|
@@ -0,0 +1,510 @@
|
|
|
+/*
|
|
|
+ * kaslr.c
|
|
|
+ *
|
|
|
+ * This contains the routines needed to generate a reasonable level of
|
|
|
+ * entropy to choose a randomized kernel base address offset in support
|
|
|
+ * of Kernel Address Space Layout Randomization (KASLR). Additionally
|
|
|
+ * handles walking the physical memory maps (and tracking memory regions
|
|
|
+ * to avoid) in order to select a physical memory location that can
|
|
|
+ * contain the entire properly aligned running kernel image.
|
|
|
+ *
|
|
|
+ */
|
|
|
+#include "misc.h"
|
|
|
+#include "error.h"
|
|
|
+
|
|
|
+#include <asm/msr.h>
|
|
|
+#include <asm/archrandom.h>
|
|
|
+#include <asm/e820.h>
|
|
|
+
|
|
|
+#include <generated/compile.h>
|
|
|
+#include <linux/module.h>
|
|
|
+#include <linux/uts.h>
|
|
|
+#include <linux/utsname.h>
|
|
|
+#include <generated/utsrelease.h>
|
|
|
+
|
|
|
+/* Simplified build-specific string for starting entropy. */
|
|
|
+static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
|
|
|
+ LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
|
|
|
+
|
|
|
+#define I8254_PORT_CONTROL 0x43
|
|
|
+#define I8254_PORT_COUNTER0 0x40
|
|
|
+#define I8254_CMD_READBACK 0xC0
|
|
|
+#define I8254_SELECT_COUNTER0 0x02
|
|
|
+#define I8254_STATUS_NOTREADY 0x40
|
|
|
+static inline u16 i8254(void)
|
|
|
+{
|
|
|
+ u16 status, timer;
|
|
|
+
|
|
|
+ do {
|
|
|
+ outb(I8254_PORT_CONTROL,
|
|
|
+ I8254_CMD_READBACK | I8254_SELECT_COUNTER0);
|
|
|
+ status = inb(I8254_PORT_COUNTER0);
|
|
|
+ timer = inb(I8254_PORT_COUNTER0);
|
|
|
+ timer |= inb(I8254_PORT_COUNTER0) << 8;
|
|
|
+ } while (status & I8254_STATUS_NOTREADY);
|
|
|
+
|
|
|
+ return timer;
|
|
|
+}
|
|
|
+
|
|
|
+static unsigned long rotate_xor(unsigned long hash, const void *area,
|
|
|
+ size_t size)
|
|
|
+{
|
|
|
+ size_t i;
|
|
|
+ unsigned long *ptr = (unsigned long *)area;
|
|
|
+
|
|
|
+ for (i = 0; i < size / sizeof(hash); i++) {
|
|
|
+ /* Rotate by odd number of bits and XOR. */
|
|
|
+ hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
|
|
|
+ hash ^= ptr[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ return hash;
|
|
|
+}
|
|
|
+
|
|
|
+/* Attempt to create a simple but unpredictable starting entropy. */
|
|
|
+static unsigned long get_random_boot(void)
|
|
|
+{
|
|
|
+ unsigned long hash = 0;
|
|
|
+
|
|
|
+ hash = rotate_xor(hash, build_str, sizeof(build_str));
|
|
|
+ hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
|
|
|
+
|
|
|
+ return hash;
|
|
|
+}
|
|
|
+
|
|
|
+static unsigned long get_random_long(const char *purpose)
|
|
|
+{
|
|
|
+#ifdef CONFIG_X86_64
|
|
|
+ const unsigned long mix_const = 0x5d6008cbf3848dd3UL;
|
|
|
+#else
|
|
|
+ const unsigned long mix_const = 0x3f39e593UL;
|
|
|
+#endif
|
|
|
+ unsigned long raw, random = get_random_boot();
|
|
|
+ bool use_i8254 = true;
|
|
|
+
|
|
|
+ debug_putstr(purpose);
|
|
|
+ debug_putstr(" KASLR using");
|
|
|
+
|
|
|
+ if (has_cpuflag(X86_FEATURE_RDRAND)) {
|
|
|
+ debug_putstr(" RDRAND");
|
|
|
+ if (rdrand_long(&raw)) {
|
|
|
+ random ^= raw;
|
|
|
+ use_i8254 = false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (has_cpuflag(X86_FEATURE_TSC)) {
|
|
|
+ debug_putstr(" RDTSC");
|
|
|
+ raw = rdtsc();
|
|
|
+
|
|
|
+ random ^= raw;
|
|
|
+ use_i8254 = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (use_i8254) {
|
|
|
+ debug_putstr(" i8254");
|
|
|
