|
@@ -0,0 +1,1036 @@
|
|
|
+/*
|
|
|
+ * fs/userfaultfd.c
|
|
|
+ *
|
|
|
+ * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
|
|
|
+ * Copyright (C) 2008-2009 Red Hat, Inc.
|
|
|
+ * Copyright (C) 2015 Red Hat, Inc.
|
|
|
+ *
|
|
|
+ * This work is licensed under the terms of the GNU GPL, version 2. See
|
|
|
+ * the COPYING file in the top-level directory.
|
|
|
+ *
|
|
|
+ * Some part derived from fs/eventfd.c (anon inode setup) and
|
|
|
+ * mm/ksm.c (mm hashing).
|
|
|
+ */
|
|
|
+
|
|
|
+#include <linux/hashtable.h>
|
|
|
+#include <linux/sched.h>
|
|
|
+#include <linux/mm.h>
|
|
|
+#include <linux/poll.h>
|
|
|
+#include <linux/slab.h>
|
|
|
+#include <linux/seq_file.h>
|
|
|
+#include <linux/file.h>
|
|
|
+#include <linux/bug.h>
|
|
|
+#include <linux/anon_inodes.h>
|
|
|
+#include <linux/syscalls.h>
|
|
|
+#include <linux/userfaultfd_k.h>
|
|
|
+#include <linux/mempolicy.h>
|
|
|
+#include <linux/ioctl.h>
|
|
|
+#include <linux/security.h>
|
|
|
+
|
|
|
+enum userfaultfd_state {
|
|
|
+ UFFD_STATE_WAIT_API,
|
|
|
+ UFFD_STATE_RUNNING,
|
|
|
+};
|
|
|
+
|
|
|
+struct userfaultfd_ctx {
|
|
|
+ /* pseudo fd refcounting */
|
|
|
+ atomic_t refcount;
|
|
|
+ /* waitqueue head for the userfaultfd page faults */
|
|
|
+ wait_queue_head_t fault_wqh;
|
|
|
+ /* waitqueue head for the pseudo fd to wakeup poll/read */
|
|
|
+ wait_queue_head_t fd_wqh;
|
|
|
+ /* userfaultfd syscall flags */
|
|
|
+ unsigned int flags;
|
|
|
+ /* state machine */
|
|
|
+ enum userfaultfd_state state;
|
|
|
+ /* released */
|
|
|
+ bool released;
|
|
|
+ /* mm with one ore more vmas attached to this userfaultfd_ctx */
|
|
|
+ struct mm_struct *mm;
|
|
|
+};
|
|
|
+
|
|
|
+struct userfaultfd_wait_queue {
|
|
|
+ unsigned long address;
|
|
|
+ wait_queue_t wq;
|
|
|
+ bool pending;
|
|
|
+ struct userfaultfd_ctx *ctx;
|
|
|
+};
|
|
|
+
|
|
|
+struct userfaultfd_wake_range {
|
|
|
+ unsigned long start;
|
|
|
+ unsigned long len;
|
|
|
+};
|
|
|
+
|
|
|
+static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
|
|
|
+ int wake_flags, void *key)
|
|
|
+{
|
|
|
+ struct userfaultfd_wake_range *range = key;
|
|
|
+ int ret;
|
|
|
+ struct userfaultfd_wait_queue *uwq;
|
|
|
+ unsigned long start, len;
|
|
|
+
|
|
|
+ uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
|
|
|
+ ret = 0;
|
|
|
+ /* don't wake the pending ones to avoid reads to block */
|
|
|
+ if (uwq->pending && !ACCESS_ONCE(uwq->ctx->released))
|
|
|
+ goto out;
|
|
|
+ /* len == 0 means wake all */
|
|
|
+ start = range->start;
|
|
|
+ len = range->len;
|
|
|
+ if (len && (start > uwq->address || start + len <= uwq->address))
|
|
|
+ goto out;
|
|
|
+ ret = wake_up_state(wq->private, mode);
|
|
|
+ if (ret)
|
|
|
+ /*
|
|
|
+ * Wake only once, autoremove behavior.
|
|
|
+ *
|
|
|
+ * After the effect of list_del_init is visible to the
|
|
|
+ * other CPUs, the waitqueue may disappear from under
|
|
|
+ * us, see the !list_empty_careful() in
|
|
|
+ * handle_userfault(). try_to_wake_up() has an
|
|
|
+ * implicit smp_mb__before_spinlock, and the
|
|
|
+ * wq->private is read before calling the extern
|
|
|
+ * function "wake_up_state" (which in turns calls
|
|
|
+ * try_to_wake_up). While the spin_lock;spin_unlock;
|
|
|
+ * wouldn't be enough, the smp_mb__before_spinlock is
|
|
|
+ * enough to avoid an explicit smp_mb() here.
|
|
|
+ */
|
|
|
+ list_del_init(&wq->task_list);
|
|
|
+out:
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
|
|
|
+ * context.
|
|
|
+ * @ctx: [in] Pointer to the userfaultfd context.
|
|
|
+ *
|
|
|
+ * Returns: In case of success, returns not zero.
|
|
|
+ */
|
|
|
+static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
|
|
|
+{
|
|
|
+ if (!atomic_inc_not_zero(&ctx->refcount))
|
|
|
+ BUG();
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
|
|
|
+ * context.
|
|
|
+ * @ctx: [in] Pointer to userfaultfd context.
