|
@@ -24,8 +24,8 @@
|
|
|
#include <linux/slab.h>
|
|
|
#include <linux/types.h>
|
|
|
#include <linux/sched/signal.h>
|
|
|
+#include <linux/sched/mm.h>
|
|
|
#include <linux/uaccess.h>
|
|
|
-#include <linux/mm.h>
|
|
|
#include <linux/mman.h>
|
|
|
#include <linux/memory.h>
|
|
|
#include "kfd_priv.h"
|
|
@@ -33,185 +33,89 @@
|
|
|
#include <linux/device.h>
|
|
|
|
|
|
/*
|
|
|
- * A task can only be on a single wait_queue at a time, but we need to support
|
|
|
- * waiting on multiple events (any/all).
|
|
|
- * Instead of each event simply having a wait_queue with sleeping tasks, it
|
|
|
- * has a singly-linked list of tasks.
|
|
|
- * A thread that wants to sleep creates an array of these, one for each event
|
|
|
- * and adds one to each event's waiter chain.
|
|
|
+ * Wrapper around wait_queue_entry_t
|
|
|
*/
|
|
|
struct kfd_event_waiter {
|
|
|
- struct list_head waiters;
|
|
|
- struct task_struct *sleeping_task;
|
|
|
-
|
|
|
- /* Transitions to true when the event this belongs to is signaled. */
|
|
|
- bool activated;
|
|
|
-
|
|
|
- /* Event */
|
|
|
- struct kfd_event *event;
|
|
|
- uint32_t input_index;
|
|
|
+ wait_queue_entry_t wait;
|
|
|
+ struct kfd_event *event; /* Event to wait for */
|
|
|
+ bool activated; /* Becomes true when event is signaled */
|
|
|
};
|
|
|
|
|
|
/*
|
|
|
- * Over-complicated pooled allocator for event notification slots.
|
|
|
- *
|
|
|
* Each signal event needs a 64-bit signal slot where the signaler will write
|
|
|
- * a 1 before sending an interrupt.l (This is needed because some interrupts
|
|
|
+ * a 1 before sending an interrupt. (This is needed because some interrupts
|
|
|
* do not contain enough spare data bits to identify an event.)
|
|
|
- * We get whole pages from vmalloc and map them to the process VA.
|
|
|
- * Individual signal events are then allocated a slot in a page.
|
|
|
+ * We get whole pages and map them to the process VA.
|
|
|
+ * Individual signal events use their event_id as slot index.
|
|
|
*/
|
|
|
-
|
|
|
-struct signal_page {
|
|
|
- struct list_head event_pages; /* kfd_process.signal_event_pages */
|
|
|
+struct kfd_signal_page {
|
|
|
uint64_t *kernel_address;
|
|
|
uint64_t __user *user_address;
|
|
|
- uint32_t page_index; /* Index into the mmap aperture. */
|
|
|
- unsigned int free_slots;
|
|
|
- unsigned long used_slot_bitmap[0];
|
|
|
};
|
|
|
|
|
|
-#define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT
|
|
|
-#define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE)
|
|
|
-#define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1)
|
|
|
-#define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \
|
|
|
- SLOT_BITMAP_SIZE * sizeof(long))
|
|
|
-
|
|
|
-/*
|
|
|
- * For signal events, the event ID is used as the interrupt user data.
|
|
|
- * For SQ s_sendmsg interrupts, this is limited to 8 bits.
|
|
|
- */
|
|
|
-
|
|
|
-#define INTERRUPT_DATA_BITS 8
|
|
|
-#define SIGNAL_EVENT_ID_SLOT_SHIFT 0
|
|
|
|
|
|
-static uint64_t *page_slots(struct signal_page *page)
|
|
|
+static uint64_t *page_slots(struct kfd_signal_page *page)
|
|
|
{
|
|
|
return page->kernel_address;
|
|
|
}
|
|
|
|
|
|
-static bool allocate_free_slot(struct kfd_process *process,
|
|
|
- struct signal_page **out_page,
|
|
|
- unsigned int *out_slot_index)
|
|
|
-{
|
|
|
- struct signal_page *page;
|
|
|
-
|
|
|
- list_for_each_entry(page, &process->signal_event_pages, event_pages) {
|
|
|
- if (page->free_slots > 0) {
|
|
|
- unsigned int slot =
|
|
|
- find_first_zero_bit(page->used_slot_bitmap,
|
|
|
- SLOTS_PER_PAGE);
|
|
|
-
|
|
|
- __set_bit(slot, page->used_slot_bitmap);
|
|
|
- page->free_slots--;
|
|
|
-
|
|
|
- page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT;
|
|
|
-
|
|
|
- *out_page = page;
|
|
|
- *out_slot_index = slot;
|
|
|
-
|
|
|
- pr_debug("Allocated event signal slot in page %p, slot %d\n",
|
|
|
- page, slot);
|
|
|
-
|
|
|
- return true;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- pr_debug("No free event signal slots were found for process %p\n",
|
|
|
- process);
|
|
|
-
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-#define list_tail_entry(head, type, member) \
|
|
|
- list_entry((head)->prev, type, member)
|
|
|
-
|
|
|
-static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p)
|
|
|
+static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
|
|
|
{
|
|
|