+ random ^= i8254();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Circular multiply for better bit diffusion */
|
|
|
+ asm("mul %3"
|
|
|
+ : "=a" (random), "=d" (raw)
|
|
|
+ : "a" (random), "rm" (mix_const));
|
|
|
+ random += raw;
|
|
|
+
|
|
|
+ debug_putstr("...\n");
|
|
|
+
|
|
|
+ return random;
|
|
|
+}
|
|
|
+
|
|
|
+struct mem_vector {
|
|
|
+ unsigned long start;
|
|
|
+ unsigned long size;
|
|
|
+};
|
|
|
+
|
|
|
+enum mem_avoid_index {
|
|
|
+ MEM_AVOID_ZO_RANGE = 0,
|
|
|
+ MEM_AVOID_INITRD,
|
|
|
+ MEM_AVOID_CMDLINE,
|
|
|
+ MEM_AVOID_BOOTPARAMS,
|
|
|
+ MEM_AVOID_MAX,
|
|
|
+};
|
|
|
+
|
|
|
+static struct mem_vector mem_avoid[MEM_AVOID_MAX];
|
|
|
+
|
|
|
+static bool mem_contains(struct mem_vector *region, struct mem_vector *item)
|
|
|
+{
|
|
|
+ /* Item at least partially before region. */
|
|
|
+ if (item->start < region->start)
|
|
|
+ return false;
|
|
|
+ /* Item at least partially after region. */
|
|
|
+ if (item->start + item->size > region->start + region->size)
|
|
|
+ return false;
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
|
|
|
+{
|
|
|
+ /* Item one is entirely before item two. */
|
|
|
+ if (one->start + one->size <= two->start)
|
|
|
+ return false;
|
|
|
+ /* Item one is entirely after item two. */
|
|
|
+ if (one->start >= two->start + two->size)
|
|
|
+ return false;
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
|
|
|
+ * The mem_avoid array is used to store the ranges that need to be avoided
|
|
|
+ * when KASLR searches for an appropriate random address. We must avoid any
|
|
|
+ * regions that are unsafe to overlap with during decompression, and other
|
|
|
+ * things like the initrd, cmdline and boot_params. This comment seeks to
|
|
|
+ * explain mem_avoid as clearly as possible since incorrect mem_avoid
|
|
|
+ * memory ranges lead to really hard to debug boot failures.
|
|
|
+ *
|
|
|
+ * The initrd, cmdline, and boot_params are trivial to identify for
|
|
|
+ * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
|
|
|
+ * MEM_AVOID_BOOTPARAMS respectively below.
|
|
|
+ *
|
|
|
+ * What is not obvious how to avoid is the range of memory that is used
|
|
|
+ * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
|
|
|
+ * the compressed kernel (ZO) and its run space, which is used to extract
|
|
|
+ * the uncompressed kernel (VO) and relocs.
|
|
|
+ *
|
|
|
+ * ZO's full run size sits against the end of the decompression buffer, so
|
|
|
+ * we can calculate where text, data, bss, etc of ZO are positioned more
|
|
|
+ * easily.
|
|
|
+ *
|
|
|
+ * For additional background, the decompression calculations can be found
|
|
|
+ * in header.S, and the memory diagram is based on the one found in misc.c.
|
|
|
+ *
|
|
|
+ * The following conditions are already enforced by the image layouts and
|
|
|
+ * associated code:
|
|
|
+ * - input + input_size >= output + output_size
|
|
|
+ * - kernel_total_size <= init_size
|
|
|
+ * - kernel_total_size <= output_size (see Note below)
|
|
|
+ * - output + init_size >= output + output_size
|
|
|
+ *
|
|
|
+ * (Note that kernel_total_size and output_size have no fundamental
|
|
|
+ * relationship, but output_size is passed to choose_random_location
|
|
|
+ * as a maximum of the two. The diagram is showing a case where
|
|
|
+ * kernel_total_size is larger than output_size, but this case is
|
|
|
+ * handled by bumping output_size.)
