|
@@ -1,404 +0,0 @@
|
|
|
-/*
|
|
|
- * This file is part of the Chelsio FCoE driver for Linux.
|
|
|
- *
|
|
|
- * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
|
|
|
- *
|
|
|
- * This software is available to you under a choice of one of two
|
|
|
- * licenses. You may choose to be licensed under the terms of the GNU
|
|
|
- * General Public License (GPL) Version 2, available from the file
|
|
|
- * OpenIB.org BSD license below:
|
|
|
- *
|
|
|
- * Redistribution and use in source and binary forms, with or
|
|
|
- * without modification, are permitted provided that the following
|
|
|
- * conditions are met:
|
|
|
- *
|
|
|
- * - Redistributions of source code must retain the above
|
|
|
- * copyright notice, this list of conditions and the following
|
|
|
- * - Redistributions in binary form must reproduce the above
|
|
|
- * copyright notice, this list of conditions and the following
|
|
|
- * disclaimer in the documentation and/or other materials
|
|
|
- * provided with the distribution.
|
|
|
- *
|
|
|
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
- * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
- * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
- * SOFTWARE.
|
|
|
- */
|
|
|
-
|
|
|
-#include "csio_hw.h"
|
|
|
-#include "csio_init.h"
|
|
|
-
|
|
|
-/*
|
|
|
- * Return the specified PCI-E Configuration Space register from our Physical
|
|
|
- * Function. We try first via a Firmware LDST Command since we prefer to let
|
|
|
- * the firmware own all of these registers, but if that fails we go for it
|
|
|
- * directly ourselves.
|
|
|
- */
|
|
|
-static uint32_t
|
|
|
-csio_t4_read_pcie_cfg4(struct csio_hw *hw, int reg)
|
|
|
-{
|
|
|
- u32 val = 0;
|
|
|
- struct csio_mb *mbp;
|
|
|
- int rv;
|
|
|
- struct fw_ldst_cmd *ldst_cmd;
|
|
|
-
|
|
|
- mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
|
- if (!mbp) {
|
|
|
- CSIO_INC_STATS(hw, n_err_nomem);
|
|
|
- pci_read_config_dword(hw->pdev, reg, &val);
|
|
|
- return val;
|
|
|
- }
|
|
|
-
|
|
|
- csio_mb_ldst(hw, mbp, CSIO_MB_DEFAULT_TMO, reg);
|
|
|
- rv = csio_mb_issue(hw, mbp);
|
|
|
-
|
|
|
- /*
|
|
|
- * If the LDST Command suucceeded, exctract the returned register
|
|
|
- * value. Otherwise read it directly ourself.
|
|
|
- */
|
|
|
- if (rv == 0) {
|
|
|
- ldst_cmd = (struct fw_ldst_cmd *)(mbp->mb);
|
|
|
- val = ntohl(ldst_cmd->u.pcie.data[0]);
|
|
|
- } else
|
|
|
- pci_read_config_dword(hw->pdev, reg, &val);
|
|
|
-
|
|
|
- mempool_free(mbp, hw->mb_mempool);
|
|
|
-
|
|
|
- return val;
|
|
|
-}
|
|
|
-
|
|
|
-static int
|
|
|
-csio_t4_set_mem_win(struct csio_hw *hw, uint32_t win)
|
|
|
-{
|
|
|
- u32 bar0;
|
|
|
- u32 mem_win_base;
|
|
|
-
|
|
|
- /*
|
|
|
- * Truncation intentional: we only read the bottom 32-bits of the
|
|
|
- * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to
|
|
|
- * read BAR0 instead of using pci_resource_start() because we could be
|
|
|
- * operating from within a Virtual Machine which is trapping our
|
|
|
- * accesses to our Configuration Space and we need to set up the PCI-E
|
|
|
- * Memory Window decoders with the actual addresses which will be
|
|
|
- * coming across the PCI-E link.
|
|
|
- */
|
|
|
- bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
|
|
|
- bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
|
|
|
-
|
|
|
- mem_win_base = bar0 + MEMWIN_BASE;
|
|
|
-
|
|
|
- /*
|
|
|
- * Set up memory window for accessing adapter memory ranges. (Read
|
|
|
- * back MA register to ensure that changes propagate before we attempt
|
|
|
- * to use the new values.)
|
|
|
- */
|
|
|
- csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
|
|
|
- WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
|
|
|
- PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
|
|
|
- csio_rd_reg32(hw,
|
|
|
- PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Interrupt handler for the PCIE module.