void *backing_store;
|
|
|
- struct signal_page *page;
|
|
|
+ struct kfd_signal_page *page;
|
|
|
|
|
|
- page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL);
|
|
|
+ page = kzalloc(sizeof(*page), GFP_KERNEL);
|
|
|
if (!page)
|
|
|
- goto fail_alloc_signal_page;
|
|
|
+ return NULL;
|
|
|
|
|
|
- page->free_slots = SLOTS_PER_PAGE;
|
|
|
-
|
|
|
- backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
|
+ backing_store = (void *) __get_free_pages(GFP_KERNEL,
|
|
|
get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
|
|
|
if (!backing_store)
|
|
|
goto fail_alloc_signal_store;
|
|
|
|
|
|
- /* prevent user-mode info leaks */
|
|
|
+ /* Initialize all events to unsignaled */
|
|
|
memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
|
|
|
- KFD_SIGNAL_EVENT_LIMIT * 8);
|
|
|
+ KFD_SIGNAL_EVENT_LIMIT * 8);
|
|
|
|
|
|
page->kernel_address = backing_store;
|
|
|
-
|
|
|
- if (list_empty(&p->signal_event_pages))
|
|
|
- page->page_index = 0;
|
|
|
- else
|
|
|
- page->page_index = list_tail_entry(&p->signal_event_pages,
|
|
|
- struct signal_page,
|
|
|
- event_pages)->page_index + 1;
|
|
|
-
|
|
|
pr_debug("Allocated new event signal page at %p, for process %p\n",
|
|
|
page, p);
|
|
|
- pr_debug("Page index is %d\n", page->page_index);
|
|
|
|
|
|
- list_add(&page->event_pages, &p->signal_event_pages);
|
|
|
-
|
|
|
- return true;
|
|
|
+ return page;
|
|
|
|
|
|
fail_alloc_signal_store:
|
|
|
kfree(page);
|
|
|
-fail_alloc_signal_page:
|
|
|
- return false;
|
|
|
+ return NULL;
|
|
|
}
|
|
|
|
|
|
-static bool allocate_event_notification_slot(struct file *devkfd,
|
|
|
- struct kfd_process *p,
|
|
|
- struct signal_page **page,
|
|
|
- unsigned int *signal_slot_index)
|
|
|
+static int allocate_event_notification_slot(struct kfd_process *p,
|
|
|
+ struct kfd_event *ev)
|
|
|
{
|
|
|
- bool ret;
|
|
|
+ int id;
|
|
|
|
|
|
- ret = allocate_free_slot(p, page, signal_slot_index);
|
|
|
- if (!ret) {
|
|
|
- ret = allocate_signal_page(devkfd, p);
|
|
|
- if (ret)
|
|
|
- ret = allocate_free_slot(p, page, signal_slot_index);
|
|
|
+ if (!p->signal_page) {
|
|
|
+ p->signal_page = allocate_signal_page(p);
|
|
|
+ if (!p->signal_page)
|
|
|
+ return -ENOMEM;
|
|
|
+ /* Oldest user mode expects 256 event slots */
|
|
|
+ p->signal_mapped_size = 256*8;
|
|
|
}
|
|
|
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-/* Assumes that the process's event_mutex is locked. */
|
|
|
-static void release_event_notification_slot(struct signal_page *page,
|
|
|
- size_t slot_index)
|
|
|
-{
|
|
|
- __clear_bit(slot_index, page->used_slot_bitmap);
|
|
|
- page->free_slots++;
|
|
|
-
|
|
|
- /* We don't free signal pages, they are retained by the process
|
|
|
- * and reused until it exits.
|
|
|
- */
|
|
|
-}
|
|
|
-
|
|
|
-static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p,
|
|
|
- unsigned int page_index)
|
|
|
-{
|
|
|
- struct signal_page *page;
|
|
|
-
|
|
|
/*
|
|
|
- * This is safe because we don't delete signal pages until the
|
|
|
- * process exits.
|
|
|
+ * Compatibility with old user mode: Only use signal slots
|
|
|
+ * user mode has mapped, may be less than
|
|
|
+ * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
|
|
|
+ * of the event limit without breaking user mode.
|
|
|
*/
|
|
|
- list_for_each_entry(page, &p->signal_event_pages, event_pages)
|
|
|
- if (page->page_index == page_index)
|
|
|
- return page;
|
|
|
+ id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
|
|
|
+ GFP_KERNEL);
|
|
|
+ if (id < 0)
|
|
|
+ return id;
|
|
|
|
|
|
- return NULL;
|
|
|
+ ev->event_id = id;
|
|
|
+ page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
|
|
|
+
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -220,99 +124,81 @@ static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p,
|
|
|
*/
|
|
|
static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
|
|
|
{
|
|
|
- struct kfd_event *ev;
|
|
|
-
|
|
|
- hash_for_each_possible(p->events, ev, events, id)
|
|
|
- if (ev->event_id == id)
|
|
|
- return ev;
|
|
|
-
|
|
|
- return NULL;
|
|
|
+ return idr_find(&p->event_idr, id);
|
|
|
}
|
|
|
|
|
|
-static u32 make_signal_event_id(struct signal_page *page,
|
|
|
- unsigned int signal_slot_index)
|
|
|
-{
|
|
|
- return page->page_index |
|
|
|
- (signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Produce a kfd event id for a nonsignal event.
