|
@@ -1,7 +1,7 @@
|
|
|
/*******************************************************************************
|
|
|
|
|
|
Intel 10 Gigabit PCI Express Linux driver
|
|
|
- Copyright(c) 1999 - 2013 Intel Corporation.
|
|
|
+ Copyright(c) 1999 - 2015 Intel Corporation.
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
|
under the terms and conditions of the GNU General Public License,
|
|
@@ -27,6 +27,7 @@
|
|
|
*******************************************************************************/
|
|
|
#include "ixgbe.h"
|
|
|
#include <linux/ptp_classify.h>
|
|
|
+#include <linux/clocksource.h>
|
|
|
|
|
|
/*
|
|
|
* The 82599 and the X540 do not have true 64bit nanosecond scale
|
|
@@ -93,7 +94,6 @@
|
|
|
|
|
|
#define IXGBE_INCVAL_SHIFT_82599 7
|
|
|
#define IXGBE_INCPER_SHIFT_82599 24
|
|
|
-#define IXGBE_MAX_TIMEADJ_VALUE 0x7FFFFFFFFFFFFFFFULL
|
|
|
|
|
|
#define IXGBE_OVERFLOW_PERIOD (HZ * 30)
|
|
|
#define IXGBE_PTP_TX_TIMEOUT (HZ * 15)
|
|
@@ -104,8 +104,68 @@
|
|
|
*/
|
|
|
#define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL
|
|
|
|
|
|
+/* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
|
|
|
+ * which contain measurements of seconds and nanoseconds respectively. This
|
|
|
+ * matches the standard linux representation of time in the kernel. In addition,
|
|
|
+ * the X550 also has a SYSTIMER register which represents residue, or
|
|
|
+ * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
|
|
|
+ * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
|
|
|
+ * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
|
|
|
+ * high bit representing whether the adjustent is positive or negative. Every
|
|
|
+ * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
|
|
|
+ * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
|
|
|
+ * X550's clock for purposes of SYSTIME generation is constant and not dependent
|
|
|
+ * on the link speed.
|
|
|
+ *
|
|
|
+ * SYSTIMEH SYSTIMEL SYSTIMER
|
|
|
+ * +--------------+ +--------------+ +-------------+
|
|
|
+ * X550 | 32 | | 32 | | 32 |
|
|
|
+ * *--------------+ +--------------+ +-------------+
|
|
|
+ * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
|
|
|
+ *
|
|
|
+ * This results in a full 96 bits to represent the clock, with 32 bits for
|
|
|
+ * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
|
|
|
+ * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
|
|
|
+ * underflow of adjustments.
|
|
|
+ *
|
|
|
+ * The 32 bits of seconds for the X550 overflows every
|
|
|
+ * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
|
|
|
+ *
|
|
|
+ * In order to adjust the clock frequency for the X550, the TIMINCA register is
|
|
|
+ * provided. This register represents a + or minus nearly 0.5 ns adjustment to
|
|
|
+ * the base frequency. It is measured in 2^-32 ns units, with the high bit being
|
|
|
+ * the sign bit. This register enables software to calculate frequency
|
|
|
+ * adjustments and apply them directly to the clock rate.
|
|
|
+ *
|
|
|
+ * The math for converting ppb into TIMINCA values is fairly straightforward.
|
|
|
+ * TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
|
|
|
+ *
|
|
|
+ * This assumes that ppb is never high enough to create a value bigger than
|
|
|
+ * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
|
|
|
+ * value is also simple.
|
|
|
+ * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
|
|
|
+ *
|
|
|
+ * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
|
|
|
+ * 12.5 nanoseconds. This means that the Max ppb is 39999999
|
|
|
+ * Note: We subtract one in order to ensure no overflow, because the TIMINCA
|
|
|
+ * register can only hold slightly under 0.5 nanoseconds.
|
|
|
+ *
|
|
|
+ * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
|
|
|
+ * into 2^-32 units, which is
|
|
|
+ *
|
|
|
+ * 12.5 * 2^32 = C80000000
|
|
|
+ *
|
|
|
+ * Some revisions of hardware have a faster base frequency than the registers
|
|
|
+ * were defined for. To fix this, we use a timecounter structure with the
|
|
|
+ * proper mult and shift to convert the cycles into nanoseconds of time.
|
|
|
+ */
|
|
|
+#define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
|
|
|
+#define INCVALUE_MASK 0x7FFFFFFF
|
|
|
+#define ISGN 0x80000000
|
|
|
+#define MAX_TIMADJ 0x7FFFFFFF
|
|
|
+
|
|
|
/**
|
|
|
- * ixgbe_ptp_setup_sdp
|
|
|
+ * ixgbe_ptp_setup_sdp_x540
|
|
|
* @hw: the hardware private structure
|
|
|
*
|
|
|
* this function enables or disables the clock out feature on SDP0 for
|
|
@@ -116,83 +176,116 @@
|
|
|
* aligns the start of the PPS signal to that value. The shift is
|
|
|
* necessary because it can change based on the link speed.
