|
@@ -1,5 +1,6 @@
|
|
|
/*
|
|
|
- * Coherency fabric (Aurora) support for Armada 370 and XP platforms.
|
|
|
+ * Coherency fabric (Aurora) support for Armada 370, 375, 38x and XP
|
|
|
+ * platforms.
|
|
|
*
|
|
|
* Copyright (C) 2012 Marvell
|
|
|
*
|
|
@@ -11,7 +12,7 @@
|
|
|
* License version 2. This program is licensed "as is" without any
|
|
|
* warranty of any kind, whether express or implied.
|
|
|
*
|
|
|
- * The Armada 370 and Armada XP SOCs have a coherency fabric which is
|
|
|
+ * The Armada 370, 375, 38x and XP SOCs have a coherency fabric which is
|
|
|
* responsible for ensuring hardware coherency between all CPUs and between
|
|
|
* CPUs and I/O masters. This file initializes the coherency fabric and
|
|
|
* supplies basic routines for configuring and controlling hardware coherency
|
|
@@ -28,12 +29,10 @@
|
|
|
#include <linux/platform_device.h>
|
|
|
#include <linux/slab.h>
|
|
|
#include <linux/mbus.h>
|
|
|
-#include <linux/clk.h>
|
|
|
#include <linux/pci.h>
|
|
|
#include <asm/smp_plat.h>
|
|
|
#include <asm/cacheflush.h>
|
|
|
#include <asm/mach/map.h>
|
|
|
-#include "armada-370-xp.h"
|
|
|
#include "coherency.h"
|
|
|
#include "mvebu-soc-id.h"
|
|
|
|
|
@@ -42,8 +41,6 @@ void __iomem *coherency_base;
|
|
|
static void __iomem *coherency_cpu_base;
|
|
|
|
|
|
/* Coherency fabric registers */
|
|
|
-#define COHERENCY_FABRIC_CFG_OFFSET 0x4
|
|
|
-
|
|
|
#define IO_SYNC_BARRIER_CTL_OFFSET 0x0
|
|
|
|
|
|
enum {
|
|
@@ -79,157 +76,8 @@ int set_cpu_coherent(void)
|
|
|
return ll_enable_coherency();
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * The below code implements the I/O coherency workaround on Armada
|
|
|
- * 375. This workaround consists in using the two channels of the
|
|
|
- * first XOR engine to trigger a XOR transaction that serves as the
|
|
|
- * I/O coherency barrier.
|
|
|
- */
|
|
|
-
|
|
|
-static void __iomem *xor_base, *xor_high_base;
|
|
|
-static dma_addr_t coherency_wa_buf_phys[CONFIG_NR_CPUS];
|
|
|
-static void *coherency_wa_buf[CONFIG_NR_CPUS];
|
|
|
-static bool coherency_wa_enabled;
|
|
|
-
|
|
|
-#define XOR_CONFIG(chan) (0x10 + (chan * 4))
|
|
|
-#define XOR_ACTIVATION(chan) (0x20 + (chan * 4))
|
|
|
-#define WINDOW_BAR_ENABLE(chan) (0x240 + ((chan) << 2))
|
|
|
-#define WINDOW_BASE(w) (0x250 + ((w) << 2))
|
|
|
-#define WINDOW_SIZE(w) (0x270 + ((w) << 2))
|
|
|
-#define WINDOW_REMAP_HIGH(w) (0x290 + ((w) << 2))
|
|
|
-#define WINDOW_OVERRIDE_CTRL(chan) (0x2A0 + ((chan) << 2))
|
|
|
-#define XOR_DEST_POINTER(chan) (0x2B0 + (chan * 4))
|
|
|
-#define XOR_BLOCK_SIZE(chan) (0x2C0 + (chan * 4))
|
|
|
-#define XOR_INIT_VALUE_LOW 0x2E0
|
|
|
-#define XOR_INIT_VALUE_HIGH 0x2E4
|
|
|
-
|
|
|
-static inline void mvebu_hwcc_armada375_sync_io_barrier_wa(void)
|
|
|
-{
|
|
|
- int idx = smp_processor_id();
|
|
|
-
|
|
|
- /* Write '1' to the first word of the buffer */
|
|
|
- writel(0x1, coherency_wa_buf[idx]);
|
|
|
-
|
|
|
- /* Wait until the engine is idle */
|
|
|
- while ((readl(xor_base + XOR_ACTIVATION(idx)) >> 4) & 0x3)
|
|
|
- ;
|
|
|
-
|
|
|
- dmb();
|
|
|
-
|
|
|
- /* Trigger channel */
|
|
|
- writel(0x1, xor_base + XOR_ACTIVATION(idx));
|
|
|
-
|
|
|
- /* Poll the data until it is cleared by the XOR transaction */
|
|
|
- while (readl(coherency_wa_buf[idx]))
|
|
|
- ;
|
|
|
-}
|
|
|
-
|
|
|
-static void __init armada_375_coherency_init_wa(void)
|
|
|
-{
|
|
|
- const struct mbus_dram_target_info *dram;
|
|
|
- struct device_node *xor_node;
|
|
|
- struct property *xor_status;
|
|
|
- struct clk *xor_clk;
|
|
|
- u32 win_enable = 0;
|
|
|
- int i;
|
|
|
-
|
|
|
- pr_warn("enabling coherency workaround for Armada 375 Z1, one XOR engine disabled\n");
|
|
|
-
|
|
|
- /*
|
|
|
- * Since the workaround uses one XOR engine, we grab a
|
|
|
- * reference to its Device Tree node first.