|
|
|
- * These are arbitrary numbers, so we do a sequential search through
|
|
|
- * the hash table for an unused number.
|
|
|
+/**
|
|
|
+ * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
|
|
|
+ * @p: Pointer to struct kfd_process
|
|
|
+ * @id: ID to look up
|
|
|
+ * @bits: Number of valid bits in @id
|
|
|
+ *
|
|
|
+ * Finds the first signaled event with a matching partial ID. If no
|
|
|
+ * matching signaled event is found, returns NULL. In that case the
|
|
|
+ * caller should assume that the partial ID is invalid and do an
|
|
|
+ * exhaustive search of all siglaned events.
|
|
|
+ *
|
|
|
+ * If multiple events with the same partial ID signal at the same
|
|
|
+ * time, they will be found one interrupt at a time, not necessarily
|
|
|
+ * in the same order the interrupts occurred. As long as the number of
|
|
|
+ * interrupts is correct, all signaled events will be seen by the
|
|
|
+ * driver.
|
|
|
*/
|
|
|
-static u32 make_nonsignal_event_id(struct kfd_process *p)
|
|
|
+static struct kfd_event *lookup_signaled_event_by_partial_id(
|
|
|
+ struct kfd_process *p, uint32_t id, uint32_t bits)
|
|
|
{
|
|
|
- u32 id;
|
|
|
-
|
|
|
- for (id = p->next_nonsignal_event_id;
|
|
|
- id < KFD_LAST_NONSIGNAL_EVENT_ID &&
|
|
|
- lookup_event_by_id(p, id);
|
|
|
- id++)
|
|
|
- ;
|
|
|
+ struct kfd_event *ev;
|
|
|
|
|
|
- if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {
|
|
|
+ if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
|
|
|
+ return NULL;
|
|
|
|
|
|
- /*
|
|
|
- * What if id == LAST_NONSIGNAL_EVENT_ID - 1?
|
|
|
- * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so
|
|
|
- * the first loop fails immediately and we proceed with the
|
|
|
- * wraparound loop below.
|
|
|
- */
|
|
|
- p->next_nonsignal_event_id = id + 1;
|
|
|
+ /* Fast path for the common case that @id is not a partial ID
|
|
|
+ * and we only need a single lookup.
|
|
|
+ */
|
|
|
+ if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
|
|
|
+ if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
|
|
|
+ return NULL;
|
|
|
|
|
|
- return id;
|
|
|
+ return idr_find(&p->event_idr, id);
|
|
|
}
|
|
|
|
|
|
- for (id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
|
|
- id < KFD_LAST_NONSIGNAL_EVENT_ID &&
|
|
|
- lookup_event_by_id(p, id);
|
|
|
- id++)
|
|
|
- ;
|
|
|
-
|
|
|
+ /* General case for partial IDs: Iterate over all matching IDs
|
|
|
+ * and find the first one that has signaled.
|
|
|
+ */
|
|
|
+ for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
|
|
|
+ if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
|
|
|
+ continue;
|
|
|
|
|
|
- if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {
|
|
|
- p->next_nonsignal_event_id = id + 1;
|
|
|
- return id;
|
|
|
+ ev = idr_find(&p->event_idr, id);
|
|
|
}
|
|
|
|
|
|
- p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p,
|
|
|
- struct signal_page *page,
|
|
|
- unsigned int signal_slot)
|
|
|
-{
|
|
|
- return lookup_event_by_id(p, make_signal_event_id(page, signal_slot));
|
|
|
+ return ev;
|
|
|
}
|
|
|
|
|
|
static int create_signal_event(struct file *devkfd,
|
|
|
struct kfd_process *p,
|
|
|
struct kfd_event *ev)
|
|
|
{
|
|
|
- if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) {
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ if (p->signal_mapped_size &&
|
|
|
+ p->signal_event_count == p->signal_mapped_size / 8) {
|
|
|
if (!p->signal_event_limit_reached) {
|
|
|
pr_warn("Signal event wasn't created because limit was reached\n");
|
|
|
p->signal_event_limit_reached = true;
|
|
|
}
|
|
|
- return -ENOMEM;
|
|
|
+ return -ENOSPC;
|
|
|
}
|
|
|
|
|
|
- if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page,
|
|
|
- &ev->signal_slot_index)) {
|
|
|
+ ret = allocate_event_notification_slot(p, ev);
|
|
|
+ if (ret) {
|
|
|
pr_warn("Signal event wasn't created because out of kernel memory\n");
|
|
|
- return -ENOMEM;
|
|
|
+ return ret;
|
|
|
}
|
|
|
|
|
|
p->signal_event_count++;
|
|
|
|
|
|
- ev->user_signal_address =
|
|
|
- &ev->signal_page->user_address[ev->signal_slot_index];
|
|
|
-
|
|
|
- ev->event_id = make_signal_event_id(ev->signal_page,
|
|
|
- ev->signal_slot_index);
|
|
|
-
|
|
|
+ ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
|
|
|
pr_debug("Signal event number %zu created with id %d, address %p\n",
|
|
|
p->signal_event_count, ev->event_id,
|
|
|
ev->user_signal_address);
|
|
@@ -320,16 +206,20 @@ static int create_signal_event(struct file *devkfd,
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * No non-signal events are supported yet.