|
|
|
*/
|
|
|
-static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
|
|
|
+static void ixgbe_ptp_setup_sdp_x540(struct ixgbe_adapter *adapter)
|
|
|
{
|
|
|
struct ixgbe_hw *hw = &adapter->hw;
|
|
|
- int shift = adapter->cc.shift;
|
|
|
+ int shift = adapter->hw_cc.shift;
|
|
|
u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
|
|
|
u64 ns = 0, clock_edge = 0;
|
|
|
|
|
|
- if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
|
|
|
- (hw->mac.type == ixgbe_mac_X540)) {
|
|
|
+ /* disable the pin first */
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
|
|
|
+ IXGBE_WRITE_FLUSH(hw);
|
|
|
|
|
|
- /* disable the pin first */
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
|
|
|
- IXGBE_WRITE_FLUSH(hw);
|
|
|
+ if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
|
|
|
+ return;
|
|
|
|
|
|
- esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
|
|
|
+ esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
|
|
|
|
|
|
- /*
|
|
|
- * enable the SDP0 pin as output, and connected to the
|
|
|
- * native function for Timesync (ClockOut)
|
|
|
- */
|
|
|
- esdp |= (IXGBE_ESDP_SDP0_DIR |
|
|
|
- IXGBE_ESDP_SDP0_NATIVE);
|
|
|
+ /* enable the SDP0 pin as output, and connected to the
|
|
|
+ * native function for Timesync (ClockOut)
|
|
|
+ */
|
|
|
+ esdp |= IXGBE_ESDP_SDP0_DIR |
|
|
|
+ IXGBE_ESDP_SDP0_NATIVE;
|
|
|
|
|
|
- /*
|
|
|
- * enable the Clock Out feature on SDP0, and allow
|
|
|
- * interrupts to occur when the pin changes
|
|
|
- */
|
|
|
- tsauxc = (IXGBE_TSAUXC_EN_CLK |
|
|
|
- IXGBE_TSAUXC_SYNCLK |
|
|
|
- IXGBE_TSAUXC_SDP0_INT);
|
|
|
+ /* enable the Clock Out feature on SDP0, and allow
|
|
|
+ * interrupts to occur when the pin changes
|
|
|
+ */
|
|
|
+ tsauxc = IXGBE_TSAUXC_EN_CLK |
|
|
|
+ IXGBE_TSAUXC_SYNCLK |
|
|
|
+ IXGBE_TSAUXC_SDP0_INT;
|
|
|
|
|
|
- /* clock period (or pulse length) */
|
|
|
- clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift);
|
|
|
- clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32);
|
|
|
+ /* clock period (or pulse length) */
|
|
|
+ clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift);
|
|
|
+ clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32);
|
|
|
|
|
|
- /*
|
|
|
- * Account for the cyclecounter wrap-around value by
|
|
|
- * using the converted ns value of the current time to
|
|
|
- * check for when the next aligned second would occur.
|
|
|
- */
|
|
|
- clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
|
|
|
- clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
|
|
|
- ns = timecounter_cyc2time(&adapter->tc, clock_edge);
|
|
|
+ /* Account for the cyclecounter wrap-around value by
|
|
|
+ * using the converted ns value of the current time to
|
|
|
+ * check for when the next aligned second would occur.
|
|
|
+ */
|
|
|
+ clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
|
|
|
+ clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
|
|
|
+ ns = timecounter_cyc2time(&adapter->hw_tc, clock_edge);
|
|
|
|
|
|
- div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem);
|
|
|
- clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift);
|
|
|
+ div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem);
|
|
|
+ clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift);
|
|
|
|
|
|
- /* specify the initial clock start time */
|
|
|
- trgttiml = (u32)clock_edge;
|
|
|
- trgttimh = (u32)(clock_edge >> 32);
|
|
|
+ /* specify the initial clock start time */
|
|
|
+ trgttiml = (u32)clock_edge;
|
|
|
+ trgttimh = (u32)(clock_edge >> 32);
|
|
|
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
|
|
|
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
|
|
|
- } else {
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
|
|
|
- }
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
|
|
|
|
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
- * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
|
|
|
+ * ixgbe_ptp_read_X550 - read cycle counter value
|
|
|
+ * @hw_cc: cyclecounter structure
|
|
|
+ *
|
|
|
+ * This function reads SYSTIME registers. It is called by the cyclecounter
|
|
|
+ * structure to convert from internal representation into nanoseconds. We need
|
|
|
+ * this for X550 since some skews do not have expected clock frequency and
|
|
|
+ * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
|
|
|
+ * "cycles", rather than seconds and nanoseconds.
|
|
|
+ */
|
|
|
+static cycle_t ixgbe_ptp_read_X550(const struct cyclecounter *hw_cc)
|
|
|
+{
|
|
|
+ struct ixgbe_adapter *adapter =
|
|
|
+ container_of(hw_cc, struct ixgbe_adapter, hw_cc);
|
|
|
+ struct ixgbe_hw *hw = &adapter->hw;
|
|
|
+ struct timespec64 ts;
|
|
|
+
|
|
|
+ /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
|
|
|
+ * Some revisions of hardware run at a higher frequency and so the
|
|
|
+ * cycles are not guaranteed to be nanoseconds. The timespec64 created
|
|
|
+ * here is used for its math/conversions but does not necessarily
|
|
|
+ * represent nominal time.
|
|
|
+ *
|
|
|
+ * It should be noted that this cyclecounter will overflow at a
|
|
|
+ * non-bitmask field since we have to convert our billions of cycles
|
|
|
+ * into an actual cycles count. This results in some possible weird
|
|
|
+ * situations at high cycle counter stamps. However given that 32 bits
|
|
|
+ * of "seconds" is ~138 years this isn't a problem. Even at the
|
|
|
+ * increased frequency of some revisions, this is still ~103 years.
|
|
|
+ * Since the SYSTIME values start at 0 and we never write them, it is
|
|
|
+ * highly unlikely for the cyclecounter to overflow in practice.