|
|
|
- */
|
|
|
-static void
|
|
|
-csio_t4_pcie_intr_handler(struct csio_hw *hw)
|
|
|
-{
|
|
|
- static struct intr_info sysbus_intr_info[] = {
|
|
|
- { RNPP_F, "RXNP array parity error", -1, 1 },
|
|
|
- { RPCP_F, "RXPC array parity error", -1, 1 },
|
|
|
- { RCIP_F, "RXCIF array parity error", -1, 1 },
|
|
|
- { RCCP_F, "Rx completions control array parity error", -1, 1 },
|
|
|
- { RFTP_F, "RXFT array parity error", -1, 1 },
|
|
|
- { 0, NULL, 0, 0 }
|
|
|
- };
|
|
|
- static struct intr_info pcie_port_intr_info[] = {
|
|
|
- { TPCP_F, "TXPC array parity error", -1, 1 },
|
|
|
- { TNPP_F, "TXNP array parity error", -1, 1 },
|
|
|
- { TFTP_F, "TXFT array parity error", -1, 1 },
|
|
|
- { TCAP_F, "TXCA array parity error", -1, 1 },
|
|
|
- { TCIP_F, "TXCIF array parity error", -1, 1 },
|
|
|
- { RCAP_F, "RXCA array parity error", -1, 1 },
|
|
|
- { OTDD_F, "outbound request TLP discarded", -1, 1 },
|
|
|
- { RDPE_F, "Rx data parity error", -1, 1 },
|
|
|
- { TDUE_F, "Tx uncorrectable data error", -1, 1 },
|
|
|
- { 0, NULL, 0, 0 }
|
|
|
- };
|
|
|
-
|
|
|
- static struct intr_info pcie_intr_info[] = {
|
|
|
- { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
|
|
|
- { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
|
|
|
- { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
|
|
|
- { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
|
|
|
- { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
|
|
|
- { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
|
|
|
- { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
|
|
|
- { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
|
|
|
- { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
|
|
|
- { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
|
|
|
- { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
|
|
|
- { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
|
|
|
- { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
|
|
|
- { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
|
|
|
- { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
|
|
|
- { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
|
|
|
- { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
|
|
|
- { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
|
|
|
- { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
|
|
|
- { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
|
|
|
- { FIDPERR_F, "PCI FID parity error", -1, 1 },
|
|
|
- { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
|
|
|
- { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
|
|
|
- { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
|
|
|
- { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
|
|
|
- { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
|
|
|
- { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
|
|
|
- { PCIESINT_F, "PCI core secondary fault", -1, 1 },
|
|
|
- { PCIEPINT_F, "PCI core primary fault", -1, 1 },
|
|
|
- { UNXSPLCPLERR_F, "PCI unexpected split completion error", -1,
|
|
|
- 0 },
|
|
|
- { 0, NULL, 0, 0 }
|
|
|
- };
|
|
|
-
|
|
|
- int fat;
|
|
|
- fat = csio_handle_intr_status(hw,
|
|
|
- PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
|
|
|
- sysbus_intr_info) +
|
|
|
- csio_handle_intr_status(hw,
|
|
|
- PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
|
|
|
- pcie_port_intr_info) +
|
|
|
- csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
|
|
|
- if (fat)
|
|
|
- csio_hw_fatal_err(hw);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * csio_t4_flash_cfg_addr - return the address of the flash configuration file
|
|
|
- * @hw: the HW module
|
|
|
- *
|
|
|
- * Return the address within the flash where the Firmware Configuration
|
|
|
- * File is stored.
|
|
|
- */
|
|
|
-static unsigned int
|
|
|
-csio_t4_flash_cfg_addr(struct csio_hw *hw)
|
|
|
-{
|
|
|
- return FLASH_CFG_OFFSET;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * csio_t4_mc_read - read from MC through backdoor accesses
|
|
|
- * @hw: the hw module
|
|
|
- * @idx: not used for T4 adapter
|
|
|
- * @addr: address of first byte requested
|
|
|
- * @data: 64 bytes of data containing the requested address
|
|
|
- * @ecc: where to store the corresponding 64-bit ECC word
|
|
|
- *
|
|
|
- * Read 64 bytes of data from MC starting at a 64-byte-aligned address
|
|
|
- * that covers the requested address @addr. If @parity is not %NULL it
|
|
|
- * is assigned the 64-bit ECC word for the read data.