|
|
|
- * We create them as events that never signal.
|
|
|
- * Set event calls from user-mode are failed.
|
|
|
- */
|
|
|
static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
|
|
|
{
|
|
|
- ev->event_id = make_nonsignal_event_id(p);
|
|
|
- if (ev->event_id == 0)
|
|
|
- return -ENOMEM;
|
|
|
+ /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
|
|
|
+ * intentional integer overflow to -1 without a compiler
|
|
|
+ * warning. idr_alloc treats a negative value as "maximum
|
|
|
+ * signed integer".
|
|
|
+ */
|
|
|
+ int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
|
|
|
+ (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
|
|
|
+ GFP_KERNEL);
|
|
|
+
|
|
|
+ if (id < 0)
|
|
|
+ return id;
|
|
|
+ ev->event_id = id;
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
@@ -337,50 +227,47 @@ static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
|
|
|
void kfd_event_init_process(struct kfd_process *p)
|
|
|
{
|
|
|
mutex_init(&p->event_mutex);
|
|
|
- hash_init(p->events);
|
|
|
- INIT_LIST_HEAD(&p->signal_event_pages);
|
|
|
- p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
|
|
+ idr_init(&p->event_idr);
|
|
|
+ p->signal_page = NULL;
|
|
|
p->signal_event_count = 0;
|
|
|
}
|
|
|
|
|
|
static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
|
|
|
{
|
|
|
- if (ev->signal_page) {
|
|
|
- release_event_notification_slot(ev->signal_page,
|
|
|
- ev->signal_slot_index);
|
|
|
- p->signal_event_count--;
|
|
|
- }
|
|
|
+ struct kfd_event_waiter *waiter;
|
|
|
|
|
|
- /*
|
|
|
- * Abandon the list of waiters. Individual waiting threads will
|
|
|
- * clean up their own data.
|
|
|
- */
|
|
|
- list_del(&ev->waiters);
|
|
|
+ /* Wake up pending waiters. They will return failure */
|
|
|
+ list_for_each_entry(waiter, &ev->wq.head, wait.entry)
|
|
|
+ waiter->event = NULL;
|
|
|
+ wake_up_all(&ev->wq);
|
|
|
+
|
|
|
+ if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
|
|
|
+ ev->type == KFD_EVENT_TYPE_DEBUG)
|
|
|
+ p->signal_event_count--;
|
|
|
|
|
|
- hash_del(&ev->events);
|
|
|
+ idr_remove(&p->event_idr, ev->event_id);
|
|
|
kfree(ev);
|
|
|
}
|
|
|
|
|
|
static void destroy_events(struct kfd_process *p)
|
|
|
{
|
|
|
struct kfd_event *ev;
|
|
|
- struct hlist_node *tmp;
|
|
|
- unsigned int hash_bkt;
|
|
|
+ uint32_t id;
|
|
|
|
|
|
- hash_for_each_safe(p->events, hash_bkt, tmp, ev, events)
|
|
|
+ idr_for_each_entry(&p->event_idr, ev, id)
|
|
|
destroy_event(p, ev);
|
|
|
+ idr_destroy(&p->event_idr);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* We assume that the process is being destroyed and there is no need to
|
|
|
* unmap the pages or keep bookkeeping data in order.
|
|
|
*/
|
|
|
-static void shutdown_signal_pages(struct kfd_process *p)
|
|
|
+static void shutdown_signal_page(struct kfd_process *p)
|
|
|
{
|
|
|
- struct signal_page *page, *tmp;
|
|
|
+ struct kfd_signal_page *page = p->signal_page;
|
|
|
|
|
|
- list_for_each_entry_safe(page, tmp, &p->signal_event_pages,
|
|
|
- event_pages) {
|
|
|
+ if (page) {
|
|
|
free_pages((unsigned long)page->kernel_address,
|
|
|
get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
|
|
|
kfree(page);
|
|
@@ -390,7 +277,7 @@ static void shutdown_signal_pages(struct kfd_process *p)
|
|
|
void kfd_event_free_process(struct kfd_process *p)
|
|
|
{
|
|
|
destroy_events(p);
|
|
|
- shutdown_signal_pages(p);
|
|
|
+ shutdown_signal_page(p);
|
|
|
}
|
|
|
|
|
|
static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
|
|
@@ -419,7 +306,7 @@ int kfd_event_create(struct file *devkfd, struct kfd_process *p,
|
|
|
ev->auto_reset = auto_reset;
|
|
|
ev->signaled = false;
|
|
|
|
|
|
- INIT_LIST_HEAD(&ev->waiters);
|
|
|
+ init_waitqueue_head(&ev->wq);