|
|
|
+ */
|
|
|
+ IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
|
|
|
+ ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
|
|
|
+ ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
|
|
|
+
|
|
|
+ return (u64)timespec64_to_ns(&ts);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
|
|
|
* @cc: the cyclecounter structure
|
|
|
*
|
|
|
* this function reads the cyclecounter registers and is called by the
|
|
|
* cyclecounter structure used to construct a ns counter from the
|
|
|
* arbitrary fixed point registers
|
|
|
*/
|
|
|
-static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
|
|
|
+static cycle_t ixgbe_ptp_read_82599(const struct cyclecounter *cc)
|
|
|
{
|
|
|
struct ixgbe_adapter *adapter =
|
|
|
- container_of(cc, struct ixgbe_adapter, cc);
|
|
|
+ container_of(cc, struct ixgbe_adapter, hw_cc);
|
|
|
struct ixgbe_hw *hw = &adapter->hw;
|
|
|
u64 stamp = 0;
|
|
|
|
|
@@ -203,20 +296,79 @@ static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
- * ixgbe_ptp_adjfreq
|
|
|
+ * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
|
|
|
+ * @adapter: private adapter structure
|
|
|
+ * @hwtstamp: stack timestamp structure
|
|
|
+ * @systim: unsigned 64bit system time value
|
|
|
+ *
|
|
|
+ * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
|
|
|
+ * which can be used by the stack's ptp functions.
|
|
|
+ *
|
|
|
+ * The lock is used to protect consistency of the cyclecounter and the SYSTIME
|
|
|
+ * registers. However, it does not need to protect against the Rx or Tx
|
|
|
+ * timestamp registers, as there can't be a new timestamp until the old one is
|
|
|
+ * unlatched by reading.
|
|
|
+ *
|
|
|
+ * In addition to the timestamp in hardware, some controllers need a software
|
|
|
+ * overflow cyclecounter, and this function takes this into account as well.
|
|
|
+ **/
|
|
|
+static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
|
|
|
+ struct skb_shared_hwtstamps *hwtstamp,
|
|
|
+ u64 timestamp)
|
|
|
+{
|
|
|
+ unsigned long flags;
|
|
|
+ struct timespec64 systime;
|
|
|
+ u64 ns;
|
|
|
+
|
|
|
+ memset(hwtstamp, 0, sizeof(*hwtstamp));
|
|
|
+
|
|
|
+ switch (adapter->hw.mac.type) {
|
|
|
+ /* X550 and later hardware supposedly represent time using a seconds
|
|
|
+ * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
|
|
|
+ * to convert the timestamp into cycles before it can be fed to the
|
|
|
+ * cyclecounter. We need an actual cyclecounter because some revisions
|
|
|
+ * of hardware run at a higher frequency and thus the counter does
|
|
|
+ * not represent seconds/nanoseconds. Instead it can be thought of as
|
|
|
+ * cycles and billions of cycles.
|
|
|
+ */
|
|
|
+ case ixgbe_mac_X550:
|
|
|
+ case ixgbe_mac_X550EM_x:
|
|
|
+ /* Upper 32 bits represent billions of cycles, lower 32 bits
|
|
|
+ * represent cycles. However, we use timespec64_to_ns for the
|
|
|
+ * correct math even though the units haven't been corrected
|
|
|
+ * yet.
|
|
|
+ */
|
|
|
+ systime.tv_sec = timestamp >> 32;
|
|
|
+ systime.tv_nsec = timestamp & 0xFFFFFFFF;
|
|
|
+
|
|
|
+ timestamp = timespec64_to_ns(&systime);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
+ ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
|
|
|
+ spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
+
|
|
|
+ hwtstamp->hwtstamp = ns_to_ktime(ns);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ixgbe_ptp_adjfreq_82599
|
|
|
* @ptp: the ptp clock structure
|
|
|
* @ppb: parts per billion adjustment from base
|
|
|
*
|
|
|
* adjust the frequency of the ptp cycle counter by the
|
|
|
* indicated ppb from the base frequency.
|
|
|
*/
|
|
|
-static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
|
|
|
+static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
|
|
|
{
|
|
|
struct ixgbe_adapter *adapter =
|
|
|
container_of(ptp, struct ixgbe_adapter, ptp_caps);
|
|
|
struct ixgbe_hw *hw = &adapter->hw;
|
|
|
- u64 freq;
|
|
|
- u32 diff, incval;
|
|
|
+ u64 freq, incval;
|
|
|
+ u32 diff;
|
|
|
int neg_adj = 0;
|
|
|
|
|
|
if (ppb < 0) {
|
|
@@ -235,12 +387,16 @@ static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
|
|
|
|
|
|
switch (hw->mac.type) {
|
|
|
case ixgbe_mac_X540:
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
|
|
|
+ if (incval > 0xFFFFFFFFULL)
|
|
|
+ e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
|
|
|
break;
|
|
|
case ixgbe_mac_82599EB:
|
|
|
+ if (incval > 0x00FFFFFFULL)
|
|
|
+ e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
|
|
|
(1 << IXGBE_INCPER_SHIFT_82599) |
|
|
|
- incval);
|
|
|
+ ((u32)incval & 0x00FFFFFFUL));
|
|
|
break;
|
|
|
default:
|
|
|
break;
|
|
@@ -249,6 +405,43 @@ static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+/**
|
|
|
+ * ixgbe_ptp_adjfreq_X550
|
|
|
+ * @ptp: the ptp clock structure
|
|
|
+ * @ppb: parts per billion adjustment from base
|
|
|
+ *
|
|
|
+ * adjust the frequency of the SYSTIME registers by the indicated ppb from base
|
|
|
+ * frequency
|
|
|
+ */
|
|
|
+static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
|
|
|
+{
|
|
|
+ struct ixgbe_adapter *adapter =
|
|
|
+ container_of(ptp, struct ixgbe_adapter, ptp_caps);
|
|
|
+ struct ixgbe_hw *hw = &adapter->hw;
|
|
|
+ int neg_adj = 0;
|
|
|
+ u64 rate = IXGBE_X550_BASE_PERIOD;
|
|
|
+ u32 inca;
|
|
|
+
|
|
|
+ if (ppb < 0) {
|
|
|
+ neg_adj = 1;
|
|
|
+ ppb = -ppb;