|
|
|
- */
|
|
|
- xor_node = of_find_compatible_node(NULL, NULL, "marvell,orion-xor");
|
|
|
- BUG_ON(!xor_node);
|
|
|
-
|
|
|
- /*
|
|
|
- * Then we mark it as disabled so that the real XOR driver
|
|
|
- * will not use it.
|
|
|
- */
|
|
|
- xor_status = kzalloc(sizeof(struct property), GFP_KERNEL);
|
|
|
- BUG_ON(!xor_status);
|
|
|
-
|
|
|
- xor_status->value = kstrdup("disabled", GFP_KERNEL);
|
|
|
- BUG_ON(!xor_status->value);
|
|
|
-
|
|
|
- xor_status->length = 8;
|
|
|
- xor_status->name = kstrdup("status", GFP_KERNEL);
|
|
|
- BUG_ON(!xor_status->name);
|
|
|
-
|
|
|
- of_update_property(xor_node, xor_status);
|
|
|
-
|
|
|
- /*
|
|
|
- * And we remap the registers, get the clock, and do the
|
|
|
- * initial configuration of the XOR engine.
|
|
|
- */
|
|
|
- xor_base = of_iomap(xor_node, 0);
|
|
|
- xor_high_base = of_iomap(xor_node, 1);
|
|
|
-
|
|
|
- xor_clk = of_clk_get_by_name(xor_node, NULL);
|
|
|
- BUG_ON(!xor_clk);
|
|
|
-
|
|
|
- clk_prepare_enable(xor_clk);
|
|
|
-
|
|
|
- dram = mv_mbus_dram_info();
|
|
|
-
|
|
|
- for (i = 0; i < 8; i++) {
|
|
|
- writel(0, xor_base + WINDOW_BASE(i));
|
|
|
- writel(0, xor_base + WINDOW_SIZE(i));
|
|
|
- if (i < 4)
|
|
|
- writel(0, xor_base + WINDOW_REMAP_HIGH(i));
|
|
|
- }
|
|
|
-
|
|
|
- for (i = 0; i < dram->num_cs; i++) {
|
|
|
- const struct mbus_dram_window *cs = dram->cs + i;
|
|
|
- writel((cs->base & 0xffff0000) |
|
|
|
- (cs->mbus_attr << 8) |
|
|
|
- dram->mbus_dram_target_id, xor_base + WINDOW_BASE(i));
|
|
|
- writel((cs->size - 1) & 0xffff0000, xor_base + WINDOW_SIZE(i));
|
|
|
-
|
|
|
- win_enable |= (1 << i);
|
|
|
- win_enable |= 3 << (16 + (2 * i));
|
|
|
- }
|
|
|
-
|
|
|
- writel(win_enable, xor_base + WINDOW_BAR_ENABLE(0));
|
|
|
- writel(win_enable, xor_base + WINDOW_BAR_ENABLE(1));
|
|
|
- writel(0, xor_base + WINDOW_OVERRIDE_CTRL(0));
|
|
|
- writel(0, xor_base + WINDOW_OVERRIDE_CTRL(1));
|
|
|
-
|
|
|
- for (i = 0; i < CONFIG_NR_CPUS; i++) {
|
|
|
- coherency_wa_buf[i] = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
|
- BUG_ON(!coherency_wa_buf[i]);
|
|
|
-
|
|
|
- /*
|
|
|
- * We can't use the DMA mapping API, since we don't
|
|
|
- * have a valid 'struct device' pointer
|
|
|
- */
|
|
|
- coherency_wa_buf_phys[i] =
|
|
|
- virt_to_phys(coherency_wa_buf[i]);
|
|
|
- BUG_ON(!coherency_wa_buf_phys[i]);
|
|
|
-
|
|
|
- /*
|
|
|
- * Configure the XOR engine for memset operation, with
|
|
|
- * a 128 bytes block size
|
|
|
- */
|
|
|
- writel(0x444, xor_base + XOR_CONFIG(i));
|
|
|
- writel(128, xor_base + XOR_BLOCK_SIZE(i));
|
|
|
- writel(coherency_wa_buf_phys[i],
|
|
|
- xor_base + XOR_DEST_POINTER(i));
|
|
|
- }
|
|
|
-
|
|
|
- writel(0x0, xor_base + XOR_INIT_VALUE_LOW);
|
|
|
- writel(0x0, xor_base + XOR_INIT_VALUE_HIGH);
|
|
|
-
|
|
|
- coherency_wa_enabled = true;
|
|
|
-}
|
|
|
-
|
|
|
static inline void mvebu_hwcc_sync_io_barrier(void)
|
|
|
{
|
|
|
- if (coherency_wa_enabled) {
|
|
|
- mvebu_hwcc_armada375_sync_io_barrier_wa();
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
writel(0x1, coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET);
|
|
|
while (readl(coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET) & 0x1);
|
|
|
}
|
|
@@ -361,25 +209,41 @@ static int coherency_type(void)
|
|
|
{
|
|
|
struct device_node *np;
|
|
|
const struct of_device_id *match;
|
|
|
+ int type;
|
|
|
|
|
|
- np = of_find_matching_node_and_match(NULL, of_coherency_table, &match);
|
|
|
- if (np) {
|
|
|
- int type = (int) match->data;
|
|
|
+ /*
|
|
|
+ * The coherency fabric is needed:
|
|
|
+ * - For coherency between processors on Armada XP, so only
|
|
|
+ * when SMP is enabled.