|
|
|
|
|
|
*event_page_offset = 0;
|
|
|
|
|
@@ -430,10 +317,9 @@ int kfd_event_create(struct file *devkfd, struct kfd_process *p,
|
|
|
case KFD_EVENT_TYPE_DEBUG:
|
|
|
ret = create_signal_event(devkfd, p, ev);
|
|
|
if (!ret) {
|
|
|
- *event_page_offset = (ev->signal_page->page_index |
|
|
|
- KFD_MMAP_EVENTS_MASK);
|
|
|
+ *event_page_offset = KFD_MMAP_EVENTS_MASK;
|
|
|
*event_page_offset <<= PAGE_SHIFT;
|
|
|
- *event_slot_index = ev->signal_slot_index;
|
|
|
+ *event_slot_index = ev->event_id;
|
|
|
}
|
|
|
break;
|
|
|
default:
|
|
@@ -442,8 +328,6 @@ int kfd_event_create(struct file *devkfd, struct kfd_process *p,
|
|
|
}
|
|
|
|
|
|
if (!ret) {
|
|
|
- hash_add(p->events, &ev->events, ev->event_id);
|
|
|
-
|
|
|
*event_id = ev->event_id;
|
|
|
*event_trigger_data = ev->event_id;
|
|
|
} else {
|
|
@@ -477,19 +361,18 @@ int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
|
|
|
static void set_event(struct kfd_event *ev)
|
|
|
{
|
|
|
struct kfd_event_waiter *waiter;
|
|
|
- struct kfd_event_waiter *next;
|
|
|
|
|
|
- /* Auto reset if the list is non-empty and we're waking someone. */
|
|
|
- ev->signaled = !ev->auto_reset || list_empty(&ev->waiters);
|
|
|
+ /* Auto reset if the list is non-empty and we're waking
|
|
|
+ * someone. waitqueue_active is safe here because we're
|
|
|
+ * protected by the p->event_mutex, which is also held when
|
|
|
+ * updating the wait queues in kfd_wait_on_events.
|
|
|
+ */
|
|
|
+ ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
|
|
|
|
|
|
- list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) {
|
|
|
+ list_for_each_entry(waiter, &ev->wq.head, wait.entry)
|
|
|
waiter->activated = true;
|
|
|
|
|
|
- /* _init because free_waiters will call list_del */
|
|
|
- list_del_init(&waiter->waiters);
|
|
|
-
|
|
|
- wake_up_process(waiter->sleeping_task);
|
|
|
- }
|
|
|
+ wake_up_all(&ev->wq);
|
|
|
}
|
|
|
|
|
|
/* Assumes that p is current. */
|
|
@@ -538,13 +421,7 @@ int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
|
|
|
|
|
|
static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
|
|
|
{
|
|
|
- page_slots(ev->signal_page)[ev->signal_slot_index] =
|
|
|
- UNSIGNALED_EVENT_SLOT;
|
|
|
-}
|
|
|
-
|
|
|
-static bool is_slot_signaled(struct signal_page *page, unsigned int index)
|
|
|
-{
|
|
|
- return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT;
|
|
|
+ page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
|
|
|
}
|
|
|
|
|
|
static void set_event_from_interrupt(struct kfd_process *p,
|
|
@@ -559,7 +436,7 @@ static void set_event_from_interrupt(struct kfd_process *p,
|
|
|
void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
|
|
|
uint32_t valid_id_bits)
|
|
|
{
|
|
|
- struct kfd_event *ev;
|
|
|
+ struct kfd_event *ev = NULL;
|
|
|
|
|
|
/*
|
|
|
* Because we are called from arbitrary context (workqueue) as opposed
|
|
@@ -573,26 +450,46 @@ void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
|
|
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|
|
|
- if (valid_id_bits >= INTERRUPT_DATA_BITS) {
|
|
|
- /* Partial ID is a full ID. */
|
|
|
- ev = lookup_event_by_id(p, partial_id);
|
|
|
+ if (valid_id_bits)
|
|
|
+ ev = lookup_signaled_event_by_partial_id(p, partial_id,
|
|
|
+ valid_id_bits);
|
|
|
+ if (ev) {
|
|
|
set_event_from_interrupt(p, ev);
|
|
|
- } else {
|
|
|
+ } else if (p->signal_page) {
|
|
|
/*
|
|
|
- * Partial ID is in fact partial. For now we completely
|
|
|
- * ignore it, but we could use any bits we did receive to
|
|
|
- * search faster.
|
|
|
+ * Partial ID lookup failed. Assume that the event ID
|
|
|
+ * in the interrupt payload was invalid and do an
|
|
|
+ * exhaustive search of signaled events.