|
|
|
+ *
|
|
|
+ * The userfaultfd context reference must have been previously acquired either
|
|
|
+ * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
|
|
|
+ */
|
|
|
+static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
|
|
|
+{
|
|
|
+ if (atomic_dec_and_test(&ctx->refcount)) {
|
|
|
+ VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
|
|
|
+ VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
|
|
|
+ VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
|
|
|
+ VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
|
|
|
+ VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
|
|
|
+ VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
|
|
|
+ mmput(ctx->mm);
|
|
|
+ kfree(ctx);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned long userfault_address(unsigned long address,
|
|
|
+ unsigned int flags,
|
|
|
+ unsigned long reason)
|
|
|
+{
|
|
|
+ BUILD_BUG_ON(PAGE_SHIFT < UFFD_BITS);
|
|
|
+ address &= PAGE_MASK;
|
|
|
+ if (flags & FAULT_FLAG_WRITE)
|
|
|
+ /*
|
|
|
+ * Encode "write" fault information in the LSB of the
|
|
|
+ * address read by userland, without depending on
|
|
|
+ * FAULT_FLAG_WRITE kernel internal value.
|
|
|
+ */
|
|
|
+ address |= UFFD_BIT_WRITE;
|
|
|
+ if (reason & VM_UFFD_WP)
|
|
|
+ /*
|
|
|
+ * Encode "reason" fault information as bit number 1
|
|
|
+ * in the address read by userland. If bit number 1 is
|
|
|
+ * clear it means the reason is a VM_FAULT_MISSING
|
|
|
+ * fault.
|
|
|
+ */
|
|
|
+ address |= UFFD_BIT_WP;
|
|
|
+ return address;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * The locking rules involved in returning VM_FAULT_RETRY depending on
|
|
|
+ * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
|
|
|
+ * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
|
|
|
+ * recommendation in __lock_page_or_retry is not an understatement.
|
|
|
+ *
|
|
|
+ * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
|
|
|
+ * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
|
|
|
+ * not set.
|
|
|
+ *
|
|
|
+ * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
|
|
|
+ * set, VM_FAULT_RETRY can still be returned if and only if there are
|
|
|
+ * fatal_signal_pending()s, and the mmap_sem must be released before
|
|
|
+ * returning it.
|
|
|
+ */
|
|
|
+int handle_userfault(struct vm_area_struct *vma, unsigned long address,
|
|
|
+ unsigned int flags, unsigned long reason)
|
|
|
+{
|
|
|
+ struct mm_struct *mm = vma->vm_mm;
|
|
|
+ struct userfaultfd_ctx *ctx;
|
|
|
+ struct userfaultfd_wait_queue uwq;
|
|
|
+
|
|
|
+ BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
|
|
|
+
|
|
|
+ ctx = vma->vm_userfaultfd_ctx.ctx;
|
|
|
+ if (!ctx)
|
|
|
+ return VM_FAULT_SIGBUS;
|
|
|
+
|
|
|
+ BUG_ON(ctx->mm != mm);
|
|
|
+
|
|
|
+ VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
|
|
|
+ VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If it's already released don't get it. This avoids to loop
|
|
|
+ * in __get_user_pages if userfaultfd_release waits on the
|
|
|
+ * caller of handle_userfault to release the mmap_sem.
|
|
|
+ */
|
|
|
+ if (unlikely(ACCESS_ONCE(ctx->released)))
|
|
|
+ return VM_FAULT_SIGBUS;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Check that we can return VM_FAULT_RETRY.
|
|
|
+ *
|
|
|
+ * NOTE: it should become possible to return VM_FAULT_RETRY
|
|
|
+ * even if FAULT_FLAG_TRIED is set without leading to gup()
|
|
|
+ * -EBUSY failures, if the userfaultfd is to be extended for
|
|
|
+ * VM_UFFD_WP tracking and we intend to arm the userfault
|
|
|
+ * without first stopping userland access to the memory. For
|
|
|
+ * VM_UFFD_MISSING userfaults this is enough for now.
|
|
|
+ */
|
|
|
+ if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) {
|
|
|
+ /*
|
|
|
+ * Validate the invariant that nowait must allow retry
|
|
|
+ * to be sure not to return SIGBUS erroneously on
|
|
|
+ * nowait invocations.
|
|
|
+ */
|
|
|
+ BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT);
|
|
|
+#ifdef CONFIG_DEBUG_VM
|
|
|
+ if (printk_ratelimit()) {
|
|
|
+ printk(KERN_WARNING
|
|
|
+ "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags);
|
|
|
+ dump_stack();
|
|
|
+ }
|
|
|
+#endif
|
|
|
+ return VM_FAULT_SIGBUS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Handle nowait, not much to do other than tell it to retry
|
|
|
+ * and wait.
|
|
|
+ */
|
|
|
+ if (flags & FAULT_FLAG_RETRY_NOWAIT)
|
|
|
+ return VM_FAULT_RETRY;
|
|
|
+
|
|
|
+ /* take the reference before dropping the mmap_sem */
|
|
|
+ userfaultfd_ctx_get(ctx);
|
|
|
+
|
|
|
+ /* be gentle and immediately relinquish the mmap_sem */
|
|
|
+ up_read(&mm->mmap_sem);
|
|
|
+
|
|
|
+ init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
|
|
|
+ uwq.wq.private = current;
|
|
|
+ uwq.address = userfault_address(address, flags, reason);
|
|
|
+ uwq.pending = true;
|
|
|
+ uwq.ctx = ctx;
|
|
|
+
|
|
|
+ spin_lock(&ctx->fault_wqh.lock);
|
|
|
+ /*
|
|
|
+ * After the __add_wait_queue the uwq is visible to userland
|
|
|
+ * through poll/read().