|
|
|
+ }
|
|
|
+ rate *= ppb;
|
|
|
+ rate = div_u64(rate, 1000000000ULL);
|
|
|
+
|
|
|
+ /* warn if rate is too large */
|
|
|
+ if (rate >= INCVALUE_MASK)
|
|
|
+ e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
|
|
|
+
|
|
|
+ inca = rate & INCVALUE_MASK;
|
|
|
+ if (neg_adj)
|
|
|
+ inca |= ISGN;
|
|
|
+
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
/**
|
|
|
* ixgbe_ptp_adjtime
|
|
|
* @ptp: the ptp clock structure
|
|
@@ -263,10 +456,11 @@ static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
|
unsigned long flags;
|
|
|
|
|
|
spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
- timecounter_adjtime(&adapter->tc, delta);
|
|
|
+ timecounter_adjtime(&adapter->hw_tc, delta);
|
|
|
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
|
|
|
- ixgbe_ptp_setup_sdp(adapter);
|
|
|
+ if (adapter->ptp_setup_sdp)
|
|
|
+ adapter->ptp_setup_sdp(adapter);
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
@@ -283,11 +477,11 @@ static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
|
|
|
{
|
|
|
struct ixgbe_adapter *adapter =
|
|
|
container_of(ptp, struct ixgbe_adapter, ptp_caps);
|
|
|
- u64 ns;
|
|
|
unsigned long flags;
|
|
|
+ u64 ns;
|
|
|
|
|
|
spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
- ns = timecounter_read(&adapter->tc);
|
|
|
+ ns = timecounter_read(&adapter->hw_tc);
|
|
|
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
|
|
|
*ts = ns_to_timespec64(ns);
|
|
@@ -308,17 +502,16 @@ static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
|
|
|
{
|
|
|
struct ixgbe_adapter *adapter =
|
|
|
container_of(ptp, struct ixgbe_adapter, ptp_caps);
|
|
|
- u64 ns;
|
|
|
unsigned long flags;
|
|
|
-
|
|
|
- ns = timespec64_to_ns(ts);
|
|
|
+ u64 ns = timespec64_to_ns(ts);
|
|
|
|
|
|
/* reset the timecounter */
|
|
|
spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
- timecounter_init(&adapter->tc, &adapter->cc, ns);
|
|
|
+ timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
|
|
|
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
|
|
|
- ixgbe_ptp_setup_sdp(adapter);
|
|
|
+ if (adapter->ptp_setup_sdp)
|
|
|
+ adapter->ptp_setup_sdp(adapter);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -343,33 +536,26 @@ static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
|
|
|
* event when the clock SDP triggers. Clear mask when PPS is
|
|
|
* disabled
|
|
|
*/
|
|
|
- if (rq->type == PTP_CLK_REQ_PPS) {
|
|
|
- switch (adapter->hw.mac.type) {
|
|
|
- case ixgbe_mac_X540:
|
|
|
- if (on)
|
|
|
- adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
|
|
|
- else
|
|
|
- adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
|
|
|
-
|
|
|
- ixgbe_ptp_setup_sdp(adapter);
|
|
|
- return 0;
|
|
|
- default:
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
+ if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
|
|
|
+ return -ENOTSUPP;
|
|
|
+
|
|
|
+ if (on)
|
|
|
+ adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
|
|
|
+ else
|
|
|
+ adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
|
|
|
|
|
|
- return -ENOTSUPP;
|
|
|
+ adapter->ptp_setup_sdp(adapter);
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
* ixgbe_ptp_check_pps_event
|
|
|
* @adapter: the private adapter structure
|
|
|
- * @eicr: the interrupt cause register value
|
|
|
*
|
|
|
* This function is called by the interrupt routine when checking for
|
|
|
* interrupts. It will check and handle a pps event.
|
|
|
*/
|
|
|
-void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
|
|
|
+void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
|
|
|
{
|
|
|
struct ixgbe_hw *hw = &adapter->hw;
|
|
|
struct ptp_clock_event event;
|
|
@@ -425,7 +611,9 @@ void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
|
|
|
{
|
|
|
struct ixgbe_hw *hw = &adapter->hw;
|
|
|
u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
|
|
|
+ struct ixgbe_ring *rx_ring;
|
|
|
unsigned long rx_event;
|
|
|
+ int n;
|
|
|
|
|
|
/* if we don't have a valid timestamp in the registers, just update the
|
|
|
* timeout counter and exit
|
|
@@ -437,18 +625,42 @@ void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
|
|
|
|
|
|
/* determine the most recent watchdog or rx_timestamp event */
|
|
|
rx_event = adapter->last_rx_ptp_check;
|
|
|
- if (time_after(adapter->last_rx_timestamp, rx_event))
|
|
|
- rx_event = adapter->last_rx_timestamp;
|
|
|
+ for (n = 0; n < adapter->num_rx_queues; n++) {
|
|
|
+ rx_ring = adapter->rx_ring[n];
|
|
|
+ if (time_after(rx_ring->last_rx_timestamp, rx_event))
|
|
|
+ rx_event = rx_ring->last_rx_timestamp;
|
|
|
+ }
|
|
|
|
|
|
/* only need to read the high RXSTMP register to clear the lock */
|
|
|
- if (time_is_before_jiffies(rx_event + 5*HZ)) {
|
|
|
+ if (time_is_before_jiffies(rx_event + 5 * HZ)) {
|
|
|
IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
|
|
|
adapter->last_rx_ptp_check = jiffies;
|
|
|
|
|
|
+ adapter->rx_hwtstamp_cleared++;
|
|
|
e_warn(drv, "clearing RX Timestamp hang\n");
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+/**
|
|
|
+ * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
|
|
|
+ * @adapter: the private adapter structure
|
|
|
+ *
|
|
|
+ * This function should be called whenever the state related to a Tx timestamp
|
|
|
+ * needs to be cleared. This helps ensure that all related bits are reset for
|
|
|
+ * the next Tx timestamp event.
