|
@@ -0,0 +1,520 @@
|
|
|
+/*
|
|
|
+ * A power allocator to manage temperature
|
|
|
+ *
|
|
|
+ * Copyright (C) 2014 ARM Ltd.
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License version 2 as
|
|
|
+ * published by the Free Software Foundation.
|
|
|
+ *
|
|
|
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
|
+ * kind, whether express or implied; without even the implied warranty
|
|
|
+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ * GNU General Public License for more details.
|
|
|
+ */
|
|
|
+
|
|
|
+#define pr_fmt(fmt) "Power allocator: " fmt
|
|
|
+
|
|
|
+#include <linux/rculist.h>
|
|
|
+#include <linux/slab.h>
|
|
|
+#include <linux/thermal.h>
|
|
|
+
|
|
|
+#include "thermal_core.h"
|
|
|
+
|
|
|
+#define FRAC_BITS 10
|
|
|
+#define int_to_frac(x) ((x) << FRAC_BITS)
|
|
|
+#define frac_to_int(x) ((x) >> FRAC_BITS)
|
|
|
+
|
|
|
+/**
|
|
|
+ * mul_frac() - multiply two fixed-point numbers
|
|
|
+ * @x: first multiplicand
|
|
|
+ * @y: second multiplicand
|
|
|
+ *
|
|
|
+ * Return: the result of multiplying two fixed-point numbers. The
|
|
|
+ * result is also a fixed-point number.
|
|
|
+ */
|
|
|
+static inline s64 mul_frac(s64 x, s64 y)
|
|
|
+{
|
|
|
+ return (x * y) >> FRAC_BITS;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * div_frac() - divide two fixed-point numbers
|
|
|
+ * @x: the dividend
|
|
|
+ * @y: the divisor
|
|
|
+ *
|
|
|
+ * Return: the result of dividing two fixed-point numbers. The
|
|
|
+ * result is also a fixed-point number.
|
|
|
+ */
|
|
|
+static inline s64 div_frac(s64 x, s64 y)
|
|
|
+{
|
|
|
+ return div_s64(x << FRAC_BITS, y);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * struct power_allocator_params - parameters for the power allocator governor
|
|
|
+ * @err_integral: accumulated error in the PID controller.
|
|
|
+ * @prev_err: error in the previous iteration of the PID controller.
|
|
|
+ * Used to calculate the derivative term.
|
|
|
+ * @trip_switch_on: first passive trip point of the thermal zone. The
|
|
|
+ * governor switches on when this trip point is crossed.
|
|
|
+ * @trip_max_desired_temperature: last passive trip point of the thermal
|
|
|
+ * zone. The temperature we are
|
|
|
+ * controlling for.
|
|
|
+ */
|
|
|
+struct power_allocator_params {
|
|
|
+ s64 err_integral;
|
|
|
+ s32 prev_err;
|
|
|
+ int trip_switch_on;
|
|
|
+ int trip_max_desired_temperature;
|
|
|
+};
|
|
|
+
|
|
|
+/**
|
|
|
+ * pid_controller() - PID controller
|
|
|
+ * @tz: thermal zone we are operating in
|
|
|
+ * @current_temp: the current temperature in millicelsius
|
|
|
+ * @control_temp: the target temperature in millicelsius
|
|
|
+ * @max_allocatable_power: maximum allocatable power for this thermal zone
|
|
|
+ *
|
|
|
+ * This PID controller increases the available power budget so that the
|
|
|
+ * temperature of the thermal zone gets as close as possible to
|
|
|
+ * @control_temp and limits the power if it exceeds it. k_po is the
|
|
|
+ * proportional term when we are overshooting, k_pu is the
|
|
|
+ * proportional term when we are undershooting. integral_cutoff is a
|
|
|
+ * threshold below which we stop accumulating the error. The
|
|
|
+ * accumulated error is only valid if the requested power will make
|
|
|
+ * the system warmer. If the system is mostly idle, there's no point
|
|
|
+ * in accumulating positive error.
|
|
|
+ *
|
|
|
+ * Return: The power budget for the next period.
