sa->last_update_time = now;
|
|
|
+ migrated = 1;
|
|
|
}
|
|
|
+ else {
|
|
|
+ __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
|
|
|
+ se->on_rq * scale_load_down(se->load.weight),
|
|
|
+ cfs_rq->curr == se, NULL);
|
|
|
+ }
|
|
|
+
|
|
|
+ decayed = update_cfs_rq_load_avg(now, cfs_rq);
|
|
|
|
|
|
- if (decays) {
|
|
|
- cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
|
|
|
- decays);
|
|
|
- atomic64_add(decays, &cfs_rq->decay_counter);
|
|
|
- cfs_rq->last_decay = now;
|
|
|
+ cfs_rq->runnable_load_avg += sa->load_avg;
|
|
|
+ cfs_rq->runnable_load_sum += sa->load_sum;
|
|
|
+
|
|
|
+ if (migrated) {
|
|
|
+ cfs_rq->avg.load_avg += sa->load_avg;
|
|
|
+ cfs_rq->avg.load_sum += sa->load_sum;
|
|
|
+ cfs_rq->avg.util_avg += sa->util_avg;
|
|
|
+ cfs_rq->avg.util_sum += sa->util_sum;
|
|
|
}
|
|
|
|
|
|
- __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
|
|
|
+ if (decayed || migrated)
|
|
|
+ update_tg_load_avg(cfs_rq, 0);
|
|
|
}
|
|
|
|
|
|
-/* Add the load generated by se into cfs_rq's child load-average */
|
|
|
-static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
|
|
|
- struct sched_entity *se,
|
|
|
- int wakeup)
|
|
|
+/* Remove the runnable load generated by se from cfs_rq's runnable load average */
|
|
|
+static inline void
|
|
|
+dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
|
{
|
|
|
- /*
|
|
|
- * We track migrations using entity decay_count <= 0, on a wake-up
|
|
|
- * migration we use a negative decay count to track the remote decays
|
|
|
- * accumulated while sleeping.
|
|
|
- *
|
|
|
- * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
|
|
|
- * are seen by enqueue_entity_load_avg() as a migration with an already
|
|
|
- * constructed load_avg_contrib.
|
|
|
- */
|
|
|
- if (unlikely(se->avg.decay_count <= 0)) {
|
|
|
- se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
|
|
|
- if (se->avg.decay_count) {
|
|
|
- /*
|
|
|
- * In a wake-up migration we have to approximate the
|
|
|
- * time sleeping. This is because we can't synchronize
|
|
|
- * clock_task between the two cpus, and it is not
|
|
|
- * guaranteed to be read-safe. Instead, we can
|
|
|
- * approximate this using our carried decays, which are
|
|
|
- * explicitly atomically readable.
|
|
|
- */
|
|
|
- se->avg.last_runnable_update -= (-se->avg.decay_count)
|
|
|
- << 20;
|
|
|
- update_entity_load_avg(se, 0);
|
|
|
- /* Indicate that we're now synchronized and on-rq */
|
|
|
- se->avg.decay_count = 0;
|
|
|
- }
|
|
|
- wakeup = 0;
|
|
|
- } else {
|
|
|
- __synchronize_entity_decay(se);
|
|
|
- }
|
|
|
+ update_load_avg(se, 1);
|
|
|
|
|
|
- /* migrated tasks did not contribute to our blocked load */
|
|
|
- if (wakeup) {
|
|
|
- subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
|
|
|
- update_entity_load_avg(se, 0);
|
|
|
- }
|
|
|
-
|
|
|
- cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
|
|
|
- cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
|
|
|
- /* we force update consideration on load-balancer moves */
|
|
|
- update_cfs_rq_blocked_load(cfs_rq, !wakeup);
|
|
|
+ cfs_rq->runnable_load_avg =
|
|
|
+ max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
|
|
|
+ cfs_rq->runnable_load_sum =
|
|
|
+ max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Remove se's load from this cfs_rq child load-average, if the entity is
|
|
|
- * transitioning to a blocked state we track its projected decay using
|
|
|
- * blocked_load_avg.
|
|
|
+ * Task first catches up with cfs_rq, and then subtract
|
|
|
+ * itself from the cfs_rq (task must be off the queue now).