|
|
|
+ */
|
|
|
+ __add_wait_queue(&ctx->fault_wqh, &uwq.wq);
|
|
|
+ for (;;) {
|
|
|
+ set_current_state(TASK_KILLABLE);
|
|
|
+ if (!uwq.pending || ACCESS_ONCE(ctx->released) ||
|
|
|
+ fatal_signal_pending(current))
|
|
|
+ break;
|
|
|
+ spin_unlock(&ctx->fault_wqh.lock);
|
|
|
+
|
|
|
+ wake_up_poll(&ctx->fd_wqh, POLLIN);
|
|
|
+ schedule();
|
|
|
+
|
|
|
+ spin_lock(&ctx->fault_wqh.lock);
|
|
|
+ }
|
|
|
+ __remove_wait_queue(&ctx->fault_wqh, &uwq.wq);
|
|
|
+ __set_current_state(TASK_RUNNING);
|
|
|
+ spin_unlock(&ctx->fault_wqh.lock);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * ctx may go away after this if the userfault pseudo fd is
|
|
|
+ * already released.
|
|
|
+ */
|
|
|
+ userfaultfd_ctx_put(ctx);
|
|
|
+
|
|
|
+ return VM_FAULT_RETRY;
|
|
|
+}
|
|
|
+
|
|
|
+static int userfaultfd_release(struct inode *inode, struct file *file)
|
|
|
+{
|
|
|
+ struct userfaultfd_ctx *ctx = file->private_data;
|
|
|
+ struct mm_struct *mm = ctx->mm;
|
|
|
+ struct vm_area_struct *vma, *prev;
|
|
|
+ /* len == 0 means wake all */
|
|
|
+ struct userfaultfd_wake_range range = { .len = 0, };
|
|
|
+ unsigned long new_flags;
|
|
|
+
|
|
|
+ ACCESS_ONCE(ctx->released) = true;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Flush page faults out of all CPUs. NOTE: all page faults
|
|
|
+ * must be retried without returning VM_FAULT_SIGBUS if
|
|
|
+ * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
|
|
|
+ * changes while handle_userfault released the mmap_sem. So
|
|
|
+ * it's critical that released is set to true (above), before
|
|
|
+ * taking the mmap_sem for writing.
|
|
|
+ */
|
|
|
+ down_write(&mm->mmap_sem);
|
|
|
+ prev = NULL;
|
|
|
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
|
|
+ cond_resched();
|
|
|
+ BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
|
|
|
+ !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
|
|
|
+ if (vma->vm_userfaultfd_ctx.ctx != ctx) {
|
|
|
+ prev = vma;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
|
|
|
+ prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
|
|
|
+ new_flags, vma->anon_vma,
|
|
|
+ vma->vm_file, vma->vm_pgoff,
|
|
|
+ vma_policy(vma),
|
|
|
+ NULL_VM_UFFD_CTX);
|
|
|
+ if (prev)
|
|
|
+ vma = prev;
|
|
|
+ else
|
|
|
+ prev = vma;
|
|
|
+ vma->vm_flags = new_flags;
|
|
|
+ vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
|
|
|
+ }
|
|
|
+ up_write(&mm->mmap_sem);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * After no new page faults can wait on this fault_wqh, flush
|
|
|
+ * the last page faults that may have been already waiting on
|
|
|
+ * the fault_wqh.
|
|
|
+ */
|
|
|
+ spin_lock(&ctx->fault_wqh.lock);
|
|
|
+ __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, 0, &range);
|
|
|
+ spin_unlock(&ctx->fault_wqh.lock);
|
|
|
+
|
|
|
+ wake_up_poll(&ctx->fd_wqh, POLLHUP);
|
|
|
+ userfaultfd_ctx_put(ctx);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* fault_wqh.lock must be hold by the caller */
|
|
|
+static inline unsigned int find_userfault(struct userfaultfd_ctx *ctx,
|
|
|
+ struct userfaultfd_wait_queue **uwq)
|
|
|
+{
|
|
|
+ wait_queue_t *wq;
|
|
|
+ struct userfaultfd_wait_queue *_uwq;
|
|
|
+ unsigned int ret = 0;
|
|
|
+
|
|
|
+ VM_BUG_ON(!spin_is_locked(&ctx->fault_wqh.lock));
|
|
|
+
|
|
|
+ list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
|
|
|
+ _uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
|
|
|
+ if (_uwq->pending) {
|
|
|
+ ret = POLLIN;
|
|
|
+ if (!uwq)
|
|
|
+ /*
|
|
|
+ * If there's at least a pending and
|
|
|
+ * we don't care which one it is,
|
|
|
+ * break immediately and leverage the
|
|
|
+ * efficiency of the LIFO walk.
|
|
|
+ */
|
|
|
+ break;
|
|
|
+ /*
|
|
|
+ * If we need to find which one was pending we
|
|
|
+ * keep walking until we find the first not
|
|
|
+ * pending one, so we read() them in FIFO order.