|
|
|
+ */
|
|
|
+static u32 pid_controller(struct thermal_zone_device *tz,
|
|
|
+ unsigned long current_temp,
|
|
|
+ unsigned long control_temp,
|
|
|
+ u32 max_allocatable_power)
|
|
|
+{
|
|
|
+ s64 p, i, d, power_range;
|
|
|
+ s32 err, max_power_frac;
|
|
|
+ struct power_allocator_params *params = tz->governor_data;
|
|
|
+
|
|
|
+ max_power_frac = int_to_frac(max_allocatable_power);
|
|
|
+
|
|
|
+ err = ((s32)control_temp - (s32)current_temp);
|
|
|
+ err = int_to_frac(err);
|
|
|
+
|
|
|
+ /* Calculate the proportional term */
|
|
|
+ p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Calculate the integral term
|
|
|
+ *
|
|
|
+ * if the error is less than cut off allow integration (but
|
|
|
+ * the integral is limited to max power)
|
|
|
+ */
|
|
|
+ i = mul_frac(tz->tzp->k_i, params->err_integral);
|
|
|
+
|
|
|
+ if (err < int_to_frac(tz->tzp->integral_cutoff)) {
|
|
|
+ s64 i_next = i + mul_frac(tz->tzp->k_i, err);
|
|
|
+
|
|
|
+ if (abs64(i_next) < max_power_frac) {
|
|
|
+ i = i_next;
|
|
|
+ params->err_integral += err;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Calculate the derivative term
|
|
|
+ *
|
|
|
+ * We do err - prev_err, so with a positive k_d, a decreasing
|
|
|
+ * error (i.e. driving closer to the line) results in less
|
|
|
+ * power being applied, slowing down the controller)
|
|
|
+ */
|
|
|
+ d = mul_frac(tz->tzp->k_d, err - params->prev_err);
|
|
|
+ d = div_frac(d, tz->passive_delay);
|
|
|
+ params->prev_err = err;
|
|
|
+
|
|
|
+ power_range = p + i + d;
|
|
|
+
|
|
|
+ /* feed-forward the known sustainable dissipatable power */
|
|
|
+ power_range = tz->tzp->sustainable_power + frac_to_int(power_range);
|
|
|
+
|
|
|
+ return clamp(power_range, (s64)0, (s64)max_allocatable_power);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * divvy_up_power() - divvy the allocated power between the actors
|
|
|
+ * @req_power: each actor's requested power
|
|
|
+ * @max_power: each actor's maximum available power
|
|
|
+ * @num_actors: size of the @req_power, @max_power and @granted_power's array
|
|
|
+ * @total_req_power: sum of @req_power
|
|
|
+ * @power_range: total allocated power
|
|
|
+ * @granted_power: output array: each actor's granted power
|
|
|
+ * @extra_actor_power: an appropriately sized array to be used in the
|
|
|
+ * function as temporary storage of the extra power given
|
|
|
+ * to the actors
|
|
|
+ *
|
|
|
+ * This function divides the total allocated power (@power_range)
|
|
|
+ * fairly between the actors. It first tries to give each actor a
|
|
|
+ * share of the @power_range according to how much power it requested
|
|
|
+ * compared to the rest of the actors. For example, if only one actor
|
|
|
+ * requests power, then it receives all the @power_range. If
|
|
|
+ * three actors each requests 1mW, each receives a third of the
|
|
|
+ * @power_range.
|
|
|
+ *
|
|
|
+ * If any actor received more than their maximum power, then that
|
|
|
+ * surplus is re-divvied among the actors based on how far they are
|
|
|
+ * from their respective maximums.
|
|
|
+ *
|
|
|
+ * Granted power for each actor is written to @granted_power, which
|
|
|
+ * should've been allocated by the calling function.
|
|
|
+ */
|
|
|
+static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
|
|
|
+ u32 total_req_power, u32 power_range,
|
|
|
+ u32 *granted_power, u32 *extra_actor_power)
|
|
|
+{
|
|
|
+ u32 extra_power, capped_extra_power;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Prevent division by 0 if none of the actors request power.