|
|
|
*/
|
|
|
-static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
|
|
|
- struct sched_entity *se,
|
|
|
- int sleep)
|
|
|
+void remove_entity_load_avg(struct sched_entity *se)
|
|
|
{
|
|
|
- update_entity_load_avg(se, 1);
|
|
|
- /* we force update consideration on load-balancer moves */
|
|
|
- update_cfs_rq_blocked_load(cfs_rq, !sleep);
|
|
|
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
|
+ u64 last_update_time;
|
|
|
+
|
|
|
+#ifndef CONFIG_64BIT
|
|
|
+ u64 last_update_time_copy;
|
|
|
|
|
|
- cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
|
|
|
- cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
|
|
|
- if (sleep) {
|
|
|
- cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
|
|
|
- se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
|
|
|
- } /* migrations, e.g. sleep=0 leave decay_count == 0 */
|
|
|
+ do {
|
|
|
+ last_update_time_copy = cfs_rq->load_last_update_time_copy;
|
|
|
+ smp_rmb();
|
|
|
+ last_update_time = cfs_rq->avg.last_update_time;
|
|
|
+ } while (last_update_time != last_update_time_copy);
|
|
|
+#else
|
|
|
+ last_update_time = cfs_rq->avg.last_update_time;
|
|
|
+#endif
|
|
|
+
|
|
|
+ __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
|
|
|
+ atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
|
|
|
+ atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -2944,7 +2788,6 @@ static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
|
|
|
*/
|
|
|
void idle_enter_fair(struct rq *this_rq)
|
|
|
{
|
|
|
- update_rq_runnable_avg(this_rq, 1);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -2954,24 +2797,28 @@ void idle_enter_fair(struct rq *this_rq)
|
|
|
*/
|
|
|
void idle_exit_fair(struct rq *this_rq)
|
|
|
{
|
|
|
- update_rq_runnable_avg(this_rq, 0);
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
|
|
|
+{
|
|
|
+ return cfs_rq->runnable_load_avg;
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
|
|
|
+{
|
|
|
+ return cfs_rq->avg.load_avg;
|
|
|
}
|
|
|
|
|
|
static int idle_balance(struct rq *this_rq);
|
|
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
|
|
-static inline void update_entity_load_avg(struct sched_entity *se,
|
|
|
- int update_cfs_rq) {}
|
|
|
-static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
|
|
|
-static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
|
|
|
- struct sched_entity *se,
|
|
|
- int wakeup) {}
|
|
|
-static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
|
|
|
- struct sched_entity *se,
|
|
|
- int sleep) {}
|
|
|
-static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
|
|
|
- int force_update) {}
|
|
|
+static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
|
|
|
+static inline void
|
|
|
+enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
|
|
|
+static inline void
|
|
|
+dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
|
|
|
+static inline void remove_entity_load_avg(struct sched_entity *se) {}
|
|
|
|
|
|
static inline int idle_balance(struct rq *rq)
|
|
|
{
|
|
@@ -3103,7 +2950,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
|
|
* Update run-time statistics of the 'current'.
|
|
|
*/
|
|
|
update_curr(cfs_rq);
|
|
|
- enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
|
|
|
+ enqueue_entity_load_avg(cfs_rq, se);
|
|
|
account_entity_enqueue(cfs_rq, se);
|
|
|
update_cfs_shares(cfs_rq);
|
|
|
|
|
@@ -3178,7 +3025,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
|
|
* Update run-time statistics of the 'current'.
|
|
|
*/
|
|
|
update_curr(cfs_rq);
|
|
|
- dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
|
|
|
+ dequeue_entity_load_avg(cfs_rq, se);
|
|
|
|
|
|
update_stats_dequeue(cfs_rq, se);
|
|
|
if (flags & DEQUEUE_SLEEP) {
|
|
@@ -3268,7 +3115,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
|
*/
|
|
|
update_stats_wait_end(cfs_rq, se);
|
|
|
__dequeue_entity(cfs_rq, se);
|
|
|
- update_entity_load_avg(se, 1);
|
|
|
+ update_load_avg(se, 1);
|
|
|
}
|
|
|
|
|
|
update_stats_curr_start(cfs_rq, se);
|
|
@@ -3368,7 +3215,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
|
|
|
/* Put 'current' back into the tree. */
|
|
|
__enqueue_entity(cfs_rq, prev);
|
|
|
/* in !on_rq case, update occurred at dequeue */
|
|
|
- update_entity_load_avg(prev, 1);
|
|
|
+ update_load_avg(prev, 0);
|
|
|
}
|
|
|
cfs_rq->curr = NULL;
|
|
|
}
|
|
@@ -3384,8 +3231,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
|
|
|
/*
|
|
|
* Ensure that runnable average is periodically updated.