|
|
|
+ */
|
|
|
+static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
|
|
|
+{
|
|
|
+ struct ixgbe_hw *hw = &adapter->hw;
|
|
|
+
|
|
|
+ IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
|
|
|
+ if (adapter->ptp_tx_skb) {
|
|
|
+ dev_kfree_skb_any(adapter->ptp_tx_skb);
|
|
|
+ adapter->ptp_tx_skb = NULL;
|
|
|
+ }
|
|
|
+ clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
|
|
|
+}
|
|
|
+
|
|
|
/**
|
|
|
* ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
|
|
|
* @adapter: the private adapter struct
|
|
@@ -461,23 +673,15 @@ static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
|
|
|
{
|
|
|
struct ixgbe_hw *hw = &adapter->hw;
|
|
|
struct skb_shared_hwtstamps shhwtstamps;
|
|
|
- u64 regval = 0, ns;
|
|
|
- unsigned long flags;
|
|
|
+ u64 regval = 0;
|
|
|
|
|
|
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
|
|
|
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
|
|
|
|
|
|
- spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
- ns = timecounter_cyc2time(&adapter->tc, regval);
|
|
|
- spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
-
|
|
|
- memset(&shhwtstamps, 0, sizeof(shhwtstamps));
|
|
|
- shhwtstamps.hwtstamp = ns_to_ktime(ns);
|
|
|
+ ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
|
|
|
skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
|
|
|
|
|
|
- dev_kfree_skb_any(adapter->ptp_tx_skb);
|
|
|
- adapter->ptp_tx_skb = NULL;
|
|
|
- clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
|
|
|
+ ixgbe_ptp_clear_tx_timestamp(adapter);
|
|
|
}
|
|
|
|
|
|
/**
|
|
@@ -497,38 +701,85 @@ static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
|
|
|
IXGBE_PTP_TX_TIMEOUT);
|
|
|
u32 tsynctxctl;
|
|
|
|
|
|
- if (timeout) {
|
|
|
- dev_kfree_skb_any(adapter->ptp_tx_skb);
|
|
|
- adapter->ptp_tx_skb = NULL;
|
|
|
- clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
|
|
|
- e_warn(drv, "clearing Tx Timestamp hang\n");
|
|
|
+ /* we have to have a valid skb to poll for a timestamp */
|
|
|
+ if (!adapter->ptp_tx_skb) {
|
|
|
+ ixgbe_ptp_clear_tx_timestamp(adapter);
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
+ /* stop polling once we have a valid timestamp */
|
|
|
tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
|
|
|
- if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID)
|
|
|
+ if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
|
|
|
ixgbe_ptp_tx_hwtstamp(adapter);
|
|
|
- else
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (timeout) {
|
|
|
+ ixgbe_ptp_clear_tx_timestamp(adapter);
|
|
|
+ adapter->tx_hwtstamp_timeouts++;
|
|
|
+ e_warn(drv, "clearing Tx Timestamp hang\n");
|
|
|
+ } else {
|
|
|
/* reschedule to keep checking if it's not available yet */
|
|
|
schedule_work(&adapter->ptp_tx_work);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
- * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
|
|
|
- * @adapter: pointer to adapter struct
|
|
|
+ * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
|
|
|
+ * @q_vector: structure containing interrupt and ring information
|
|
|
+ * @skb: the packet
|
|
|
+ *
|
|
|
+ * This function will be called by the Rx routine of the timestamp for this
|
|
|
+ * packet is stored in the buffer. The value is stored in little endian format
|
|
|
+ * starting at the end of the packet data.
|
|
|
+ */
|
|
|
+void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
|
|
|
+ struct sk_buff *skb)
|
|
|
+{
|
|
|
+ __le64 regval;
|
|
|
+
|
|
|
+ /* copy the bits out of the skb, and then trim the skb length */
|
|
|
+ skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val,
|
|
|
+ IXGBE_TS_HDR_LEN);
|
|
|
+ __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
|
|
|
+
|
|
|
+ /* The timestamp is recorded in little endian format, and is stored at
|
|
|
+ * the end of the packet.
|
|
|
+ *
|
|
|
+ * DWORD: N N + 1 N + 2
|
|
|
+ * Field: End of Packet SYSTIMH SYSTIML
|
|
|
+ */
|
|
|
+ ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
|
|
|
+ le64_to_cpu(regval));
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
|
|
|
+ * @q_vector: structure containing interrupt and ring information
|
|
|
* @skb: particular skb to send timestamp with
|
|
|
*
|
|
|
* if the timestamp is valid, we convert it into the timecounter ns
|
|
|
* value, then store that result into the shhwtstamps structure which
|
|
|
* is passed up the network stack
|
|
|
*/
|
|
|
-void ixgbe_ptp_rx_hwtstamp(struct ixgbe_adapter *adapter, struct sk_buff *skb)
|
|
|
+void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
|
|
|
+ struct sk_buff *skb)
|
|
|
{
|
|
|
- struct ixgbe_hw *hw = &adapter->hw;
|
|
|
- struct skb_shared_hwtstamps *shhwtstamps;
|
|
|
- u64 regval = 0, ns;
|
|
|
+ struct ixgbe_adapter *adapter;
|
|
|
+ struct ixgbe_hw *hw;
|
|
|
+ u64 regval = 0;
|
|
|
u32 tsyncrxctl;
|
|
|
- unsigned long flags;
|
|
|
+
|
|
|
+ /* we cannot process timestamps on a ring without a q_vector */
|
|
|
+ if (!q_vector || !q_vector->adapter)
|
|
|
+ return;
|
|
|
+
|
|
|
+ adapter = q_vector->adapter;
|
|
|
+ hw = &adapter->hw;
|
|
|
+
|
|
|
+ /* Read the tsyncrxctl register afterwards in order to prevent taking an
|
|
|
+ * I/O hit on every packet.