|
|
|
*/
|
|
|
- struct signal_page *page;
|
|
|
- unsigned int i;
|
|
|
-
|
|
|
- list_for_each_entry(page, &p->signal_event_pages, event_pages)
|
|
|
- for (i = 0; i < SLOTS_PER_PAGE; i++)
|
|
|
- if (is_slot_signaled(page, i)) {
|
|
|
- ev = lookup_event_by_page_slot(p,
|
|
|
- page, i);
|
|
|
+ uint64_t *slots = page_slots(p->signal_page);
|
|
|
+ uint32_t id;
|
|
|
+
|
|
|
+ if (valid_id_bits)
|
|
|
+ pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
|
|
|
+ partial_id, valid_id_bits);
|
|
|
+
|
|
|
+ if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT/2) {
|
|
|
+ /* With relatively few events, it's faster to
|
|
|
+ * iterate over the event IDR
|
|
|
+ */
|
|
|
+ idr_for_each_entry(&p->event_idr, ev, id) {
|
|
|
+ if (id >= KFD_SIGNAL_EVENT_LIMIT)
|
|
|
+ break;
|
|
|
+
|
|
|
+ if (slots[id] != UNSIGNALED_EVENT_SLOT)
|
|
|
+ set_event_from_interrupt(p, ev);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* With relatively many events, it's faster to
|
|
|
+ * iterate over the signal slots and lookup
|
|
|
+ * only signaled events from the IDR.
|
|
|
+ */
|
|
|
+ for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
|
|
|
+ if (slots[id] != UNSIGNALED_EVENT_SLOT) {
|
|
|
+ ev = lookup_event_by_id(p, id);
|
|
|
set_event_from_interrupt(p, ev);
|
|
|
}
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
@@ -609,18 +506,16 @@ static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
|
|
|
GFP_KERNEL);
|
|
|
|
|
|
for (i = 0; (event_waiters) && (i < num_events) ; i++) {
|
|
|
- INIT_LIST_HEAD(&event_waiters[i].waiters);
|
|
|
- event_waiters[i].sleeping_task = current;
|
|
|
+ init_wait(&event_waiters[i].wait);
|
|
|
event_waiters[i].activated = false;
|
|
|
}
|
|
|
|
|
|
return event_waiters;
|
|
|
}
|
|
|
|
|
|
-static int init_event_waiter(struct kfd_process *p,
|
|
|
+static int init_event_waiter_get_status(struct kfd_process *p,
|
|
|
struct kfd_event_waiter *waiter,
|
|
|
- uint32_t event_id,
|
|
|
- uint32_t input_index)
|
|
|
+ uint32_t event_id)
|
|
|
{
|
|
|
struct kfd_event *ev = lookup_event_by_id(p, event_id);
|
|
|
|
|
@@ -628,38 +523,60 @@ static int init_event_waiter(struct kfd_process *p,
|
|
|
return -EINVAL;
|
|
|
|
|
|
waiter->event = ev;
|
|
|
- waiter->input_index = input_index;
|
|
|
waiter->activated = ev->signaled;
|
|
|
ev->signaled = ev->signaled && !ev->auto_reset;
|
|
|
|
|
|
- list_add(&waiter->waiters, &ev->waiters);
|
|
|
-
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-static bool test_event_condition(bool all, uint32_t num_events,
|
|
|
+static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
|
|
|
+{
|
|
|
+ struct kfd_event *ev = waiter->event;
|
|
|
+
|
|
|
+ /* Only add to the wait list if we actually need to
|
|
|
+ * wait on this event.
|
|
|
+ */
|
|
|
+ if (!waiter->activated)
|
|
|
+ add_wait_queue(&ev->wq, &waiter->wait);
|
|
|
+}
|
|
|
+
|
|
|
+/* test_event_condition - Test condition of events being waited for
|
|
|
+ * @all: Return completion only if all events have signaled
|
|
|
+ * @num_events: Number of events to wait for
|
|
|
+ * @event_waiters: Array of event waiters, one per event
|
|
|
+ *
|
|
|
+ * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
|
|
|
+ * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
|
|
|
+ * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
|
|
|
+ * the events have been destroyed.
|
|
|
+ */
|
|
|
+static uint32_t test_event_condition(bool all, uint32_t num_events,
|
|
|
struct kfd_event_waiter *event_waiters)
|
|
|
{
|
|
|
uint32_t i;
|
|
|
uint32_t activated_count = 0;
|
|
|
|
|
|
for (i = 0; i < num_events; i++) {
|
|
|
+ if (!event_waiters[i].event)
|
|
|
+ return KFD_IOC_WAIT_RESULT_FAIL;
|
|
|
+
|
|
|
if (event_waiters[i].activated) {
|
|
|
if (!all)
|
|
|
- return true;
|
|
|
+ return KFD_IOC_WAIT_RESULT_COMPLETE;
|
|
|
|
|
|
activated_count++;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- return activated_count == num_events;
|
|
|
+ return activated_count == num_events ?
|
|
|
+ KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* Copy event specific data, if defined.