|
|
|
*/
|
|
|
- update_entity_load_avg(curr, 1);
|
|
|
- update_cfs_rq_blocked_load(cfs_rq, 1);
|
|
|
+ update_load_avg(curr, 1);
|
|
|
update_cfs_shares(cfs_rq);
|
|
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
@@ -4258,14 +4104,13 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
|
break;
|
|
|
|
|
|
+ update_load_avg(se, 1);
|
|
|
update_cfs_shares(cfs_rq);
|
|
|
- update_entity_load_avg(se, 1);
|
|
|
}
|
|
|
|
|
|
- if (!se) {
|
|
|
- update_rq_runnable_avg(rq, rq->nr_running);
|
|
|
+ if (!se)
|
|
|
add_nr_running(rq, 1);
|
|
|
- }
|
|
|
+
|
|
|
hrtick_update(rq);
|
|
|
}
|
|
|
|
|
@@ -4319,14 +4164,13 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
|
|
|
if (cfs_rq_throttled(cfs_rq))
|
|
|
break;
|
|
|
|
|
|
+ update_load_avg(se, 1);
|
|
|
update_cfs_shares(cfs_rq);
|
|
|
- update_entity_load_avg(se, 1);
|
|
|
}
|
|
|
|
|
|
- if (!se) {
|
|
|
+ if (!se)
|
|
|
sub_nr_running(rq, 1);
|
|
|
- update_rq_runnable_avg(rq, 1);
|
|
|
- }
|
|
|
+
|
|
|
hrtick_update(rq);
|
|
|
}
|
|
|
|
|
@@ -4439,6 +4283,12 @@ static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
|
|
|
sched_avg_update(this_rq);
|
|
|
}
|
|
|
|
|
|
+/* Used instead of source_load when we know the type == 0 */
|
|
|
+static unsigned long weighted_cpuload(const int cpu)
|
|
|
+{
|
|
|
+ return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
|
|
|
+}
|
|
|
+
|
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
|
/*
|
|
|
* There is no sane way to deal with nohz on smp when using jiffies because the
|
|
@@ -4460,7 +4310,7 @@ static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
|
|
|
static void update_idle_cpu_load(struct rq *this_rq)
|
|
|
{
|
|
|
unsigned long curr_jiffies = READ_ONCE(jiffies);
|
|
|
- unsigned long load = this_rq->cfs.runnable_load_avg;
|
|
|
+ unsigned long load = weighted_cpuload(cpu_of(this_rq));
|
|
|
unsigned long pending_updates;
|
|
|
|
|
|
/*
|
|
@@ -4506,7 +4356,7 @@ void update_cpu_load_nohz(void)
|
|
|
*/
|
|
|
void update_cpu_load_active(struct rq *this_rq)
|
|
|
{
|
|
|
- unsigned long load = this_rq->cfs.runnable_load_avg;
|
|
|
+ unsigned long load = weighted_cpuload(cpu_of(this_rq));
|
|
|
/*
|
|
|
* See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
|
|
|
*/
|
|
@@ -4514,12 +4364,6 @@ void update_cpu_load_active(struct rq *this_rq)
|
|
|
__update_cpu_load(this_rq, load, 1);
|
|
|
}
|
|
|
|
|
|
-/* Used instead of source_load when we know the type == 0 */
|
|
|
-static unsigned long weighted_cpuload(const int cpu)
|
|
|
-{
|
|
|
- return cpu_rq(cpu)->cfs.runnable_load_avg;
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* Return a low guess at the load of a migration-source cpu weighted
|
|
|
* according to the scheduling class and "nice" value.
|
|
@@ -4567,7 +4411,7 @@ static unsigned long cpu_avg_load_per_task(int cpu)
|
|
|
{
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
|
unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
|
|
|
- unsigned long load_avg = rq->cfs.runnable_load_avg;
|
|
|
+ unsigned long load_avg = weighted_cpuload(cpu);
|
|
|
|
|
|
if (nr_running)
|
|
|
return load_avg / nr_running;
|
|
@@ -4686,7 +4530,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
|
|
|
/*
|
|
|
* w = rw_i + @wl
|
|
|
*/
|
|
|
- w = se->my_q->load.weight + wl;
|
|
|
+ w = cfs_rq_load_avg(se->my_q) + wl;
|
|
|
|
|
|
/*
|
|
|
* wl = S * s'_i; see (2)
|
|
@@ -4707,7 +4551,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
|
|
|
/*
|
|
|
* wl = dw_i = S * (s'_i - s_i); see (3)
|
|
|
*/
|
|
|
- wl -= se->load.weight;
|
|
|
+ wl -= se->avg.load_avg;
|
|
|
|
|
|
/*
|
|
|
* Recursively apply this logic to all parent groups to compute
|
|
@@ -4730,26 +4574,29 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
|
|
|
|
|
|
#endif
|
|
|
|
|
|
+/*
|
|
|
+ * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
|
|
|
+ * A waker of many should wake a different task than the one last awakened
|
|
|
+ * at a frequency roughly N times higher than one of its wakees. In order
|
|
|
+ * to determine whether we should let the load spread vs consolodating to
|
|
|
+ * shared cache, we look for a minimum 'flip' frequency of llc_size in one
|
|
|
+ * partner, and a factor of lls_size higher frequency in the other. With
|
|
|
+ * both conditions met, we can be relatively sure that the relationship is
|
|
|
+ * non-monogamous, with partner count exceeding socket size. Waker/wakee
|
|
|
+ * being client/server, worker/dispatcher, interrupt source or whatever is
|
|
|
+ * irrelevant, spread criteria is apparent partner count exceeds socket size.