|
|
|
+ */
|
|
|
|
|
|
tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
|
|
|
if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
|
|
@@ -537,17 +788,7 @@ void ixgbe_ptp_rx_hwtstamp(struct ixgbe_adapter *adapter, struct sk_buff *skb)
|
|
|
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
|
|
|
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
|
|
|
|
|
|
- spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
- ns = timecounter_cyc2time(&adapter->tc, regval);
|
|
|
- spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
-
|
|
|
- shhwtstamps = skb_hwtstamps(skb);
|
|
|
- shhwtstamps->hwtstamp = ns_to_ktime(ns);
|
|
|
-
|
|
|
- /* Update the last_rx_timestamp timer in order to enable watchdog check
|
|
|
- * for error case of latched timestamp on a dropped packet.
|
|
|
- */
|
|
|
- adapter->last_rx_timestamp = jiffies;
|
|
|
+ ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
|
|
|
}
|
|
|
|
|
|
int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
|
|
@@ -610,14 +851,20 @@ static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
|
|
|
case HWTSTAMP_FILTER_NONE:
|
|
|
tsync_rx_ctl = 0;
|
|
|
tsync_rx_mtrl = 0;
|
|
|
+ adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
|
|
|
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
|
|
|
break;
|
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
|
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
|
|
|
tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
|
|
|
+ adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
|
|
|
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
|
|
|
break;
|
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
|
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
|
|
|
tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
|
|
|
+ adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
|
|
|
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
|
|
|
break;
|
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
@@ -631,9 +878,21 @@ static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
|
|
|
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
|
|
|
is_l2 = true;
|
|
|
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
|
|
|
+ adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
|
|
|
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
|
|
|
break;
|
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
|
case HWTSTAMP_FILTER_ALL:
|
|
|
+ /* The X550 controller is capable of timestamping all packets,
|
|
|
+ * which allows it to accept any filter.
|
|
|
+ */
|
|
|
+ if (hw->mac.type >= ixgbe_mac_X550) {
|
|
|
+ tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
|
|
|
+ config->rx_filter = HWTSTAMP_FILTER_ALL;
|
|
|
+ adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ /* fall through */
|
|
|
default:
|
|
|
/*
|
|
|
* register RXMTRL must be set in order to do V1 packets,
|
|
@@ -641,16 +900,46 @@ static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
|
|
|
* Delay_Req messages and hardware does not support
|
|
|
* timestamping all packets => return error
|
|
|
*/
|
|
|
+ adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
|
|
|
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
|
|
|
config->rx_filter = HWTSTAMP_FILTER_NONE;
|
|
|
return -ERANGE;
|
|
|
}
|
|
|
|
|
|
if (hw->mac.type == ixgbe_mac_82598EB) {
|
|
|
+ adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
|
|
|
+ IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
|
|
|
if (tsync_rx_ctl | tsync_tx_ctl)
|
|
|
return -ERANGE;
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+ /* Per-packet timestamping only works if the filter is set to all
|
|
|
+ * packets. Since this is desired, always timestamp all packets as long
|
|
|
+ * as any Rx filter was configured.
|
|
|
+ */
|
|
|
+ switch (hw->mac.type) {
|
|
|
+ case ixgbe_mac_X550:
|
|
|
+ case ixgbe_mac_X550EM_x:
|
|
|
+ /* enable timestamping all packets only if at least some
|
|
|
+ * packets were requested. Otherwise, play nice and disable
|
|
|
+ * timestamping
|
|
|
+ */
|
|
|
+ if (config->rx_filter == HWTSTAMP_FILTER_NONE)
|
|
|
+ break;
|
|
|
+
|
|
|
+ tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
|
|
|
+ IXGBE_TSYNCRXCTL_TYPE_ALL |
|
|
|
+ IXGBE_TSYNCRXCTL_TSIP_UT_EN;
|
|
|
+ config->rx_filter = HWTSTAMP_FILTER_ALL;
|
|
|
+ adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
|
|
|
+ adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
|
|
|
+ is_l2 = true;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
/* define ethertype filter for timestamping L2 packets */
|
|
|
if (is_l2)
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
|
|
@@ -678,8 +967,8 @@ static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
|
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
|
|
|
|
/* clear TX/RX time stamp registers, just to be sure */
|
|
|
- regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
|
|
|
- regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
|
|
|
+ ixgbe_ptp_clear_tx_timestamp(adapter);
|
|
|
+ IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
@@ -712,23 +1001,9 @@ int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
|
|
|
-EFAULT : 0;
|
|
|
}
|
|
|
|
|
|
-/**
|
|
|
- * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
|
|
|
- * @adapter: pointer to the adapter structure
|
|
|
- *
|
|
|
- * This function should be called to set the proper values for the TIMINCA
|
|
|
- * register and tell the cyclecounter structure what the tick rate of SYSTIME
|
|
|
- * is. It does not directly modify SYSTIME registers or the timecounter
|
|
|
- * structure. It should be called whenever a new TIMINCA value is necessary,
|
|
|
- * such as during initialization or when the link speed changes.