|
|
|
+ *
|
|
|
+ * The above conditions can be illustrated by a diagram:
|
|
|
+ *
|
|
|
+ * 0 output input input+input_size output+init_size
|
|
|
+ * | | | | |
|
|
|
+ * | | | | |
|
|
|
+ * |-----|--------|--------|--------------|-----------|--|-------------|
|
|
|
+ * | | |
|
|
|
+ * | | |
|
|
|
+ * output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size
|
|
|
+ *
|
|
|
+ * [output, output+init_size) is the entire memory range used for
|
|
|
+ * extracting the compressed image.
|
|
|
+ *
|
|
|
+ * [output, output+kernel_total_size) is the range needed for the
|
|
|
+ * uncompressed kernel (VO) and its run size (bss, brk, etc).
|
|
|
+ *
|
|
|
+ * [output, output+output_size) is VO plus relocs (i.e. the entire
|
|
|
+ * uncompressed payload contained by ZO). This is the area of the buffer
|
|
|
+ * written to during decompression.
|
|
|
+ *
|
|
|
+ * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
|
|
|
+ * range of the copied ZO and decompression code. (i.e. the range
|
|
|
+ * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
|
|
|
+ *
|
|
|
+ * [input, input+input_size) is the original copied compressed image (ZO)
|
|
|
+ * (i.e. it does not include its run size). This range must be avoided
|
|
|
+ * because it contains the data used for decompression.
|
|
|
+ *
|
|
|
+ * [input+input_size, output+init_size) is [_text, _end) for ZO. This
|
|
|
+ * range includes ZO's heap and stack, and must be avoided since it
|
|
|
+ * performs the decompression.
|
|
|
+ *
|
|
|
+ * Since the above two ranges need to be avoided and they are adjacent,
|
|
|
+ * they can be merged, resulting in: [input, output+init_size) which
|
|
|
+ * becomes the MEM_AVOID_ZO_RANGE below.
|
|
|
+ */
|
|
|
+static void mem_avoid_init(unsigned long input, unsigned long input_size,
|
|
|
+ unsigned long output)
|
|
|
+{
|
|
|
+ unsigned long init_size = boot_params->hdr.init_size;
|
|
|
+ u64 initrd_start, initrd_size;
|
|
|
+ u64 cmd_line, cmd_line_size;
|
|
|
+ char *ptr;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Avoid the region that is unsafe to overlap during
|
|
|
+ * decompression.
|
|
|
+ */
|
|
|
+ mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
|
|
|
+ mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
|
|
|
+ add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
|
|
|
+ mem_avoid[MEM_AVOID_ZO_RANGE].size);
|
|
|
+
|
|
|
+ /* Avoid initrd. */
|
|
|
+ initrd_start = (u64)boot_params->ext_ramdisk_image << 32;
|
|
|
+ initrd_start |= boot_params->hdr.ramdisk_image;
|
|
|
+ initrd_size = (u64)boot_params->ext_ramdisk_size << 32;
|
|
|
+ initrd_size |= boot_params->hdr.ramdisk_size;
|
|
|
+ mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
|
|
|
+ mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
|
|
|
+ /* No need to set mapping for initrd, it will be handled in VO. */
|
|
|
+
|
|
|
+ /* Avoid kernel command line. */
|
|
|
+ cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32;
|
|
|
+ cmd_line |= boot_params->hdr.cmd_line_ptr;
|
|
|
+ /* Calculate size of cmd_line. */
|
|
|
+ ptr = (char *)(unsigned long)cmd_line;
|
|
|
+ for (cmd_line_size = 0; ptr[cmd_line_size++]; )
|
|
|
+ ;
|
|
|
+ mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
|
|
|
+ mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
|
|
|
+ add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
|
|
|
+ mem_avoid[MEM_AVOID_CMDLINE].size);
|
|
|
+
|
|
|
+ /* Avoid boot parameters. */
|
|
|
+ mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
|
|
|
+ mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
|
|
|
+ add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
|
|
|
+ mem_avoid[MEM_AVOID_BOOTPARAMS].size);
|
|
|
+
|
|
|
+ /* We don't need to set a mapping for setup_data. */
|
|
|
+
|
|
|
+#ifdef CONFIG_X86_VERBOSE_BOOTUP
|
|
|
+ /* Make sure video RAM can be used. */
|
|
|
+ add_identity_map(0, PMD_SIZE);
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Does this memory vector overlap a known avoided area? If so, record the
|
|
|
+ * overlap region with the lowest address.