|
|
|
- */
|
|
|
-static int
|
|
|
-csio_t4_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
|
|
|
- uint64_t *ecc)
|
|
|
-{
|
|
|
- int i;
|
|
|
-
|
|
|
- if (csio_rd_reg32(hw, MC_BIST_CMD_A) & START_BIST_F)
|
|
|
- return -EBUSY;
|
|
|
- csio_wr_reg32(hw, addr & ~0x3fU, MC_BIST_CMD_ADDR_A);
|
|
|
- csio_wr_reg32(hw, 64, MC_BIST_CMD_LEN_A);
|
|
|
- csio_wr_reg32(hw, 0xc, MC_BIST_DATA_PATTERN_A);
|
|
|
- csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1),
|
|
|
- MC_BIST_CMD_A);
|
|
|
- i = csio_hw_wait_op_done_val(hw, MC_BIST_CMD_A, START_BIST_F,
|
|
|
- 0, 10, 1, NULL);
|
|
|
- if (i)
|
|
|
- return i;
|
|
|
-
|
|
|
-#define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
|
|
|
-
|
|
|
- for (i = 15; i >= 0; i--)
|
|
|
- *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
|
|
|
- if (ecc)
|
|
|
- *ecc = csio_rd_reg64(hw, MC_DATA(16));
|
|
|
-#undef MC_DATA
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * csio_t4_edc_read - read from EDC through backdoor accesses
|
|
|
- * @hw: the hw module
|
|
|
- * @idx: which EDC to access
|
|
|
- * @addr: address of first byte requested
|
|
|
- * @data: 64 bytes of data containing the requested address
|
|
|
- * @ecc: where to store the corresponding 64-bit ECC word
|
|
|
- *
|
|
|
- * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
|
|
|
- * that covers the requested address @addr. If @parity is not %NULL it
|
|
|
- * is assigned the 64-bit ECC word for the read data.
|
|
|
- */
|
|
|
-static int
|
|
|
-csio_t4_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
|
|
|
- uint64_t *ecc)
|
|
|
-{
|
|
|
- int i;
|
|
|
-
|
|
|
- idx *= EDC_STRIDE;
|
|
|
- if (csio_rd_reg32(hw, EDC_BIST_CMD_A + idx) & START_BIST_F)
|
|
|
- return -EBUSY;
|
|
|
- csio_wr_reg32(hw, addr & ~0x3fU, EDC_BIST_CMD_ADDR_A + idx);
|
|
|
- csio_wr_reg32(hw, 64, EDC_BIST_CMD_LEN_A + idx);
|
|
|
- csio_wr_reg32(hw, 0xc, EDC_BIST_DATA_PATTERN_A + idx);
|
|
|
- csio_wr_reg32(hw, BIST_OPCODE_V(1) | BIST_CMD_GAP_V(1) | START_BIST_F,
|
|
|
- EDC_BIST_CMD_A + idx);
|
|
|
- i = csio_hw_wait_op_done_val(hw, EDC_BIST_CMD_A + idx, START_BIST_F,
|
|
|
- 0, 10, 1, NULL);
|
|
|
- if (i)
|
|
|
- return i;
|
|
|
-
|
|
|
-#define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
|
|
|
-
|
|
|
- for (i = 15; i >= 0; i--)
|
|
|
- *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
|
|
|
- if (ecc)
|
|
|
- *ecc = csio_rd_reg64(hw, EDC_DATA(16));
|
|
|
-#undef EDC_DATA
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * csio_t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
|
|
|
- * @hw: the csio_hw
|
|
|
- * @win: PCI-E memory Window to use
|
|
|
- * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
|
|
|
- * @addr: address within indicated memory type
|
|
|
- * @len: amount of memory to transfer
|
|
|
- * @buf: host memory buffer
|
|
|
- * @dir: direction of transfer 1 => read, 0 => write
|
|
|
- *
|
|
|
- * Reads/writes an [almost] arbitrary memory region in the firmware: the
|
|
|
- * firmware memory address, length and host buffer must be aligned on
|
|
|
- * 32-bit boudaries. The memory is transferred as a raw byte sequence
|
|
|
- * from/to the firmware's memory. If this memory contains data
|
|
|
- * structures which contain multi-byte integers, it's the callers
|
|
|
- * responsibility to perform appropriate byte order conversions.
|
|
|
- */
|
|
|
-static int
|
|
|
-csio_t4_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
|
|
|
- u32 len, uint32_t *buf, int dir)
|
|
|
-{
|
|
|
- u32 pos, start, offset, memoffset, bar0;
|
|
|
- u32 edc_size, mc_size, mem_reg, mem_aperture, mem_base;
|
|
|
-
|
|
|
- /*
|
|
|
- * Argument sanity checks ...