|
|
|
- */
|
|
|
-void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
|
|
|
+static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
|
|
|
+ u32 *shift, u32 *incval)
|
|
|
{
|
|
|
- struct ixgbe_hw *hw = &adapter->hw;
|
|
|
- u32 incval = 0;
|
|
|
- u32 shift = 0;
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
/**
|
|
|
* Scale the NIC cycle counter by a large factor so that
|
|
|
* relatively small corrections to the frequency can be added
|
|
@@ -745,36 +1020,98 @@ void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
|
|
|
*/
|
|
|
switch (adapter->link_speed) {
|
|
|
case IXGBE_LINK_SPEED_100_FULL:
|
|
|
- incval = IXGBE_INCVAL_100;
|
|
|
- shift = IXGBE_INCVAL_SHIFT_100;
|
|
|
+ *shift = IXGBE_INCVAL_SHIFT_100;
|
|
|
+ *incval = IXGBE_INCVAL_100;
|
|
|
break;
|
|
|
case IXGBE_LINK_SPEED_1GB_FULL:
|
|
|
- incval = IXGBE_INCVAL_1GB;
|
|
|
- shift = IXGBE_INCVAL_SHIFT_1GB;
|
|
|
+ *shift = IXGBE_INCVAL_SHIFT_1GB;
|
|
|
+ *incval = IXGBE_INCVAL_1GB;
|
|
|
break;
|
|
|
case IXGBE_LINK_SPEED_10GB_FULL:
|
|
|
default:
|
|
|
- incval = IXGBE_INCVAL_10GB;
|
|
|
- shift = IXGBE_INCVAL_SHIFT_10GB;
|
|
|
+ *shift = IXGBE_INCVAL_SHIFT_10GB;
|
|
|
+ *incval = IXGBE_INCVAL_10GB;
|
|
|
break;
|
|
|
}
|
|
|
+}
|
|
|
|
|
|
- /**
|
|
|
- * Modify the calculated values to fit within the correct
|
|
|
- * number of bits specified by the hardware. The 82599 doesn't
|
|
|
- * have the same space as the X540, so bitshift the calculated
|
|
|
- * values to fit.
|
|
|
+/**
|
|
|
+ * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
|
|
|
+ * @adapter: pointer to the adapter structure
|
|
|
+ *
|
|
|
+ * This function should be called to set the proper values for the TIMINCA
|
|
|
+ * register and tell the cyclecounter structure what the tick rate of SYSTIME
|
|
|
+ * is. It does not directly modify SYSTIME registers or the timecounter
|
|
|
+ * structure. It should be called whenever a new TIMINCA value is necessary,
|
|
|
+ * such as during initialization or when the link speed changes.
|
|
|
+ */
|
|
|
+void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
|
|
|
+{
|
|
|
+ struct ixgbe_hw *hw = &adapter->hw;
|
|
|
+ struct cyclecounter cc;
|
|
|
+ unsigned long flags;
|
|
|
+ u32 incval = 0;
|
|
|
+ u32 tsauxc = 0;
|
|
|
+ u32 fuse0 = 0;
|
|
|
+
|
|
|
+ /* For some of the boards below this mask is technically incorrect.
|
|
|
+ * The timestamp mask overflows at approximately 61bits. However the
|
|
|
+ * particular hardware does not overflow on an even bitmask value.
|
|
|
+ * Instead, it overflows due to conversion of upper 32bits billions of
|
|
|
+ * cycles. Timecounters are not really intended for this purpose so
|
|
|
+ * they do not properly function if the overflow point isn't 2^N-1.
|
|
|
+ * However, the actual SYSTIME values in question take ~138 years to
|
|
|
+ * overflow. In practice this means they won't actually overflow. A
|
|
|
+ * proper fix to this problem would require modification of the
|
|
|
+ * timecounter delta calculations.
|
|
|
*/
|
|
|
+ cc.mask = CLOCKSOURCE_MASK(64);
|
|
|
+ cc.mult = 1;
|
|
|
+ cc.shift = 0;
|
|
|
+
|
|
|
switch (hw->mac.type) {
|
|
|
+ case ixgbe_mac_X550EM_x:
|
|
|
+ /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
|
|
|
+ * designed to represent seconds and nanoseconds when this is
|
|
|
+ * the case. However, some revisions of hardware have a 400Mhz
|
|
|
+ * clock and we have to compensate for this frequency
|
|
|
+ * variation using corrected mult and shift values.
|
|
|
+ */
|
|
|
+ fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
|
|
|
+ if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
|
|
|
+ cc.mult = 3;
|
|
|
+ cc.shift = 2;
|
|
|
+ }
|
|
|
+ /* fallthrough */
|
|
|
+ case ixgbe_mac_X550:
|
|
|
+ cc.read = ixgbe_ptp_read_X550;
|
|
|
+
|
|
|
+ /* enable SYSTIME counter */
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
|
|
|
+ tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
|
|
|
+ tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
|
|
|
+ IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
|
|
|
+
|
|
|
+ IXGBE_WRITE_FLUSH(hw);
|
|
|
+ break;
|
|
|
case ixgbe_mac_X540:
|
|
|
+ cc.read = ixgbe_ptp_read_82599;
|
|
|
+
|
|
|
+ ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
|
|
|
break;
|
|
|
case ixgbe_mac_82599EB:
|
|
|
+ cc.read = ixgbe_ptp_read_82599;
|
|
|
+
|
|
|
+ ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
|
|
|
incval >>= IXGBE_INCVAL_SHIFT_82599;
|
|
|
- shift -= IXGBE_INCVAL_SHIFT_82599;
|
|
|
+ cc.shift -= IXGBE_INCVAL_SHIFT_82599;
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
|
|
|
- (1 << IXGBE_INCPER_SHIFT_82599) |
|
|
|
- incval);
|
|
|
+ (1 << IXGBE_INCPER_SHIFT_82599) | incval);
|
|
|
break;
|
|
|
default:
|
|
|
/* other devices aren't supported */
|
|
@@ -787,13 +1124,7 @@ void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
|
|
|
|
|
|
/* need lock to prevent incorrect read while modifying cyclecounter */
|
|
|
spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
-
|
|
|
- memset(&adapter->cc, 0, sizeof(adapter->cc));
|
|
|
- adapter->cc.read = ixgbe_ptp_read;
|
|
|
- adapter->cc.mask = CYCLECOUNTER_MASK(64);
|
|
|
- adapter->cc.shift = shift;
|
|
|
- adapter->cc.mult = 1;
|
|
|
-
|
|
|
+ memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
|
|
|
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
}
|
|
|