|
|
|
+ */
|
|
|
+ *uwq = _uwq;
|
|
|
+ } else
|
|
|
+ /*
|
|
|
+ * break the loop at the first not pending
|
|
|
+ * one, there cannot be pending userfaults
|
|
|
+ * after the first not pending one, because
|
|
|
+ * all new pending ones are inserted at the
|
|
|
+ * head and we walk it in LIFO.
|
|
|
+ */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
|
|
|
+{
|
|
|
+ struct userfaultfd_ctx *ctx = file->private_data;
|
|
|
+ unsigned int ret;
|
|
|
+
|
|
|
+ poll_wait(file, &ctx->fd_wqh, wait);
|
|
|
+
|
|
|
+ switch (ctx->state) {
|
|
|
+ case UFFD_STATE_WAIT_API:
|
|
|
+ return POLLERR;
|
|
|
+ case UFFD_STATE_RUNNING:
|
|
|
+ spin_lock(&ctx->fault_wqh.lock);
|
|
|
+ ret = find_userfault(ctx, NULL);
|
|
|
+ spin_unlock(&ctx->fault_wqh.lock);
|
|
|
+ return ret;
|
|
|
+ default:
|
|
|
+ BUG();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
|
|
|
+ __u64 *addr)
|
|
|
+{
|
|
|
+ ssize_t ret;
|
|
|
+ DECLARE_WAITQUEUE(wait, current);
|
|
|
+ struct userfaultfd_wait_queue *uwq = NULL;
|
|
|
+
|
|
|
+ /* always take the fd_wqh lock before the fault_wqh lock */
|
|
|
+ spin_lock(&ctx->fd_wqh.lock);
|
|
|
+ __add_wait_queue(&ctx->fd_wqh, &wait);
|
|
|
+ for (;;) {
|
|
|
+ set_current_state(TASK_INTERRUPTIBLE);
|
|
|
+ spin_lock(&ctx->fault_wqh.lock);
|
|
|
+ if (find_userfault(ctx, &uwq)) {
|
|
|
+ /*
|
|
|
+ * The fault_wqh.lock prevents the uwq to
|
|
|
+ * disappear from under us.
|
|
|
+ */
|
|
|
+ uwq->pending = false;
|
|
|
+ /* careful to always initialize addr if ret == 0 */
|
|
|
+ *addr = uwq->address;
|
|
|
+ spin_unlock(&ctx->fault_wqh.lock);
|
|
|
+ ret = 0;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ spin_unlock(&ctx->fault_wqh.lock);
|
|
|
+ if (signal_pending(current)) {
|
|
|
+ ret = -ERESTARTSYS;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if (no_wait) {
|
|
|
+ ret = -EAGAIN;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ spin_unlock(&ctx->fd_wqh.lock);
|
|
|
+ schedule();
|
|
|
+ spin_lock(&ctx->fd_wqh.lock);
|
|
|
+ }
|
|
|
+ __remove_wait_queue(&ctx->fd_wqh, &wait);
|
|
|
+ __set_current_state(TASK_RUNNING);
|
|
|
+ spin_unlock(&ctx->fd_wqh.lock);
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static ssize_t userfaultfd_read(struct file *file, char __user *buf,
|
|
|
+ size_t count, loff_t *ppos)
|
|
|
+{
|
|
|
+ struct userfaultfd_ctx *ctx = file->private_data;
|
|
|
+ ssize_t _ret, ret = 0;
|
|
|
+ /* careful to always initialize addr if ret == 0 */
|
|
|
+ __u64 uninitialized_var(addr);
|
|
|
+ int no_wait = file->f_flags & O_NONBLOCK;
|
|
|
+
|
|
|
+ if (ctx->state == UFFD_STATE_WAIT_API)
|
|
|
+ return -EINVAL;
|
|
|
+ BUG_ON(ctx->state != UFFD_STATE_RUNNING);
|
|
|
+
|
|
|
+ for (;;) {
|
|
|
+ if (count < sizeof(addr))
|
|
|
+ return ret ? ret : -EINVAL;
|
|
|
+ _ret = userfaultfd_ctx_read(ctx, no_wait, &addr);
|
|
|
+ if (_ret < 0)
|
|
|
+ return ret ? ret : _ret;
|
|
|
+ if (put_user(addr, (__u64 __user *) buf))
|
|
|
+ return ret ? ret : -EFAULT;
|
|
|
+ ret += sizeof(addr);
|
|
|
+ buf += sizeof(addr);
|
|
|
+ count -= sizeof(addr);
|
|
|
+ /*
|
|
|
+ * Allow to read more than one fault at time but only
|
|
|
+ * block if waiting for the very first one.
|
|
|
+ */
|
|
|
+ no_wait = O_NONBLOCK;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void __wake_userfault(struct userfaultfd_ctx *ctx,
|
|
|
+ struct userfaultfd_wake_range *range)
|
|
|
+{
|
|
|
+ unsigned long start, end;
|
|
|
+
|
|
|
+ start = range->start;
|
|
|
+ end = range->start + range->len;
|
|
|
+
|
|
|
+ spin_lock(&ctx->fault_wqh.lock);
|
|
|
+ /* wake all in the range and autoremove */
|
|
|
+ __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, 0, range);
|
|
|
+ spin_unlock(&ctx->fault_wqh.lock);
|
|
|
+}
|
|
|
+
|
|
|
+static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
|
|
|
+ struct userfaultfd_wake_range *range)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * To be sure waitqueue_active() is not reordered by the CPU
|
|
|
+ * before the pagetable update, use an explicit SMP memory
|
|
|
+ * barrier here. PT lock release or up_read(mmap_sem) still
|
|
|
+ * have release semantics that can allow the
|
|
|
+ * waitqueue_active() to be reordered before the pte update.