|
|
|
+ */
|
|
|
+ if (!total_req_power)
|
|
|
+ total_req_power = 1;
|
|
|
+
|
|
|
+ capped_extra_power = 0;
|
|
|
+ extra_power = 0;
|
|
|
+ for (i = 0; i < num_actors; i++) {
|
|
|
+ u64 req_range = req_power[i] * power_range;
|
|
|
+
|
|
|
+ granted_power[i] = div_u64(req_range, total_req_power);
|
|
|
+
|
|
|
+ if (granted_power[i] > max_power[i]) {
|
|
|
+ extra_power += granted_power[i] - max_power[i];
|
|
|
+ granted_power[i] = max_power[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ extra_actor_power[i] = max_power[i] - granted_power[i];
|
|
|
+ capped_extra_power += extra_actor_power[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!extra_power)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Re-divvy the reclaimed extra among actors based on
|
|
|
+ * how far they are from the max
|
|
|
+ */
|
|
|
+ extra_power = min(extra_power, capped_extra_power);
|
|
|
+ if (capped_extra_power > 0)
|
|
|
+ for (i = 0; i < num_actors; i++)
|
|
|
+ granted_power[i] += (extra_actor_power[i] *
|
|
|
+ extra_power) / capped_extra_power;
|
|
|
+}
|
|
|
+
|
|
|
+static int allocate_power(struct thermal_zone_device *tz,
|
|
|
+ unsigned long current_temp,
|
|
|
+ unsigned long control_temp)
|
|
|
+{
|
|
|
+ struct thermal_instance *instance;
|
|
|
+ struct power_allocator_params *params = tz->governor_data;
|
|
|
+ u32 *req_power, *max_power, *granted_power, *extra_actor_power;
|
|
|
+ u32 total_req_power, max_allocatable_power;
|
|
|
+ u32 power_range;
|
|
|
+ int i, num_actors, total_weight, ret = 0;
|
|
|
+ int trip_max_desired_temperature = params->trip_max_desired_temperature;
|
|
|
+
|
|
|
+ mutex_lock(&tz->lock);
|
|
|
+
|
|
|
+ num_actors = 0;
|
|
|
+ total_weight = 0;
|
|
|
+ list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
|
|
|
+ if ((instance->trip == trip_max_desired_temperature) &&
|
|
|
+ cdev_is_power_actor(instance->cdev)) {
|
|
|
+ num_actors++;
|
|
|
+ total_weight += instance->weight;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We need to allocate three arrays of the same size:
|
|
|
+ * req_power, max_power and granted_power. They are going to
|
|
|
+ * be needed until this function returns. Allocate them all
|
|
|
+ * in one go to simplify the allocation and deallocation
|
|
|
+ * logic.
|
|
|
+ */
|
|
|
+ BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
|
|
|
+ BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
|
|
|
+ BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
|
|
|
+ req_power = devm_kcalloc(&tz->device, num_actors * 4,
|
|
|
+ sizeof(*req_power), GFP_KERNEL);
|
|
|
+ if (!req_power) {
|
|
|
+ ret = -ENOMEM;
|
|
|
+ goto unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ max_power = &req_power[num_actors];
|
|
|
+ granted_power = &req_power[2 * num_actors];
|
|
|
+ extra_actor_power = &req_power[3 * num_actors];
|
|
|
+
|
|
|
+ i = 0;
|
|
|
+ total_req_power = 0;
|
|
|
+ max_allocatable_power = 0;
|
|
|
+
|
|
|
+ list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
|
|
|
+ int weight;
|
|
|
+ struct thermal_cooling_device *cdev = instance->cdev;
|
|
|
+
|
|
|
+ if (instance->trip != trip_max_desired_temperature)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (!cdev_is_power_actor(cdev))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (!total_weight)
|
|
|
+ weight = 1 << FRAC_BITS;
|
|
|
+ else
|
|
|