|
|
|
+ * - For coherency between the processor and I/O devices, but
|
|
|
+ * this coherency requires many pre-requisites (write
|
|
|
+ * allocate cache policy, shareable pages, SMP bit set) that
|
|
|
+ * are only meant in SMP situations.
|
|
|
+ *
|
|
|
+ * Note that this means that on Armada 370, there is currently
|
|
|
+ * no way to use hardware I/O coherency, because even when
|
|
|
+ * CONFIG_SMP is enabled, is_smp() returns false due to the
|
|
|
+ * Armada 370 being a single-core processor. To lift this
|
|
|
+ * limitation, we would have to find a way to make the cache
|
|
|
+ * policy set to write-allocate (on all Armada SoCs), and to
|
|
|
+ * set the shareable attribute in page tables (on all Armada
|
|
|
+ * SoCs except the Armada 370). Unfortunately, such decisions
|
|
|
+ * are taken very early in the kernel boot process, at a point
|
|
|
+ * where we don't know yet on which SoC we are running.
|
|
|
|
|
|
- /* Armada 370/XP coherency works in both UP and SMP */
|
|
|
- if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP)
|
|
|
- return type;
|
|
|
+ */
|
|
|
+ if (!is_smp())
|
|
|
+ return COHERENCY_FABRIC_TYPE_NONE;
|
|
|
|
|
|
- /* Armada 375 coherency works only on SMP */
|
|
|
- else if (type == COHERENCY_FABRIC_TYPE_ARMADA_375 && is_smp())
|
|
|
- return type;
|
|
|
+ np = of_find_matching_node_and_match(NULL, of_coherency_table, &match);
|
|
|
+ if (!np)
|
|
|
+ return COHERENCY_FABRIC_TYPE_NONE;
|
|
|
|
|
|
- /* Armada 380 coherency works only on SMP */
|
|
|
- else if (type == COHERENCY_FABRIC_TYPE_ARMADA_380 && is_smp())
|
|
|
- return type;
|
|
|
- }
|
|
|
+ type = (int) match->data;
|
|
|
|
|
|
- return COHERENCY_FABRIC_TYPE_NONE;
|
|
|
+ of_node_put(np);
|
|
|
+
|
|
|
+ return type;
|
|
|
}
|
|
|
|
|
|
int coherency_available(void)
|
|
@@ -400,27 +264,16 @@ int __init coherency_init(void)
|
|
|
type == COHERENCY_FABRIC_TYPE_ARMADA_380)
|
|
|
armada_375_380_coherency_init(np);
|
|
|
|
|
|
+ of_node_put(np);
|
|
|
+
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
static int __init coherency_late_init(void)
|
|
|
{
|
|
|
- int type = coherency_type();
|
|
|
-
|
|
|
- if (type == COHERENCY_FABRIC_TYPE_NONE)
|
|
|
- return 0;
|
|
|
-
|
|
|
- if (type == COHERENCY_FABRIC_TYPE_ARMADA_375) {
|
|
|
- u32 dev, rev;
|
|
|
-
|
|
|
- if (mvebu_get_soc_id(&dev, &rev) == 0 &&
|
|
|
- rev == ARMADA_375_Z1_REV)
|
|
|
- armada_375_coherency_init_wa();
|
|
|
- }
|
|
|
-
|
|
|
- bus_register_notifier(&platform_bus_type,
|
|
|
- &mvebu_hwcc_nb);
|
|
|
-
|
|
|
+ if (coherency_available())
|
|
|
+ bus_register_notifier(&platform_bus_type,
|
|
|
+ &mvebu_hwcc_nb);
|
|
|
return 0;
|
|
|
}
|
|
|
|