|
|
@@ -814,29 +1145,27 @@ void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
|
|
|
struct ixgbe_hw *hw = &adapter->hw;
|
|
|
unsigned long flags;
|
|
|
|
|
|
- /* set SYSTIME registers to 0 just in case */
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
|
|
|
- IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
|
|
|
- IXGBE_WRITE_FLUSH(hw);
|
|
|
-
|
|
|
/* reset the hardware timestamping mode */
|
|
|
ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
|
|
|
|
|
|
+ /* 82598 does not support PTP */
|
|
|
+ if (hw->mac.type == ixgbe_mac_82598EB)
|
|
|
+ return;
|
|
|
+
|
|
|
ixgbe_ptp_start_cyclecounter(adapter);
|
|
|
|
|
|
spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
-
|
|
|
- /* reset the ns time counter */
|
|
|
- timecounter_init(&adapter->tc, &adapter->cc,
|
|
|
+ timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
|
|
|
ktime_to_ns(ktime_get_real()));
|
|
|
-
|
|
|
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
|
|
|
- /*
|
|
|
- * Now that the shift has been calculated and the systime
|
|
|
+ adapter->last_overflow_check = jiffies;
|
|
|
+
|
|
|
+ /* Now that the shift has been calculated and the systime
|
|
|
* registers reset, (re-)enable the Clock out feature
|
|
|
*/
|
|
|
- ixgbe_ptp_setup_sdp(adapter);
|
|
|
+ if (adapter->ptp_setup_sdp)
|
|
|
+ adapter->ptp_setup_sdp(adapter);
|
|
|
}
|
|
|
|
|
|
/**
|
|
@@ -845,11 +1174,11 @@ void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
|
|
|
*
|
|
|
* This function performs setup of the user entry point function table and
|
|
|
* initializes the PTP clock device, which is used to access the clock-like
|
|
|
- * features of the PTP core. It will be called by ixgbe_ptp_init, only if
|
|
|
- * there isn't already a clock device (such as after a suspend/resume cycle,
|
|
|
- * where the clock device wasn't destroyed).
|
|
|
+ * features of the PTP core. It will be called by ixgbe_ptp_init, and may
|
|
|
+ * reuse a previously initialized clock (such as during a suspend/resume
|
|
|
+ * cycle).
|
|
|
*/
|
|
|
-static int ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
|
|
|
+static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
|
|
|
{
|
|
|
struct net_device *netdev = adapter->netdev;
|
|
|
long err;
|
|
@@ -869,11 +1198,12 @@ static int ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
|
|
|
adapter->ptp_caps.n_ext_ts = 0;
|
|
|
adapter->ptp_caps.n_per_out = 0;
|
|
|
adapter->ptp_caps.pps = 1;
|
|
|
- adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
|
|
|
+ adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
|
|
|
adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
|
|
|
adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
|
|
|
adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
|
|
|
adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
|
|
|
+ adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_x540;
|
|
|
break;
|
|
|
case ixgbe_mac_82599EB:
|
|
|
snprintf(adapter->ptp_caps.name,
|
|
@@ -885,14 +1215,31 @@ static int ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
|
|
|
adapter->ptp_caps.n_ext_ts = 0;
|
|
|
adapter->ptp_caps.n_per_out = 0;
|
|
|
adapter->ptp_caps.pps = 0;
|
|
|
- adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
|
|
|
+ adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
|
|
|
+ adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
|
|
|
+ adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
|
|
|
+ adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
|
|
|
+ adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
|
|
|
+ break;
|
|
|
+ case ixgbe_mac_X550:
|
|
|
+ case ixgbe_mac_X550EM_x:
|
|
|
+ snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
|
|
|
+ adapter->ptp_caps.owner = THIS_MODULE;
|
|
|
+ adapter->ptp_caps.max_adj = 30000000;
|
|
|
+ adapter->ptp_caps.n_alarm = 0;
|
|
|
+ adapter->ptp_caps.n_ext_ts = 0;
|
|
|
+ adapter->ptp_caps.n_per_out = 0;
|
|
|
+ adapter->ptp_caps.pps = 0;
|
|
|
+ adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
|
|
|
adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
|
|
|
adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
|
|
|
adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
|
|
|
adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
|
|
|
+ adapter->ptp_setup_sdp = NULL;
|
|
|
break;
|
|
|
default:
|
|
|
adapter->ptp_clock = NULL;
|
|
|
+ adapter->ptp_setup_sdp = NULL;
|
|
|
return -EOPNOTSUPP;
|
|
|
}
|
|
|
|
|
@@ -961,18 +1308,13 @@ void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
|
|
|
if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
|
|
|
return;
|
|
|
|
|
|
- /* since this might be called in suspend, we don't clear the state,
|
|
|
- * but simply reset the auxiliary PPS signal control register
|
|
|
- */
|
|
|
- IXGBE_WRITE_REG(&adapter->hw, IXGBE_TSAUXC, 0x0);
|
|
|
+ adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
|
|
|
+ if (adapter->ptp_setup_sdp)
|
|
|
+ adapter->ptp_setup_sdp(adapter);
|
|
|
|
|
|
/* ensure that we cancel any pending PTP Tx work item in progress */
|
|
|
cancel_work_sync(&adapter->ptp_tx_work);
|
|
|
- if (adapter->ptp_tx_skb) {
|
|
|
- dev_kfree_skb_any(adapter->ptp_tx_skb);
|
|
|
- adapter->ptp_tx_skb = NULL;
|
|
|
- clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
|
|
|
- }
|
|
|
+ ixgbe_ptp_clear_tx_timestamp(adapter);
|
|
|
}
|
|
|
|
|
|
/**
|