+ weight = instance->weight;
|
|
|
+
|
|
|
+ req_power[i] = frac_to_int(weight * req_power[i]);
|
|
|
+
|
|
|
+ if (power_actor_get_max_power(cdev, tz, &max_power[i]))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ total_req_power += req_power[i];
|
|
|
+ max_allocatable_power += max_power[i];
|
|
|
+
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+
|
|
|
+ power_range = pid_controller(tz, current_temp, control_temp,
|
|
|
+ max_allocatable_power);
|
|
|
+
|
|
|
+ divvy_up_power(req_power, max_power, num_actors, total_req_power,
|
|
|
+ power_range, granted_power, extra_actor_power);
|
|
|
+
|
|
|
+ i = 0;
|
|
|
+ list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
|
|
|
+ if (instance->trip != trip_max_desired_temperature)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (!cdev_is_power_actor(instance->cdev))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ power_actor_set_power(instance->cdev, instance,
|
|
|
+ granted_power[i]);
|
|
|
+
|
|
|
+ i++;
|
|
|
+ }
|
|
|
+
|
|
|
+ devm_kfree(&tz->device, req_power);
|
|
|
+unlock:
|
|
|
+ mutex_unlock(&tz->lock);
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static int get_governor_trips(struct thermal_zone_device *tz,
|
|
|
+ struct power_allocator_params *params)
|
|
|
+{
|
|
|
+ int i, ret, last_passive;
|
|
|
+ bool found_first_passive;
|
|
|
+
|
|
|
+ found_first_passive = false;
|
|
|
+ last_passive = -1;
|
|
|
+ ret = -EINVAL;
|
|
|
+
|
|
|
+ for (i = 0; i < tz->trips; i++) {
|
|
|
+ enum thermal_trip_type type;
|
|
|
+
|
|
|
+ ret = tz->ops->get_trip_type(tz, i, &type);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ if (!found_first_passive) {
|
|
|
+ if (type == THERMAL_TRIP_PASSIVE) {
|
|
|
+ params->trip_switch_on = i;
|
|
|
+ found_first_passive = true;
|
|
|
+ }
|
|
|
+ } else if (type == THERMAL_TRIP_PASSIVE) {
|
|
|
+ last_passive = i;
|
|
|
+ } else {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (last_passive != -1) {
|
|
|
+ params->trip_max_desired_temperature = last_passive;
|
|
|
+ ret = 0;
|
|
|
+ } else {
|
|
|
+ ret = -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static void reset_pid_controller(struct power_allocator_params *params)
|
|
|
+{
|
|
|
+ params->err_integral = 0;
|
|
|
+ params->prev_err = 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void allow_maximum_power(struct thermal_zone_device *tz)
|
|
|
+{
|
|
|
+ struct thermal_instance *instance;
|
|
|
+ struct power_allocator_params *params = tz->governor_data;
|
|
|
+
|
|
|
+ list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
|
|
|
+ if ((instance->trip != params->trip_max_desired_temperature) ||
|
|
|
+ (!cdev_is_power_actor(instance->cdev)))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ instance->target = 0;
|
|
|
+ instance->cdev->updated = false;
|
|
|
+ thermal_cdev_update(instance->cdev);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * power_allocator_bind() - bind the power_allocator governor to a thermal zone
|
|
|
+ * @tz: thermal zone to bind it to
|
|
|
+ *
|
|
|
+ * Check that the thermal zone is valid for this governor, that is, it
|
|
|
+ * has two thermal trips. If so, initialize the PID controller
|
|
|
+ * parameters and bind it to the thermal zone.
|
|
|
+ *
|
|
|
+ * Return: 0 on success, -EINVAL if the trips were invalid or -ENOMEM
|
|
|
+ * if we ran out of memory.