|
|
|
+ */
|
|
|
static int wake_wide(struct task_struct *p)
|
|
|
{
|
|
|
+ unsigned int master = current->wakee_flips;
|
|
|
+ unsigned int slave = p->wakee_flips;
|
|
|
int factor = this_cpu_read(sd_llc_size);
|
|
|
|
|
|
- /*
|
|
|
- * Yeah, it's the switching-frequency, could means many wakee or
|
|
|
- * rapidly switch, use factor here will just help to automatically
|
|
|
- * adjust the loose-degree, so bigger node will lead to more pull.
|
|
|
- */
|
|
|
- if (p->wakee_flips > factor) {
|
|
|
- /*
|
|
|
- * wakee is somewhat hot, it needs certain amount of cpu
|
|
|
- * resource, so if waker is far more hot, prefer to leave
|
|
|
- * it alone.
|
|
|
- */
|
|
|
- if (current->wakee_flips > (factor * p->wakee_flips))
|
|
|
- return 1;
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
+ if (master < slave)
|
|
|
+ swap(master, slave);
|
|
|
+ if (slave < factor || master < slave * factor)
|
|
|
+ return 0;
|
|
|
+ return 1;
|
|
|
}
|
|
|
|
|
|
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
|
|
@@ -4761,13 +4608,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
|
|
|
unsigned long weight;
|
|
|
int balanced;
|
|
|
|
|
|
- /*
|
|
|
- * If we wake multiple tasks be careful to not bounce
|
|
|
- * ourselves around too much.
|
|
|
- */
|
|
|
- if (wake_wide(p))
|
|
|
- return 0;
|
|
|
-
|
|
|
idx = sd->wake_idx;
|
|
|
this_cpu = smp_processor_id();
|
|
|
prev_cpu = task_cpu(p);
|
|
@@ -4781,14 +4621,14 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
|
|
|
*/
|
|
|
if (sync) {
|
|
|
tg = task_group(current);
|
|
|
- weight = current->se.load.weight;
|
|
|
+ weight = current->se.avg.load_avg;
|
|
|
|
|
|
this_load += effective_load(tg, this_cpu, -weight, -weight);
|
|
|
load += effective_load(tg, prev_cpu, 0, -weight);
|
|
|
}
|
|
|
|
|
|
tg = task_group(p);
|
|
|
- weight = p->se.load.weight;
|
|
|
+ weight = p->se.avg.load_avg;
|
|
|
|
|
|
/*
|
|
|
* In low-load situations, where prev_cpu is idle and this_cpu is idle
|
|
@@ -4981,12 +4821,12 @@ done:
|
|
|
* tasks. The unit of the return value must be the one of capacity so we can
|
|
|
* compare the usage with the capacity of the CPU that is available for CFS
|
|
|
* task (ie cpu_capacity).
|
|
|
- * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
|
|
|
+ * cfs.avg.util_avg is the sum of running time of runnable tasks on a
|
|
|
* CPU. It represents the amount of utilization of a CPU in the range
|
|
|
* [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
|
|
|
* capacity of the CPU because it's about the running time on this CPU.
|
|
|
- * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
|
|
|
- * because of unfortunate rounding in avg_period and running_load_avg or just
|
|
|
+ * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
|
|
|
+ * because of unfortunate rounding in util_avg or just
|
|
|
* after migrating tasks until the average stabilizes with the new running
|
|
|
* time. So we need to check that the usage stays into the range
|
|
|
* [0..cpu_capacity_orig] and cap if necessary.
|
|
@@ -4995,7 +4835,7 @@ done:
|
|
|
*/
|
|
|
static int get_cpu_usage(int cpu)
|
|
|
{
|
|
|
- unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
|
|
|
+ unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
|
|
|
unsigned long capacity = capacity_orig_of(cpu);
|
|
|
|
|
|
if (usage >= SCHED_LOAD_SCALE)
|
|
@@ -5021,17 +4861,17 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
|
|
|
{
|
|
|
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
|
|
|
int cpu = smp_processor_id();
|
|
|
- int new_cpu = cpu;
|
|
|
+ int new_cpu = prev_cpu;
|
|
|
int want_affine = 0;
|
|
|
int sync = wake_flags & WF_SYNC;
|
|
|
|
|
|
if (sd_flag & SD_BALANCE_WAKE)
|
|
|
- want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
|
|
|
+ want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
|
|
|
|
|
|
rcu_read_lock();
|
|
|
for_each_domain(cpu, tmp) {
|
|
|
if (!(tmp->flags & SD_LOAD_BALANCE))
|
|
|
- continue;
|
|
|
+ break;
|
|
|
|
|
|
/*
|
|
|
* If both cpu and prev_cpu are part of this domain,
|
|
@@ -5045,17 +4885,21 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
|
|
|
|
|
|
if (tmp->flags & sd_flag)
|
|
|
sd = tmp;
|
|
|
+ else if (!want_affine)
|
|
|
+ break;
|
|
|
}
|
|
|
|
|
|
- if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
|
|
|
- prev_cpu = cpu;
|
|
|
-
|
|
|
- if (sd_flag & SD_BALANCE_WAKE) {
|
|
|
- new_cpu = select_idle_sibling(p, prev_cpu);
|
|
|
- goto unlock;
|
|
|
+ if (affine_sd) {
|
|
|
+ sd = NULL; /* Prefer wake_affine over balance flags */
|
|
|
+ if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
|
|
|
+ new_cpu = cpu;
|
|
|
}
|
|
|
|
|
|
- while (sd) {
|
|
|
+ if (!sd) {
|
|
|
+ if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
|
|
|
+ new_cpu = select_idle_sibling(p, new_cpu);
|
|
|
+
|
|
|
+ } else while (sd) {
|
|
|
struct sched_group *group;
|
|
|
int weight;
|
|
|
|
|
@@ -5089,7 +4933,6 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
|
|
|
}
|
|
|
/* while loop will break here if sd == NULL */
|
|
|
}
|
|
|
-unlock:
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
return new_cpu;
|
|
@@ -5101,26 +4944,27 @@ unlock:
|
|
|
* previous cpu. However, the caller only guarantees p->pi_lock is held; no
|
|
|
* other assumptions, including the state of rq->lock, should be made.