|
|
|
+ */
|
|
|
+static bool mem_avoid_overlap(struct mem_vector *img,
|
|
|
+ struct mem_vector *overlap)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ struct setup_data *ptr;
|
|
|
+ unsigned long earliest = img->start + img->size;
|
|
|
+ bool is_overlapping = false;
|
|
|
+
|
|
|
+ for (i = 0; i < MEM_AVOID_MAX; i++) {
|
|
|
+ if (mem_overlaps(img, &mem_avoid[i]) &&
|
|
|
+ mem_avoid[i].start < earliest) {
|
|
|
+ *overlap = mem_avoid[i];
|
|
|
+ is_overlapping = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Avoid all entries in the setup_data linked list. */
|
|
|
+ ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
|
|
|
+ while (ptr) {
|
|
|
+ struct mem_vector avoid;
|
|
|
+
|
|
|
+ avoid.start = (unsigned long)ptr;
|
|
|
+ avoid.size = sizeof(*ptr) + ptr->len;
|
|
|
+
|
|
|
+ if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
|
|
|
+ *overlap = avoid;
|
|
|
+ is_overlapping = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ ptr = (struct setup_data *)(unsigned long)ptr->next;
|
|
|
+ }
|
|
|
+
|
|
|
+ return is_overlapping;
|
|
|
+}
|
|
|
+
|
|
|
+static unsigned long slots[KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN];
|
|
|
+
|
|
|
+struct slot_area {
|
|
|
+ unsigned long addr;
|
|
|
+ int num;
|
|
|
+};
|
|
|
+
|
|
|
+#define MAX_SLOT_AREA 100
|
|
|
+
|
|
|
+static struct slot_area slot_areas[MAX_SLOT_AREA];
|
|
|
+
|
|
|
+static unsigned long slot_max;
|
|
|
+
|
|
|
+static unsigned long slot_area_index;
|
|
|
+
|
|
|
+static void store_slot_info(struct mem_vector *region, unsigned long image_size)
|
|
|
+{
|
|
|
+ struct slot_area slot_area;
|
|
|
+
|
|
|
+ if (slot_area_index == MAX_SLOT_AREA)
|
|
|
+ return;
|
|
|
+
|
|
|
+ slot_area.addr = region->start;
|
|
|
+ slot_area.num = (region->size - image_size) /
|
|
|
+ CONFIG_PHYSICAL_ALIGN + 1;
|
|
|
+
|
|
|
+ if (slot_area.num > 0) {
|
|
|
+ slot_areas[slot_area_index++] = slot_area;
|
|
|
+ slot_max += slot_area.num;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void slots_append(unsigned long addr)
|
|
|
+{
|
|
|
+ /* Overflowing the slots list should be impossible. */
|
|
|
+ if (slot_max >= KERNEL_IMAGE_SIZE / CONFIG_PHYSICAL_ALIGN)
|
|
|
+ return;
|
|
|
+
|
|
|
+ slots[slot_max++] = addr;
|
|
|
+}
|
|
|
+
|
|
|
+static unsigned long slots_fetch_random(void)
|
|
|
+{
|
|
|
+ /* Handle case of no slots stored. */
|
|
|
+ if (slot_max == 0)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ return slots[get_random_long("Physical") % slot_max];
|
|
|
+}
|
|
|
+
|
|
|
+static void process_e820_entry(struct e820entry *entry,
|
|
|
+ unsigned long minimum,
|
|
|
+ unsigned long image_size)
|
|
|
+{
|
|
|
+ struct mem_vector region, img, overlap;
|
|
|
+
|
|
|
+ /* Skip non-RAM entries. */
|
|
|
+ if (entry->type != E820_RAM)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* Ignore entries entirely above our maximum. */
|
|
|
+ if (entry->addr >= KERNEL_IMAGE_SIZE)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* Ignore entries entirely below our minimum. */
|
|
|
+ if (entry->addr + entry->size < minimum)
|
|
|
+ return;
|
|
|
+
|
|
|
+ region.start = entry->addr;
|
|
|
+ region.size = entry->size;
|
|
|
+
|
|
|
+ /* Potentially raise address to minimum location. */
|
|
|
+ if (region.start < minimum)
|
|
|
+ region.start = minimum;
|
|
|
+
|
|
|
+ /* Potentially raise address to meet alignment requirements. */
|
|
|
+ region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
|
|
|
+
|
|
|
+ /* Did we raise the address above the bounds of this e820 region? */
|
|
|