|
|
|
+ */
|
|
|
+ smp_mb();
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Use waitqueue_active because it's very frequent to
|
|
|
+ * change the address space atomically even if there are no
|
|
|
+ * userfaults yet. So we take the spinlock only when we're
|
|
|
+ * sure we've userfaults to wake.
|
|
|
+ */
|
|
|
+ if (waitqueue_active(&ctx->fault_wqh))
|
|
|
+ __wake_userfault(ctx, range);
|
|
|
+}
|
|
|
+
|
|
|
+static __always_inline int validate_range(struct mm_struct *mm,
|
|
|
+ __u64 start, __u64 len)
|
|
|
+{
|
|
|
+ __u64 task_size = mm->task_size;
|
|
|
+
|
|
|
+ if (start & ~PAGE_MASK)
|
|
|
+ return -EINVAL;
|
|
|
+ if (len & ~PAGE_MASK)
|
|
|
+ return -EINVAL;
|
|
|
+ if (!len)
|
|
|
+ return -EINVAL;
|
|
|
+ if (start < mmap_min_addr)
|
|
|
+ return -EINVAL;
|
|
|
+ if (start >= task_size)
|
|
|
+ return -EINVAL;
|
|
|
+ if (len > task_size - start)
|
|
|
+ return -EINVAL;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int userfaultfd_register(struct userfaultfd_ctx *ctx,
|
|
|
+ unsigned long arg)
|
|
|
+{
|
|
|
+ struct mm_struct *mm = ctx->mm;
|
|
|
+ struct vm_area_struct *vma, *prev, *cur;
|
|
|
+ int ret;
|
|
|
+ struct uffdio_register uffdio_register;
|
|
|
+ struct uffdio_register __user *user_uffdio_register;
|
|
|
+ unsigned long vm_flags, new_flags;
|
|
|
+ bool found;
|
|
|
+ unsigned long start, end, vma_end;
|
|
|
+
|
|
|
+ user_uffdio_register = (struct uffdio_register __user *) arg;
|
|
|
+
|
|
|
+ ret = -EFAULT;
|
|
|
+ if (copy_from_user(&uffdio_register, user_uffdio_register,
|
|
|
+ sizeof(uffdio_register)-sizeof(__u64)))
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ ret = -EINVAL;
|
|
|
+ if (!uffdio_register.mode)
|
|
|
+ goto out;
|
|
|
+ if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
|
|
|
+ UFFDIO_REGISTER_MODE_WP))
|
|
|
+ goto out;
|
|
|
+ vm_flags = 0;
|
|
|
+ if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
|
|
|
+ vm_flags |= VM_UFFD_MISSING;
|
|
|
+ if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
|
|
|
+ vm_flags |= VM_UFFD_WP;
|
|
|
+ /*
|
|
|
+ * FIXME: remove the below error constraint by
|
|
|
+ * implementing the wprotect tracking mode.
|
|
|
+ */
|
|
|
+ ret = -EINVAL;
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = validate_range(mm, uffdio_register.range.start,
|
|
|
+ uffdio_register.range.len);
|
|
|
+ if (ret)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ start = uffdio_register.range.start;
|
|
|
+ end = start + uffdio_register.range.len;
|
|
|
+
|
|
|
+ down_write(&mm->mmap_sem);
|
|
|
+ vma = find_vma_prev(mm, start, &prev);
|
|
|
+
|
|
|
+ ret = -ENOMEM;
|
|
|
+ if (!vma)
|
|
|
+ goto out_unlock;
|
|
|
+
|
|
|
+ /* check that there's at least one vma in the range */
|
|
|
+ ret = -EINVAL;
|
|
|
+ if (vma->vm_start >= end)
|
|
|
+ goto out_unlock;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Search for not compatible vmas.
|
|
|
+ *
|
|
|
+ * FIXME: this shall be relaxed later so that it doesn't fail
|
|
|
+ * on tmpfs backed vmas (in addition to the current allowance
|
|
|
+ * on anonymous vmas).
|
|
|
+ */
|
|
|
+ found = false;
|
|
|
+ for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
|
|
|
+ cond_resched();
|
|
|
+
|
|
|
+ BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
|
|
|
+ !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
|
|
|
+
|
|
|
+ /* check not compatible vmas */
|
|
|
+ ret = -EINVAL;
|
|
|
+ if (cur->vm_ops)
|
|
|
+ goto out_unlock;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Check that this vma isn't already owned by a
|
|
|
+ * different userfaultfd. We can't allow more than one
|
|
|
+ * userfaultfd to own a single vma simultaneously or we
|
|
|
+ * wouldn't know which one to deliver the userfaults to.
|
|
|
+ */
|
|
|
+ ret = -EBUSY;
|
|
|
+ if (cur->vm_userfaultfd_ctx.ctx &&
|
|
|
+ cur->vm_userfaultfd_ctx.ctx != ctx)
|
|
|
+ goto out_unlock;
|
|
|
+
|
|
|
+ found = true;
|
|
|
+ }
|
|
|
+ BUG_ON(!found);
|
|
|
+
|
|
|
+ if (vma->vm_start < start)
|
|
|
+ prev = vma;
|
|
|
+
|
|
|
+ ret = 0;
|
|
|
+ do {
|
|
|
+ cond_resched();
|
|
|
+
|
|
|
+ BUG_ON(vma->vm_ops);
|
|
|
+ BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
|
|
|
+ vma->vm_userfaultfd_ctx.ctx != ctx);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Nothing to do: this vma is already registered into this
|
|
|
+ * userfaultfd and with the right tracking mode too.