|
|
|
*/
|
|
|
-static void
|
|
|
-migrate_task_rq_fair(struct task_struct *p, int next_cpu)
|
|
|
+static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
|
|
|
{
|
|
|
- struct sched_entity *se = &p->se;
|
|
|
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
|
|
-
|
|
|
/*
|
|
|
- * Load tracking: accumulate removed load so that it can be processed
|
|
|
- * when we next update owning cfs_rq under rq->lock. Tasks contribute
|
|
|
- * to blocked load iff they have a positive decay-count. It can never
|
|
|
- * be negative here since on-rq tasks have decay-count == 0.
|
|
|
+ * We are supposed to update the task to "current" time, then its up to date
|
|
|
+ * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
|
|
|
+ * what current time is, so simply throw away the out-of-date time. This
|
|
|
+ * will result in the wakee task is less decayed, but giving the wakee more
|
|
|
+ * load sounds not bad.
|
|
|
*/
|
|
|
- if (se->avg.decay_count) {
|
|
|
- se->avg.decay_count = -__synchronize_entity_decay(se);
|
|
|
- atomic_long_add(se->avg.load_avg_contrib,
|
|
|
- &cfs_rq->removed_load);
|
|
|
- }
|
|
|
+ remove_entity_load_avg(&p->se);
|
|
|
+
|
|
|
+ /* Tell new CPU we are migrated */
|
|
|
+ p->se.avg.last_update_time = 0;
|
|
|
|
|
|
/* We have migrated, no longer consider this task hot */
|
|
|
- se->exec_start = 0;
|
|
|
+ p->se.exec_start = 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void task_dead_fair(struct task_struct *p)
|
|
|
+{
|
|
|
+ remove_entity_load_avg(&p->se);
|
|
|
}
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
|
@@ -5670,72 +5514,39 @@ static int task_hot(struct task_struct *p, struct lb_env *env)
|
|
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
|
/*
|
|
|
- * Returns true if the destination node is the preferred node.
|
|
|
- * Needs to match fbq_classify_rq(): if there is a runnable task
|
|
|
- * that is not on its preferred node, we should identify it.
|
|
|
+ * Returns 1, if task migration degrades locality
|
|
|
+ * Returns 0, if task migration improves locality i.e migration preferred.
|
|
|
+ * Returns -1, if task migration is not affected by locality.