|
|
|
* Currently only memory exception events have additional data to copy to user
|
|
|
*/
|
|
|
-static bool copy_signaled_event_data(uint32_t num_events,
|
|
|
+static int copy_signaled_event_data(uint32_t num_events,
|
|
|
struct kfd_event_waiter *event_waiters,
|
|
|
struct kfd_event_data __user *data)
|
|
|
{
|
|
@@ -673,15 +590,15 @@ static bool copy_signaled_event_data(uint32_t num_events,
|
|
|
waiter = &event_waiters[i];
|
|
|
event = waiter->event;
|
|
|
if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
|
|
|
- dst = &data[waiter->input_index].memory_exception_data;
|
|
|
+ dst = &data[i].memory_exception_data;
|
|
|
src = &event->memory_exception_data;
|
|
|
if (copy_to_user(dst, src,
|
|
|
sizeof(struct kfd_hsa_memory_exception_data)))
|
|
|
- return false;
|
|
|
+ return -EFAULT;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- return true;
|
|
|
+ return 0;
|
|
|
|
|
|
}
|
|
|
|
|
@@ -710,7 +627,9 @@ static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
|
|
|
uint32_t i;
|
|
|
|
|
|
for (i = 0; i < num_events; i++)
|
|
|
- list_del(&waiters[i].waiters);
|
|
|
+ if (waiters[i].event)
|
|
|
+ remove_wait_queue(&waiters[i].event->wq,
|
|
|
+ &waiters[i].wait);
|
|
|
|
|
|
kfree(waiters);
|
|
|
}
|
|
@@ -718,38 +637,56 @@ static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
|
|
|
int kfd_wait_on_events(struct kfd_process *p,
|
|
|
uint32_t num_events, void __user *data,
|
|
|
bool all, uint32_t user_timeout_ms,
|
|
|
- enum kfd_event_wait_result *wait_result)
|
|
|
+ uint32_t *wait_result)
|
|
|
{
|
|
|
struct kfd_event_data __user *events =
|
|
|
(struct kfd_event_data __user *) data;
|
|
|
uint32_t i;
|
|
|
int ret = 0;
|
|
|
+
|
|
|
struct kfd_event_waiter *event_waiters = NULL;
|
|
|
long timeout = user_timeout_to_jiffies(user_timeout_ms);
|
|
|
|
|
|
- mutex_lock(&p->event_mutex);
|
|
|
-
|
|
|
event_waiters = alloc_event_waiters(num_events);
|
|
|
if (!event_waiters) {
|
|
|
ret = -ENOMEM;
|
|
|
- goto fail;
|
|
|
+ goto out;
|
|
|
}
|
|
|
|
|
|
+ mutex_lock(&p->event_mutex);
|
|
|
+
|
|
|
for (i = 0; i < num_events; i++) {
|
|
|
struct kfd_event_data event_data;
|
|
|
|
|
|
if (copy_from_user(&event_data, &events[i],
|
|
|
sizeof(struct kfd_event_data))) {
|
|
|
ret = -EFAULT;
|
|
|
- goto fail;
|
|
|
+ goto out_unlock;
|
|
|
}
|
|
|
|
|
|
- ret = init_event_waiter(p, &event_waiters[i],
|
|
|
- event_data.event_id, i);
|
|
|
+ ret = init_event_waiter_get_status(p, &event_waiters[i],
|
|
|
+ event_data.event_id);
|
|
|
if (ret)
|
|
|
- goto fail;
|
|
|
+ goto out_unlock;
|
|
|
}
|
|
|
|
|
|
+ /* Check condition once. */
|
|
|
+ *wait_result = test_event_condition(all, num_events, event_waiters);
|
|
|
+ if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
|
|
|
+ ret = copy_signaled_event_data(num_events,
|
|
|
+ event_waiters, events);
|
|
|
+ goto out_unlock;
|
|
|
+ } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
|
|
|
+ /* This should not happen. Events shouldn't be
|
|
|
+ * destroyed while we're holding the event_mutex
|
|
|
+ */
|
|
|
+ goto out_unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Add to wait lists if we need to wait. */
|
|
|
+ for (i = 0; i < num_events; i++)
|
|
|
+ init_event_waiter_add_to_waitlist(&event_waiters[i]);
|
|
|
+
|
|
|
mutex_unlock(&p->event_mutex);
|
|
|
|
|
|
while (true) {
|
|
@@ -771,62 +708,66 @@ int kfd_wait_on_events(struct kfd_process *p,
|
|
|
break;
|
|
|
}
|
|
|
|
|
|
- if (test_event_condition(all, num_events, event_waiters)) {
|
|
|
- if (copy_signaled_event_data(num_events,
|
|
|
- event_waiters, events))
|
|
|
- *wait_result = KFD_WAIT_COMPLETE;
|
|
|
- else
|
|
|
- *wait_result = KFD_WAIT_ERROR;
|
|
|
+ /* Set task state to interruptible sleep before
|
|
|
+ * checking wake-up conditions. A concurrent wake-up
|
|
|
+ * will put the task back into runnable state. In that
|
|
|
+ * case schedule_timeout will not put the task to
|
|
|
+ * sleep and we'll get a chance to re-check the
|
|
|
+ * updated conditions almost immediately. Otherwise,
|
|
|
+ * this race condition would lead to a soft hang or a
|
|
|
+ * very long sleep.
|
|
|
+ */
|
|
|
+ set_current_state(TASK_INTERRUPTIBLE);
|
|
|
+
|
|
|
+ *wait_result = test_event_condition(all, num_events,
|
|
|
+ event_waiters);
|
|
|
+ if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
|
|
|
break;
|
|
|
- }
|
|
|
|
|
|
- if (timeout <= 0) {
|
|
|
- *wait_result = KFD_WAIT_TIMEOUT;
|
|
|
+ if (timeout <= 0)
|
|
|
break;
|
|
|
- }
|
|
|
|
|
|
- timeout = schedule_timeout_interruptible(timeout);
|
|
|
+ timeout = schedule_timeout(timeout);
|
|
|
}
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
|
|
+ /* copy_signaled_event_data may sleep. So this has to happen
|
|
|
+ * after the task state is set back to RUNNING.