|
|
|
+ */
|
|
|
+ if (vma->vm_userfaultfd_ctx.ctx == ctx &&
|
|
|
+ (vma->vm_flags & vm_flags) == vm_flags)
|
|
|
+ goto skip;
|
|
|
+
|
|
|
+ if (vma->vm_start > start)
|
|
|
+ start = vma->vm_start;
|
|
|
+ vma_end = min(end, vma->vm_end);
|
|
|
+
|
|
|
+ new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
|
|
|
+ prev = vma_merge(mm, prev, start, vma_end, new_flags,
|
|
|
+ vma->anon_vma, vma->vm_file, vma->vm_pgoff,
|
|
|
+ vma_policy(vma),
|
|
|
+ ((struct vm_userfaultfd_ctx){ ctx }));
|
|
|
+ if (prev) {
|
|
|
+ vma = prev;
|
|
|
+ goto next;
|
|
|
+ }
|
|
|
+ if (vma->vm_start < start) {
|
|
|
+ ret = split_vma(mm, vma, start, 1);
|
|
|
+ if (ret)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if (vma->vm_end > end) {
|
|
|
+ ret = split_vma(mm, vma, end, 0);
|
|
|
+ if (ret)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ next:
|
|
|
+ /*
|
|
|
+ * In the vma_merge() successful mprotect-like case 8:
|
|
|
+ * the next vma was merged into the current one and
|
|
|
+ * the current one has not been updated yet.
|
|
|
+ */
|
|
|
+ vma->vm_flags = new_flags;
|
|
|
+ vma->vm_userfaultfd_ctx.ctx = ctx;
|
|
|
+
|
|
|
+ skip:
|
|
|
+ prev = vma;
|
|
|
+ start = vma->vm_end;
|
|
|
+ vma = vma->vm_next;
|
|
|
+ } while (vma && vma->vm_start < end);
|
|
|
+out_unlock:
|
|
|
+ up_write(&mm->mmap_sem);
|
|
|
+ if (!ret) {
|
|
|
+ /*
|
|
|
+ * Now that we scanned all vmas we can already tell
|
|
|
+ * userland which ioctls methods are guaranteed to
|
|
|
+ * succeed on this range.
|
|
|
+ */
|
|
|
+ if (put_user(UFFD_API_RANGE_IOCTLS,
|
|
|
+ &user_uffdio_register->ioctls))
|
|
|
+ ret = -EFAULT;
|
|
|
+ }
|
|
|
+out:
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
|
|
|
+ unsigned long arg)
|
|
|
+{
|
|
|
+ struct mm_struct *mm = ctx->mm;
|
|
|
+ struct vm_area_struct *vma, *prev, *cur;
|
|
|
+ int ret;
|
|
|
+ struct uffdio_range uffdio_unregister;
|
|
|
+ unsigned long new_flags;
|
|
|
+ bool found;
|
|
|
+ unsigned long start, end, vma_end;
|
|
|
+ const void __user *buf = (void __user *)arg;
|
|
|
+
|
|
|
+ ret = -EFAULT;
|
|
|
+ if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ ret = validate_range(mm, uffdio_unregister.start,
|
|
|
+ uffdio_unregister.len);
|
|
|
+ if (ret)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ start = uffdio_unregister.start;
|
|
|
+ end = start + uffdio_unregister.len;
|
|
|
+
|
|
|
+ down_write(&mm->mmap_sem);
|
|
|
+ vma = find_vma_prev(mm, start, &prev);
|
|
|
+
|
|
|
+ ret = -ENOMEM;
|
|
|
+ if (!vma)
|
|
|
+ goto out_unlock;
|
|
|
+
|
|
|
+ /* check that there's at least one vma in the range */
|
|
|
+ ret = -EINVAL;
|
|
|
+ if (vma->vm_start >= end)
|
|
|
+ goto out_unlock;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Search for not compatible vmas.
|
|
|
+ *
|
|
|
+ * FIXME: this shall be relaxed later so that it doesn't fail
|
|
|
+ * on tmpfs backed vmas (in addition to the current allowance
|
|
|
+ * on anonymous vmas).
|
|
|
+ */
|
|
|
+ found = false;
|
|
|
+ ret = -EINVAL;
|
|
|
+ for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
|
|
|
+ cond_resched();
|
|
|
+
|
|
|
+ BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
|
|
|
+ !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Check not compatible vmas, not strictly required
|
|
|
+ * here as not compatible vmas cannot have an
|
|
|
+ * userfaultfd_ctx registered on them, but this
|
|
|
+ * provides for more strict behavior to notice
|
|
|
+ * unregistration errors.
|
|
|
+ */
|
|
|
+ if (cur->vm_ops)
|
|
|
+ goto out_unlock;
|
|
|
+
|
|
|
+ found = true;
|
|
|
+ }
|
|
|
+ BUG_ON(!found);
|
|
|
+
|
|
|
+ if (vma->vm_start < start)
|
|
|
+ prev = vma;
|
|
|
+
|
|
|
+ ret = 0;
|
|
|
+ do {
|
|
|
+ cond_resched();
|
|
|
+
|
|
|
+ BUG_ON(vma->vm_ops);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Nothing to do: this vma is already registered into this
|
|
|
+ * userfaultfd and with the right tracking mode too.