+ if (region.start > entry->addr + entry->size)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* Reduce size by any delta from the original address. */
|
|
|
+ region.size -= region.start - entry->addr;
|
|
|
+
|
|
|
+ /* Reduce maximum size to fit end of image within maximum limit. */
|
|
|
+ if (region.start + region.size > KERNEL_IMAGE_SIZE)
|
|
|
+ region.size = KERNEL_IMAGE_SIZE - region.start;
|
|
|
+
|
|
|
+ /* Walk each aligned slot and check for avoided areas. */
|
|
|
+ for (img.start = region.start, img.size = image_size ;
|
|
|
+ mem_contains(®ion, &img) ;
|
|
|
+ img.start += CONFIG_PHYSICAL_ALIGN) {
|
|
|
+ if (mem_avoid_overlap(&img, &overlap))
|
|
|
+ continue;
|
|
|
+ slots_append(img.start);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static unsigned long find_random_phys_addr(unsigned long minimum,
|
|
|
+ unsigned long image_size)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ unsigned long addr;
|
|
|
+
|
|
|
+ /* Make sure minimum is aligned. */
|
|
|
+ minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
|
|
|
+
|
|
|
+ /* Verify potential e820 positions, appending to slots list. */
|
|
|
+ for (i = 0; i < boot_params->e820_entries; i++) {
|
|
|
+ process_e820_entry(&boot_params->e820_map[i], minimum,
|
|
|
+ image_size);
|
|
|
+ }
|
|
|
+
|
|
|
+ return slots_fetch_random();
|
|
|
+}
|
|
|
+
|
|
|
+static unsigned long find_random_virt_addr(unsigned long minimum,
|
|
|
+ unsigned long image_size)
|
|
|
+{
|
|
|
+ unsigned long slots, random_addr;
|
|
|
+
|
|
|
+ /* Make sure minimum is aligned. */
|
|
|
+ minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
|
|
|
+ /* Align image_size for easy slot calculations. */
|
|
|
+ image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
|
|
|
+ * that can hold image_size within the range of minimum to
|
|
|
+ * KERNEL_IMAGE_SIZE?
|
|
|
+ */
|
|
|
+ slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
|
|
|
+ CONFIG_PHYSICAL_ALIGN + 1;
|
|
|
+
|
|
|
+ random_addr = get_random_long("Virtual") % slots;
|
|
|
+
|
|
|
+ return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Since this function examines addresses much more numerically,
|
|
|
+ * it takes the input and output pointers as 'unsigned long'.
|
|
|
+ */
|
|
|
+unsigned char *choose_random_location(unsigned long input,
|
|
|
+ unsigned long input_size,
|
|
|
+ unsigned long output,
|
|
|
+ unsigned long output_size)
|
|
|
+{
|
|
|
+ unsigned long choice = output;
|
|
|
+ unsigned long random_addr;
|
|
|
+
|
|
|
+#ifdef CONFIG_HIBERNATION
|
|
|
+ if (!cmdline_find_option_bool("kaslr")) {
|
|
|
+ warn("KASLR disabled: 'kaslr' not on cmdline (hibernation selected).");
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+#else
|
|
|
+ if (cmdline_find_option_bool("nokaslr")) {
|
|
|
+ warn("KASLR disabled: 'nokaslr' on cmdline.");
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+ boot_params->hdr.loadflags |= KASLR_FLAG;
|
|
|
+
|
|
|
+ /* Record the various known unsafe memory ranges. */
|
|
|
+ mem_avoid_init(input, input_size, output);
|
|
|
+
|
|
|
+ /* Walk e820 and find a random address. */
|
|
|
+ random_addr = find_random_phys_addr(output, output_size);
|
|
|
+ if (!random_addr) {
|
|
|
+ warn("KASLR disabled: could not find suitable E820 region!");
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Always enforce the minimum. */
|
|
|
+ if (random_addr < choice)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ choice = random_addr;
|
|
|
+
|
|
|
+ add_identity_map(choice, output_size);
|
|
|
+
|
|
|
+ /* This actually loads the identity pagetable on x86_64. */
|
|
|
+ finalize_identity_maps();
|
|
|
+out:
|
|
|
+ return (unsigned char *)choice;
|
|
|
+}
|