|
|
|
- */
|
|
|
- if ((addr & 0x3) || (len & 0x3))
|
|
|
- return -EINVAL;
|
|
|
-
|
|
|
- /* Offset into the region of memory which is being accessed
|
|
|
- * MEM_EDC0 = 0
|
|
|
- * MEM_EDC1 = 1
|
|
|
- * MEM_MC = 2 -- T4
|
|
|
- */
|
|
|
- edc_size = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
|
|
|
- if (mtype != MEM_MC1)
|
|
|
- memoffset = (mtype * (edc_size * 1024 * 1024));
|
|
|
- else {
|
|
|
- mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
|
|
|
- MA_EXT_MEMORY_BAR_A));
|
|
|
- memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
|
|
|
- }
|
|
|
-
|
|
|
- /* Determine the PCIE_MEM_ACCESS_OFFSET */
|
|
|
- addr = addr + memoffset;
|
|
|
-
|
|
|
- /*
|
|
|
- * Each PCI-E Memory Window is programmed with a window size -- or
|
|
|
- * "aperture" -- which controls the granularity of its mapping onto
|
|
|
- * adapter memory. We need to grab that aperture in order to know
|
|
|
- * how to use the specified window. The window is also programmed
|
|
|
- * with the base address of the Memory Window in BAR0's address
|
|
|
- * space. For T4 this is an absolute PCI-E Bus Address. For T5
|
|
|
- * the address is relative to BAR0.
|
|
|
- */
|
|
|
- mem_reg = csio_rd_reg32(hw,
|
|
|
- PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
|
|
|
- mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
|
|
|
- mem_base = PCIEOFST_G(mem_reg) << 10;
|
|
|
-
|
|
|
- bar0 = csio_t4_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
|
|
|
- bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
|
|
|
- mem_base -= bar0;
|
|
|
-
|
|
|
- start = addr & ~(mem_aperture-1);
|
|
|
- offset = addr - start;
|
|
|
-
|
|
|
- csio_dbg(hw, "csio_t4_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
|
|
|
- mem_reg, mem_aperture);
|
|
|
- csio_dbg(hw, "csio_t4_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
|
|
|
- mem_base, memoffset);
|
|
|
- csio_dbg(hw, "csio_t4_memory_rw: bar0: 0x%x, start:0x%x, offset:0x%x\n",
|
|
|
- bar0, start, offset);
|
|
|
- csio_dbg(hw, "csio_t4_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
|
|
|
- mtype, addr, len);
|
|
|
-
|
|
|
- for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
|
|
|
- /*
|
|
|
- * Move PCI-E Memory Window to our current transfer
|
|
|
- * position. Read it back to ensure that changes propagate
|
|
|
- * before we attempt to use the new value.
|
|
|
- */
|
|
|
- csio_wr_reg32(hw, pos,
|
|
|
- PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
|
|
|
- csio_rd_reg32(hw,
|
|
|
- PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
|
|
|
-
|
|
|
- while (offset < mem_aperture && len > 0) {
|
|
|
- if (dir)
|
|
|
- *buf++ = csio_rd_reg32(hw, mem_base + offset);
|
|
|
- else
|
|
|
- csio_wr_reg32(hw, *buf++, mem_base + offset);
|
|
|
-
|
|
|
- offset += sizeof(__be32);
|
|
|
- len -= sizeof(__be32);
|
|
|
- }
|
|
|
- }
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * csio_t4_dfs_create_ext_mem - setup debugfs for MC to read the values
|
|
|
- * @hw: the csio_hw
|
|
|
- *
|
|
|
- * This function creates files in the debugfs with external memory region MC.
|
|
|
- */
|
|
|
-static void
|
|
|
-csio_t4_dfs_create_ext_mem(struct csio_hw *hw)
|
|
|
-{
|
|
|
- u32 size;
|
|
|
- int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
|
|
|
-
|
|
|
- if (i & EXT_MEM_ENABLE_F) {
|
|
|
- size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
|
|
|
- csio_add_debugfs_mem(hw, "mc", MEM_MC,
|
|
|
- EXT_MEM_SIZE_G(size));
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/* T4 adapter specific function */
|
|
|
-struct csio_hw_chip_ops t4_ops = {
|
|
|
- .chip_set_mem_win = csio_t4_set_mem_win,
|
|
|
- .chip_pcie_intr_handler = csio_t4_pcie_intr_handler,
|
|
|
- .chip_flash_cfg_addr = csio_t4_flash_cfg_addr,
|
|
|
- .chip_mc_read = csio_t4_mc_read,
|
|
|
- .chip_edc_read = csio_t4_edc_read,
|
|
|
- .chip_memory_rw = csio_t4_memory_rw,
|
|
|
- .chip_dfs_create_ext_mem = csio_t4_dfs_create_ext_mem,
|
|
|
-};
|