|
|
|
+ */
|
|
|
+ if (!vma->vm_userfaultfd_ctx.ctx)
|
|
|
+ goto skip;
|
|
|
+
|
|
|
+ if (vma->vm_start > start)
|
|
|
+ start = vma->vm_start;
|
|
|
+ vma_end = min(end, vma->vm_end);
|
|
|
+
|
|
|
+ new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
|
|
|
+ prev = vma_merge(mm, prev, start, vma_end, new_flags,
|
|
|
+ vma->anon_vma, vma->vm_file, vma->vm_pgoff,
|
|
|
+ vma_policy(vma),
|
|
|
+ NULL_VM_UFFD_CTX);
|
|
|
+ if (prev) {
|
|
|
+ vma = prev;
|
|
|
+ goto next;
|
|
|
+ }
|
|
|
+ if (vma->vm_start < start) {
|
|
|
+ ret = split_vma(mm, vma, start, 1);
|
|
|
+ if (ret)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if (vma->vm_end > end) {
|
|
|
+ ret = split_vma(mm, vma, end, 0);
|
|
|
+ if (ret)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ next:
|
|
|
+ /*
|
|
|
+ * In the vma_merge() successful mprotect-like case 8:
|
|
|
+ * the next vma was merged into the current one and
|
|
|
+ * the current one has not been updated yet.
|
|
|
+ */
|
|
|
+ vma->vm_flags = new_flags;
|
|
|
+ vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
|
|
|
+
|
|
|
+ skip:
|
|
|
+ prev = vma;
|
|
|
+ start = vma->vm_end;
|
|
|
+ vma = vma->vm_next;
|
|
|
+ } while (vma && vma->vm_start < end);
|
|
|
+out_unlock:
|
|
|
+ up_write(&mm->mmap_sem);
|
|
|
+out:
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * This is mostly needed to re-wakeup those userfaults that were still
|
|
|
+ * pending when userland wake them up the first time. We don't wake
|
|
|
+ * the pending one to avoid blocking reads to block, or non blocking
|
|
|
+ * read to return -EAGAIN, if used with POLLIN, to avoid userland
|
|
|
+ * doubts on why POLLIN wasn't reliable.
|
|
|
+ */
|
|
|
+static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
|
|
|
+ unsigned long arg)
|
|
|
+{
|
|
|
+ int ret;
|
|
|
+ struct uffdio_range uffdio_wake;
|
|
|
+ struct userfaultfd_wake_range range;
|
|
|
+ const void __user *buf = (void __user *)arg;
|
|
|
+
|
|
|
+ ret = -EFAULT;
|
|
|
+ if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
|
|
|
+ if (ret)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ range.start = uffdio_wake.start;
|
|
|
+ range.len = uffdio_wake.len;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * len == 0 means wake all and we don't want to wake all here,
|
|
|
+ * so check it again to be sure.
|
|
|
+ */
|
|
|
+ VM_BUG_ON(!range.len);
|
|
|
+
|
|
|
+ wake_userfault(ctx, &range);
|
|
|
+ ret = 0;
|
|
|
+
|
|
|
+out:
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * userland asks for a certain API version and we return which bits
|
|
|
+ * and ioctl commands are implemented in this kernel for such API
|
|
|
+ * version or -EINVAL if unknown.
|
|
|
+ */
|
|
|
+static int userfaultfd_api(struct userfaultfd_ctx *ctx,
|
|
|
+ unsigned long arg)
|
|
|
+{
|
|
|
+ struct uffdio_api uffdio_api;
|
|
|
+ void __user *buf = (void __user *)arg;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ ret = -EINVAL;
|
|
|
+ if (ctx->state != UFFD_STATE_WAIT_API)
|
|
|
+ goto out;
|
|
|
+ ret = -EFAULT;
|
|
|
+ if (copy_from_user(&uffdio_api, buf, sizeof(__u64)))
|
|
|
+ goto out;
|
|
|
+ if (uffdio_api.api != UFFD_API) {
|
|
|
+ /* careful not to leak info, we only read the first 8 bytes */
|
|
|
+ memset(&uffdio_api, 0, sizeof(uffdio_api));
|
|
|
+ if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
|
|
|
+ goto out;
|
|
|
+ ret = -EINVAL;
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+ /* careful not to leak info, we only read the first 8 bytes */
|
|
|
+ uffdio_api.bits = UFFD_API_BITS;
|
|
|
+ uffdio_api.ioctls = UFFD_API_IOCTLS;
|
|
|
+ ret = -EFAULT;
|
|
|
+ if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
|
|
|
+ goto out;
|
|
|
+ ctx->state = UFFD_STATE_RUNNING;
|
|
|
+ ret = 0;
|
|
|
+out:
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static long userfaultfd_ioctl(struct file *file, unsigned cmd,
|
|
|
+ unsigned long arg)
|
|
|
+{
|
|
|
+ int ret = -EINVAL;
|
|
|
+ struct userfaultfd_ctx *ctx = file->private_data;
|
|
|
+
|
|
|
+ switch(cmd) {
|
|
|
+ case UFFDIO_API:
|
|
|
+ ret = userfaultfd_api(ctx, arg);
|
|
|
+ break;
|
|
|
+ case UFFDIO_REGISTER:
|
|
|
+ ret = userfaultfd_register(ctx, arg);
|
|
|
+ break;
|
|
|
+ case UFFDIO_UNREGISTER:
|
|
|
+ ret = userfaultfd_unregister(ctx, arg);
|
|
|
+ break;
|
|
|
+ case UFFDIO_WAKE:
|
|
|
+ ret = userfaultfd_wake(ctx, arg);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef CONFIG_PROC_FS
|
|
|
+static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
|
|
|
+{
|
|
|
+ struct userfaultfd_ctx *ctx = f->private_data;
|
|
|
+ wait_queue_t *wq;
|
|
|
+ struct userfaultfd_wait_queue *uwq;
|
|
|
+ unsigned long pending = 0, total = 0;
|
|
|
+
|
|
|
+ spin_lock(&ctx->fault_wqh.lock);
|
|
|
+ list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
|
|
|
+ uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
|
|
|
+ if (uwq->pending)
|
|
|
+ pending++;
|
|
|
+ total++;
|
|
|
+ }
|
|
|
+ spin_unlock(&ctx->fault_wqh.lock);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If more protocols will be added, there will be all shown
|
|
|
+ * separated by a space. Like this:
|
|
|
+ * protocols: aa:... bb:...