|
|
|
*/
|
|
|
-static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
|
|
|
+static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
|
|
|
{
|
|
|
struct numa_group *numa_group = rcu_dereference(p->numa_group);
|
|
|
unsigned long src_faults, dst_faults;
|
|
|
int src_nid, dst_nid;
|
|
|
|
|
|
- if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
|
|
|
- !(env->sd->flags & SD_NUMA)) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- src_nid = cpu_to_node(env->src_cpu);
|
|
|
- dst_nid = cpu_to_node(env->dst_cpu);
|
|
|
-
|
|
|
- if (src_nid == dst_nid)
|
|
|
- return false;
|
|
|
-
|
|
|
- /* Encourage migration to the preferred node. */
|
|
|
- if (dst_nid == p->numa_preferred_nid)
|
|
|
- return true;
|
|
|
-
|
|
|
- /* Migrating away from the preferred node is bad. */
|
|
|
- if (src_nid == p->numa_preferred_nid)
|
|
|
- return false;
|
|
|
-
|
|
|
- if (numa_group) {
|
|
|
- src_faults = group_faults(p, src_nid);
|
|
|
- dst_faults = group_faults(p, dst_nid);
|
|
|
- } else {
|
|
|
- src_faults = task_faults(p, src_nid);
|
|
|
- dst_faults = task_faults(p, dst_nid);
|
|
|
- }
|
|
|
-
|
|
|
- return dst_faults > src_faults;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
|
|
|
-{
|
|
|
- struct numa_group *numa_group = rcu_dereference(p->numa_group);
|
|
|
- unsigned long src_faults, dst_faults;
|
|
|
- int src_nid, dst_nid;
|
|
|
-
|
|
|
- if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
|
|
|
- return false;
|
|
|
-
|
|
|
if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
|
|
|
- return false;
|
|
|
+ return -1;
|
|
|
+
|
|
|
+ if (!sched_feat(NUMA))
|
|
|
+ return -1;
|
|
|
|
|
|
src_nid = cpu_to_node(env->src_cpu);
|
|
|
dst_nid = cpu_to_node(env->dst_cpu);
|
|
|
|
|
|
if (src_nid == dst_nid)
|
|
|
- return false;
|
|
|
+ return -1;
|
|
|
|
|
|
- /* Migrating away from the preferred node is bad. */
|
|
|
- if (src_nid == p->numa_preferred_nid)
|
|
|
- return true;
|
|
|
+ /* Migrating away from the preferred node is always bad. */
|
|
|
+ if (src_nid == p->numa_preferred_nid) {
|
|
|
+ if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
|
|
|
+ return 1;
|
|
|
+ else
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
|
|
|
/* Encourage migration to the preferred node. */
|
|
|
if (dst_nid == p->numa_preferred_nid)
|
|
|
- return false;
|
|
|
+ return 0;
|
|
|
|
|
|
if (numa_group) {
|
|
|
src_faults = group_faults(p, src_nid);
|
|
@@ -5749,16 +5560,10 @@ static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
|
|
|
}
|
|
|
|
|
|
#else
|
|
|
-static inline bool migrate_improves_locality(struct task_struct *p,
|
|
|
+static inline int migrate_degrades_locality(struct task_struct *p,
|
|
|
struct lb_env *env)
|
|
|
{
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-static inline bool migrate_degrades_locality(struct task_struct *p,
|
|
|
- struct lb_env *env)
|
|
|
-{
|
|
|
- return false;
|
|
|
+ return -1;
|
|
|
}
|
|
|
#endif
|
|
|
|
|
@@ -5768,7 +5573,7 @@ static inline bool migrate_degrades_locality(struct task_struct *p,
|
|
|
static
|
|
|
int can_migrate_task(struct task_struct *p, struct lb_env *env)
|
|
|
{
|
|
|
- int tsk_cache_hot = 0;
|
|
|
+ int tsk_cache_hot;
|
|
|
|
|
|
lockdep_assert_held(&env->src_rq->lock);
|
|
|
|
|
@@ -5826,13 +5631,13 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
|
|
|
* 2) task is cache cold, or
|
|
|
* 3) too many balance attempts have failed.
|
|
|
*/
|
|
|
- tsk_cache_hot = task_hot(p, env);
|
|
|
- if (!tsk_cache_hot)
|
|
|
- tsk_cache_hot = migrate_degrades_locality(p, env);
|
|
|
+ tsk_cache_hot = migrate_degrades_locality(p, env);
|
|
|
+ if (tsk_cache_hot == -1)
|
|
|
+ tsk_cache_hot = task_hot(p, env);
|
|
|
|
|
|
- if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
|
|
|
+ if (tsk_cache_hot <= 0 ||
|
|
|
env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
|
|
|
- if (tsk_cache_hot) {
|
|
|
+ if (tsk_cache_hot == 1) {
|
|
|
schedstat_inc(env->sd, lb_hot_gained[env->idle]);
|
|
|
schedstat_inc(p, se.statistics.nr_forced_migrations);
|
|
|
}
|
|
@@ -5906,6 +5711,13 @@ static int detach_tasks(struct lb_env *env)
|
|
|
return 0;
|
|
|
|
|
|
while (!list_empty(tasks)) {
|
|
|
+ /*
|
|
|
+ * We don't want to steal all, otherwise we may be treated likewise,
|
|
|
+ * which could at worst lead to a livelock crash.
|
|
|
+ */
|
|
|
+ if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
|
|
|
+ break;
|
|
|
+
|
|
|
p = list_first_entry(tasks, struct task_struct, se.group_node);
|
|
|
|
|
|
env->loop++;
|
|
@@ -6015,39 +5827,6 @@ static void attach_tasks(struct lb_env *env)
|
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
-/*
|
|
|
- * update tg->load_weight by folding this cpu's load_avg
|
|
|
- */
|
|
|
-static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
|
|
|
-{
|
|
|
- struct sched_entity *se = tg->se[cpu];
|
|
|
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
|
|
|
-
|
|
|
- /* throttled entities do not contribute to load */
|
|
|
- if (throttled_hierarchy(cfs_rq))
|
|
|
- return;
|
|
|
-
|
|
|
- update_cfs_rq_blocked_load(cfs_rq, 1);
|
|
|
-
|
|
|
- if (se) {
|
|
|
- update_entity_load_avg(se, 1);
|
|
|
- /*
|
|
|
- * We pivot on our runnable average having decayed to zero for
|
|
|
- * list removal. This generally implies that all our children
|
|
|
- * have also been removed (modulo rounding error or bandwidth
|
|
|
- * control); however, such cases are rare and we can fix these
|
|
|
- * at enqueue.