|
|
|
+ */
|
|
|
+static int power_allocator_bind(struct thermal_zone_device *tz)
|
|
|
+{
|
|
|
+ int ret;
|
|
|
+ struct power_allocator_params *params;
|
|
|
+ unsigned long switch_on_temp, control_temp;
|
|
|
+ u32 temperature_threshold;
|
|
|
+
|
|
|
+ if (!tz->tzp || !tz->tzp->sustainable_power) {
|
|
|
+ dev_err(&tz->device,
|
|
|
+ "power_allocator: missing sustainable_power\n");
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ params = devm_kzalloc(&tz->device, sizeof(*params), GFP_KERNEL);
|
|
|
+ if (!params)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ ret = get_governor_trips(tz, params);
|
|
|
+ if (ret) {
|
|
|
+ dev_err(&tz->device,
|
|
|
+ "thermal zone %s has wrong trip setup for power allocator\n",
|
|
|
+ tz->type);
|
|
|
+ goto free;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
|
|
|
+ &switch_on_temp);
|
|
|
+ if (ret)
|
|
|
+ goto free;
|
|
|
+
|
|
|
+ ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
|
|
|
+ &control_temp);
|
|
|
+ if (ret)
|
|
|
+ goto free;
|
|
|
+
|
|
|
+ temperature_threshold = control_temp - switch_on_temp;
|
|
|
+
|
|
|
+ tz->tzp->k_po = tz->tzp->k_po ?:
|
|
|
+ int_to_frac(tz->tzp->sustainable_power) / temperature_threshold;
|
|
|
+ tz->tzp->k_pu = tz->tzp->k_pu ?:
|
|
|
+ int_to_frac(2 * tz->tzp->sustainable_power) /
|
|
|
+ temperature_threshold;
|
|
|
+ tz->tzp->k_i = tz->tzp->k_i ?: int_to_frac(10) / 1000;
|
|
|
+ /*
|
|
|
+ * The default for k_d and integral_cutoff is 0, so we can
|
|
|
+ * leave them as they are.
|
|
|
+ */
|
|
|
+
|
|
|
+ reset_pid_controller(params);
|
|
|
+
|
|
|
+ tz->governor_data = params;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+
|
|
|
+free:
|
|
|
+ devm_kfree(&tz->device, params);
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static void power_allocator_unbind(struct thermal_zone_device *tz)
|
|
|
+{
|
|
|
+ dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
|
|
|
+ devm_kfree(&tz->device, tz->governor_data);
|
|
|
+ tz->governor_data = NULL;
|
|
|
+}
|
|
|
+
|
|
|
+static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
|
|
|
+{
|
|
|
+ int ret;
|
|
|
+ unsigned long switch_on_temp, control_temp, current_temp;
|
|
|
+ struct power_allocator_params *params = tz->governor_data;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We get called for every trip point but we only need to do
|
|
|
+ * our calculations once
|
|
|
+ */
|
|
|
+ if (trip != params->trip_max_desired_temperature)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ ret = thermal_zone_get_temp(tz, ¤t_temp);
|
|
|
+ if (ret) {
|
|
|
+ dev_warn(&tz->device, "Failed to get temperature: %d\n", ret);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
|
|
|
+ &switch_on_temp);
|
|
|
+ if (ret) {
|
|
|
+ dev_warn(&tz->device,
|
|
|
+ "Failed to get switch on temperature: %d\n", ret);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (current_temp < switch_on_temp) {
|
|
|
+ tz->passive = 0;
|
|
|
+ reset_pid_controller(params);
|
|
|
+ allow_maximum_power(tz);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ tz->passive = 1;
|
|
|
+
|
|
|
+ ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
|
|
|
+ &control_temp);
|
|
|
+ if (ret) {
|
|
|
+ dev_warn(&tz->device,
|
|
|
+ "Failed to get the maximum desired temperature: %d\n",
|
|
|
+ ret);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
+ return allocate_power(tz, current_temp, control_temp);
|
|
|
+}
|
|
|
+
|
|
|
+static struct thermal_governor thermal_gov_power_allocator = {
|
|
|
+ .name = "power_allocator",
|
|
|
+ .bind_to_tz = power_allocator_bind,
|
|
|
+ .unbind_from_tz = power_allocator_unbind,
|
|
|
+ .throttle = power_allocator_throttle,
|
|
|
+};
|
|
|
+
|
|
|
+int thermal_gov_power_allocator_register(void)
|
|
|
+{
|
|
|
+ return thermal_register_governor(&thermal_gov_power_allocator);
|
|
|
+}
|
|
|
+
|
|
|
+void thermal_gov_power_allocator_unregister(void)
|
|
|
+{
|
|
|
+ thermal_unregister_governor(&thermal_gov_power_allocator);
|
|
|
+}
|