|
|
|
+ */
|
|
|
+ if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
|
|
|
+ ret = copy_signaled_event_data(num_events,
|
|
|
+ event_waiters, events);
|
|
|
+
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
+out_unlock:
|
|
|
free_waiters(num_events, event_waiters);
|
|
|
mutex_unlock(&p->event_mutex);
|
|
|
-
|
|
|
- return ret;
|
|
|
-
|
|
|
-fail:
|
|
|
- if (event_waiters)
|
|
|
- free_waiters(num_events, event_waiters);
|
|
|
-
|
|
|
- mutex_unlock(&p->event_mutex);
|
|
|
-
|
|
|
- *wait_result = KFD_WAIT_ERROR;
|
|
|
+out:
|
|
|
+ if (ret)
|
|
|
+ *wait_result = KFD_IOC_WAIT_RESULT_FAIL;
|
|
|
+ else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
|
|
|
+ ret = -EIO;
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
|
|
|
{
|
|
|
-
|
|
|
- unsigned int page_index;
|
|
|
unsigned long pfn;
|
|
|
- struct signal_page *page;
|
|
|
+ struct kfd_signal_page *page;
|
|
|
+ int ret;
|
|
|
|
|
|
- /* check required size is logical */
|
|
|
- if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) !=
|
|
|
+ /* check required size doesn't exceed the allocated size */
|
|
|
+ if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
|
|
|
get_order(vma->vm_end - vma->vm_start)) {
|
|
|
pr_err("Event page mmap requested illegal size\n");
|
|
|
return -EINVAL;
|
|
|
}
|
|
|
|
|
|
- page_index = vma->vm_pgoff;
|
|
|
-
|
|
|
- page = lookup_signal_page_by_index(p, page_index);
|
|
|
+ page = p->signal_page;
|
|
|
if (!page) {
|
|
|
/* Probably KFD bug, but mmap is user-accessible. */
|
|
|
- pr_debug("Signal page could not be found for page_index %u\n",
|
|
|
- page_index);
|
|
|
+ pr_debug("Signal page could not be found\n");
|
|
|
return -EINVAL;
|
|
|
}
|
|
|
|
|
@@ -847,8 +788,12 @@ int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
|
|
|
page->user_address = (uint64_t __user *)vma->vm_start;
|
|
|
|
|
|
/* mapping the page to user process */
|
|
|
- return remap_pfn_range(vma, vma->vm_start, pfn,
|
|
|
+ ret = remap_pfn_range(vma, vma->vm_start, pfn,
|
|
|
vma->vm_end - vma->vm_start, vma->vm_page_prot);
|
|
|
+ if (!ret)
|
|
|
+ p->signal_mapped_size = vma->vm_end - vma->vm_start;
|
|
|
+
|
|
|
+ return ret;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -860,12 +805,13 @@ static void lookup_events_by_type_and_signal(struct kfd_process *p,
|
|
|
{
|
|
|
struct kfd_hsa_memory_exception_data *ev_data;
|
|
|
struct kfd_event *ev;
|
|
|
- int bkt;
|
|
|
+ uint32_t id;
|
|
|
bool send_signal = true;
|
|
|
|
|
|
ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
|
|
|
|
|
|
- hash_for_each(p->events, bkt, ev, events)
|
|
|
+ id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
|
|
+ idr_for_each_entry_continue(&p->event_idr, ev, id)
|
|
|
if (ev->type == type) {
|
|
|
send_signal = false;
|
|
|
dev_dbg(kfd_device,
|
|
@@ -904,14 +850,24 @@ void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
|
|
|
* running so the lookup function returns a locked process.
|
|
|
*/
|
|
|
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
|
|
|
+ struct mm_struct *mm;
|
|
|
|
|
|
if (!p)
|
|
|
return; /* Presumably process exited. */
|
|
|
|
|
|
+ /* Take a safe reference to the mm_struct, which may otherwise
|
|
|
+ * disappear even while the kfd_process is still referenced.
|
|
|
+ */
|
|
|
+ mm = get_task_mm(p->lead_thread);
|
|
|
+ if (!mm) {
|
|
|
+ mutex_unlock(&p->mutex);
|
|
|
+ return; /* Process is exiting */
|
|
|
+ }
|
|
|
+
|
|
|
memset(&memory_exception_data, 0, sizeof(memory_exception_data));
|
|
|
|
|
|
- down_read(&p->mm->mmap_sem);
|
|
|
- vma = find_vma(p->mm, address);
|
|
|
+ down_read(&mm->mmap_sem);
|
|
|
+ vma = find_vma(mm, address);
|
|
|
|
|
|
memory_exception_data.gpu_id = dev->id;
|
|
|
memory_exception_data.va = address;
|
|
@@ -937,7 +893,8 @@ void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- up_read(&p->mm->mmap_sem);
|
|
|
+ up_read(&mm->mmap_sem);
|
|
|
+ mmput(mm);
|
|
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|