|
|
|
+ */
|
|
|
+ seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
|
|
|
+ pending, total, UFFD_API, UFFD_API_BITS,
|
|
|
+ UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+static const struct file_operations userfaultfd_fops = {
|
|
|
+#ifdef CONFIG_PROC_FS
|
|
|
+ .show_fdinfo = userfaultfd_show_fdinfo,
|
|
|
+#endif
|
|
|
+ .release = userfaultfd_release,
|
|
|
+ .poll = userfaultfd_poll,
|
|
|
+ .read = userfaultfd_read,
|
|
|
+ .unlocked_ioctl = userfaultfd_ioctl,
|
|
|
+ .compat_ioctl = userfaultfd_ioctl,
|
|
|
+ .llseek = noop_llseek,
|
|
|
+};
|
|
|
+
|
|
|
+/**
|
|
|
+ * userfaultfd_file_create - Creates an userfaultfd file pointer.
|
|
|
+ * @flags: Flags for the userfaultfd file.
|
|
|
+ *
|
|
|
+ * This function creates an userfaultfd file pointer, w/out installing
|
|
|
+ * it into the fd table. This is useful when the userfaultfd file is
|
|
|
+ * used during the initialization of data structures that require
|
|
|
+ * extra setup after the userfaultfd creation. So the userfaultfd
|
|
|
+ * creation is split into the file pointer creation phase, and the
|
|
|
+ * file descriptor installation phase. In this way races with
|
|
|
+ * userspace closing the newly installed file descriptor can be
|
|
|
+ * avoided. Returns an userfaultfd file pointer, or a proper error
|
|
|
+ * pointer.
|
|
|
+ */
|
|
|
+static struct file *userfaultfd_file_create(int flags)
|
|
|
+{
|
|
|
+ struct file *file;
|
|
|
+ struct userfaultfd_ctx *ctx;
|
|
|
+
|
|
|
+ BUG_ON(!current->mm);
|
|
|
+
|
|
|
+ /* Check the UFFD_* constants for consistency. */
|
|
|
+ BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
|
|
|
+ BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
|
|
|
+
|
|
|
+ file = ERR_PTR(-EINVAL);
|
|
|
+ if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ file = ERR_PTR(-ENOMEM);
|
|
|
+ ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
|
|
|
+ if (!ctx)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ atomic_set(&ctx->refcount, 1);
|
|
|
+ init_waitqueue_head(&ctx->fault_wqh);
|
|
|
+ init_waitqueue_head(&ctx->fd_wqh);
|
|
|
+ ctx->flags = flags;
|
|
|
+ ctx->state = UFFD_STATE_WAIT_API;
|
|
|
+ ctx->released = false;
|
|
|
+ ctx->mm = current->mm;
|
|
|
+ /* prevent the mm struct to be freed */
|
|
|
+ atomic_inc(&ctx->mm->mm_users);
|
|
|
+
|
|
|
+ file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
|
|
|
+ O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
|
|
|
+ if (IS_ERR(file))
|
|
|
+ kfree(ctx);
|
|
|
+out:
|
|
|
+ return file;
|
|
|
+}
|
|
|
+
|
|
|
+SYSCALL_DEFINE1(userfaultfd, int, flags)
|
|
|
+{
|
|
|
+ int fd, error;
|
|
|
+ struct file *file;
|
|
|
+
|
|
|
+ error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
|
|
|
+ if (error < 0)
|
|
|
+ return error;
|
|
|
+ fd = error;
|
|
|
+
|
|
|
+ file = userfaultfd_file_create(flags);
|
|
|
+ if (IS_ERR(file)) {
|
|
|
+ error = PTR_ERR(file);
|
|
|
+ goto err_put_unused_fd;
|
|
|
+ }
|
|
|
+ fd_install(fd, file);
|
|
|
+
|
|
|
+ return fd;
|
|
|
+
|
|
|
+err_put_unused_fd:
|
|
|
+ put_unused_fd(fd);
|
|
|
+
|
|
|
+ return error;
|
|
|
+}
|