|
|
|
- *
|
|
|
- * TODO: fix up out-of-order children on enqueue.
|
|
|
- */
|
|
|
- if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
|
|
|
- list_del_leaf_cfs_rq(cfs_rq);
|
|
|
- } else {
|
|
|
- struct rq *rq = rq_of(cfs_rq);
|
|
|
- update_rq_runnable_avg(rq, rq->nr_running);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
static void update_blocked_averages(int cpu)
|
|
|
{
|
|
|
struct rq *rq = cpu_rq(cpu);
|
|
@@ -6056,19 +5835,19 @@ static void update_blocked_averages(int cpu)
|
|
|
|
|
|
raw_spin_lock_irqsave(&rq->lock, flags);
|
|
|
update_rq_clock(rq);
|
|
|
+
|
|
|
/*
|
|
|
* Iterates the task_group tree in a bottom up fashion, see
|
|
|
* list_add_leaf_cfs_rq() for details.
|
|
|
*/
|
|
|
for_each_leaf_cfs_rq(rq, cfs_rq) {
|
|
|
- /*
|
|
|
- * Note: We may want to consider periodically releasing
|
|
|
- * rq->lock about these updates so that creating many task
|
|
|
- * groups does not result in continually extending hold time.
|
|
|
- */
|
|
|
- __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
|
|
|
- }
|
|
|
+ /* throttled entities do not contribute to load */
|
|
|
+ if (throttled_hierarchy(cfs_rq))
|
|
|
+ continue;
|
|
|
|
|
|
+ if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
|
|
|
+ update_tg_load_avg(cfs_rq, 0);
|
|
|
+ }
|
|
|
raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
}
|
|
|
|
|
@@ -6096,14 +5875,14 @@ static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
|
|
|
}
|
|
|
|
|
|
if (!se) {
|
|
|
- cfs_rq->h_load = cfs_rq->runnable_load_avg;
|
|
|
+ cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
|
|
|
cfs_rq->last_h_load_update = now;
|
|
|
}
|
|
|
|
|
|
while ((se = cfs_rq->h_load_next) != NULL) {
|
|
|
load = cfs_rq->h_load;
|
|
|
- load = div64_ul(load * se->avg.load_avg_contrib,
|
|
|
- cfs_rq->runnable_load_avg + 1);
|
|
|
+ load = div64_ul(load * se->avg.load_avg,
|
|
|
+ cfs_rq_load_avg(cfs_rq) + 1);
|
|
|
cfs_rq = group_cfs_rq(se);
|
|
|
cfs_rq->h_load = load;
|
|
|
cfs_rq->last_h_load_update = now;
|
|
@@ -6115,17 +5894,25 @@ static unsigned long task_h_load(struct task_struct *p)
|
|
|
struct cfs_rq *cfs_rq = task_cfs_rq(p);
|
|
|
|
|
|
update_cfs_rq_h_load(cfs_rq);
|
|
|
- return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
|
|
|
- cfs_rq->runnable_load_avg + 1);
|
|
|
+ return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
|
|
|
+ cfs_rq_load_avg(cfs_rq) + 1);
|
|
|
}
|
|
|
#else
|
|
|
static inline void update_blocked_averages(int cpu)
|
|
|
{
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
+ struct cfs_rq *cfs_rq = &rq->cfs;
|
|
|
+ unsigned long flags;
|
|
|
+
|
|
|
+ raw_spin_lock_irqsave(&rq->lock, flags);
|
|
|
+ update_rq_clock(rq);
|
|
|
+ update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
|
|
|
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
|
|
|
}
|
|
|
|
|
|
static unsigned long task_h_load(struct task_struct *p)
|
|
|
{
|
|
|
- return p->se.avg.load_avg_contrib;
|
|
|
+ return p->se.avg.load_avg;
|
|
|
}
|
|
|
#endif
|
|
|
|
|
@@ -8025,8 +7812,6 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
|
|
|
|
|
|
if (numabalancing_enabled)
|
|
|
task_tick_numa(rq, curr);
|
|
|
-
|
|
|
- update_rq_runnable_avg(rq, 1);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -8125,15 +7910,18 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p)
|
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
- /*
|
|
|
- * Remove our load from contribution when we leave sched_fair
|
|
|
- * and ensure we don't carry in an old decay_count if we
|
|
|
- * switch back.
|
|
|
- */
|
|
|
- if (se->avg.decay_count) {
|
|
|
- __synchronize_entity_decay(se);
|
|
|
- subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
|
|
|
- }
|
|
|
+ /* Catch up with the cfs_rq and remove our load when we leave */
|
|
|
+ __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
|
|
|
+ se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
|
|
|
+
|
|
|
+ cfs_rq->avg.load_avg =
|
|
|
+ max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
|
|
|
+ cfs_rq->avg.load_sum =
|
|
|
+ max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
|
|
|
+ cfs_rq->avg.util_avg =
|
|
|
+ max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
|
|
|
+ cfs_rq->avg.util_sum =
|
|
|
+ max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
|
|
|
#endif
|
|
|
}
|
|
|
|
|
@@ -8142,16 +7930,31 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p)
|
|
|
*/
|
|
|
static void switched_to_fair(struct rq *rq, struct task_struct *p)
|
|
|
{
|
|
|
-#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
struct sched_entity *se = &p->se;
|
|
|
+
|
|
|
+#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
/*
|
|
|
* Since the real-depth could have been changed (only FAIR
|
|
|
* class maintain depth value), reset depth properly.
|
|
|
*/
|
|
|
se->depth = se->parent ? se->parent->depth + 1 : 0;
|
|
|
#endif
|
|
|
- if (!task_on_rq_queued(p))
|
|
|
+
|
|
|
+ if (!task_on_rq_queued(p)) {
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Ensure the task has a non-normalized vruntime when it is switched
|
|
|
+ * back to the fair class with !queued, so that enqueue_entity() at
|
|
|
+ * wake-up time will do the right thing.
|
|
|
+ *
|
|
|
+ * If it's queued, then the enqueue_entity(.flags=0) makes the task
|
|
|
+ * has non-normalized vruntime, if it's !queued, then it still has
|
|
|
+ * normalized vruntime.
|
|
|
+ */
|
|
|
+ if (p->state != TASK_RUNNING)
|
|
|
+ se->vruntime += cfs_rq_of(se)->min_vruntime;
|
|
|
return;
|
|
|
+ }
|
|
|
|
|
|
/*
|
|
|
* We were most likely switched from sched_rt, so
|
|
@@ -8190,8 +7993,8 @@ void init_cfs_rq(struct cfs_rq *cfs_rq)
|
|
|
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
|
|
|
#endif
|
|
|
#ifdef CONFIG_SMP
|
|
|
- atomic64_set(&cfs_rq->decay_counter, 1);
|
|
|
- atomic_long_set(&cfs_rq->removed_load, 0);
|
|
|
+ atomic_long_set(&cfs_rq->removed_load_avg, 0);
|
|
|
+ atomic_long_set(&cfs_rq->removed_util_avg, 0);
|
|
|
#endif
|
|
|
}
|
|
|
|
|
@@ -8236,14 +8039,14 @@ static void task_move_group_fair(struct task_struct *p, int queued)
|
|
|
if (!queued) {
|
|
|
cfs_rq = cfs_rq_of(se);
|
|
|
se->vruntime += cfs_rq->min_vruntime;
|
|
|
+
|
|
|
#ifdef CONFIG_SMP
|
|
|
- /*
|
|
|
- * migrate_task_rq_fair() will have removed our previous
|
|
|
- * contribution, but we must synchronize for ongoing future
|
|
|
- * decay.
|
|
|
- */
|
|
|
- se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
|
|
|
- cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
|
|
|
+ /* Virtually synchronize task with its new cfs_rq */
|
|
|
+ p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
|
|
|
+ cfs_rq->avg.load_avg += p->se.avg.load_avg;
|
|
|
+ cfs_rq->avg.load_sum += p->se.avg.load_sum;
|
|
|
+ cfs_rq->avg.util_avg += p->se.avg.util_avg;
|
|
|
+ cfs_rq->avg.util_sum += p->se.avg.util_sum;
|
|
|
#endif
|
|
|
}
|
|
|
}
|
|
@@ -8257,8 +8060,11 @@ void free_fair_sched_group(struct task_group *tg)
|
|
|
for_each_possible_cpu(i) {
|
|
|
if (tg->cfs_rq)
|
|
|
kfree(tg->cfs_rq[i]);
|
|
|
- if (tg->se)
|
|
|
+ if (tg->se) {
|
|
|
+ if (tg->se[i])
|
|
|
+ remove_entity_load_avg(tg->se[i]);
|
|
|
kfree(tg->se[i]);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
kfree(tg->cfs_rq);
|
|
@@ -8295,6 +8101,7 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
|
|
|
|
|
|
init_cfs_rq(cfs_rq);
|
|
|
init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
|
|
|
+ init_entity_runnable_average(se);
|
|
|
}
|
|
|
|
|
|
return 1;
|
|
@@ -8444,6 +8251,8 @@ const struct sched_class fair_sched_class = {
|
|
|
.rq_offline = rq_offline_fair,
|
|
|
|
|
|
.task_waking = task_waking_fair,
|
|
|
+ .task_dead = task_dead_fair,
|
|
|
+ .set_cpus_allowed = set_cpus_allowed_common,
|
|
|
#endif
|
|
|
|
|
|
.set_curr_task = set_curr_task_fair,
|