|
@@ -0,0 +1,105 @@
|
|
|
+// SPDX-License-Identifier: GPL-2.0
|
|
|
+/*
|
|
|
+ * Copyright (C) 2012 Regents of the University of California
|
|
|
+ * Copyright (C) 2017 SiFive
|
|
|
+ */
|
|
|
+#include <linux/clocksource.h>
|
|
|
+#include <linux/clockchips.h>
|
|
|
+#include <linux/cpu.h>
|
|
|
+#include <linux/delay.h>
|
|
|
+#include <linux/irq.h>
|
|
|
+#include <asm/sbi.h>
|
|
|
+
|
|
|
+/*
|
|
|
+ * All RISC-V systems have a timer attached to every hart. These timers can be
|
|
|
+ * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup
|
|
|
+ * events. In order to abstract the architecture-specific timer reading and
|
|
|
+ * setting functions away from the clock event insertion code, we provide
|
|
|
+ * function pointers to the clockevent subsystem that perform two basic
|
|
|
+ * operations: rdtime() reads the timer on the current CPU, and
|
|
|
+ * next_event(delta) sets the next timer event to 'delta' cycles in the future.
|
|
|
+ * As the timers are inherently a per-cpu resource, these callbacks perform
|
|
|
+ * operations on the current hart. There is guaranteed to be exactly one timer
|
|
|
+ * per hart on all RISC-V systems.
|
|
|
+ */
|
|
|
+
|
|
|
+static int riscv_clock_next_event(unsigned long delta,
|
|
|
+ struct clock_event_device *ce)
|
|
|
+{
|
|
|
+ csr_set(sie, SIE_STIE);
|
|
|
+ sbi_set_timer(get_cycles64() + delta);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
|
|
|
+ .name = "riscv_timer_clockevent",
|
|
|
+ .features = CLOCK_EVT_FEAT_ONESHOT,
|
|
|
+ .rating = 100,
|
|
|
+ .set_next_event = riscv_clock_next_event,
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * It is guaranteed that all the timers across all the harts are synchronized
|
|
|
+ * within one tick of each other, so while this could technically go
|
|
|
+ * backwards when hopping between CPUs, practically it won't happen.
|
|
|
+ */
|
|
|
+static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
|
|
|
+{
|
|
|
+ return get_cycles64();
|
|
|
+}
|
|
|
+
|
|
|
+static DEFINE_PER_CPU(struct clocksource, riscv_clocksource) = {
|
|
|
+ .name = "riscv_clocksource",
|
|
|
+ .rating = 300,
|
|
|
+ .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
|
|
|
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
|
+ .read = riscv_clocksource_rdtime,
|
|
|
+};
|
|
|
+
|
|
|
+static int riscv_timer_starting_cpu(unsigned int cpu)
|
|
|
+{
|
|
|
+ struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);
|
|
|
+
|
|
|
+ ce->cpumask = cpumask_of(cpu);
|
|
|
+ clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);
|
|
|
+
|
|
|
+ csr_set(sie, SIE_STIE);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int riscv_timer_dying_cpu(unsigned int cpu)
|
|
|
+{
|
|
|
+ csr_clear(sie, SIE_STIE);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* called directly from the low-level interrupt handler */
|
|
|
+void riscv_timer_interrupt(void)
|
|
|
+{
|
|
|
+ struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);
|
|
|
+
|
|
|
+ csr_clear(sie, SIE_STIE);
|
|
|
+ evdev->event_handler(evdev);
|
|
|
+}
|
|
|
+
|
|
|
+static int __init riscv_timer_init_dt(struct device_node *n)
|
|
|
+{
|
|
|
+ int cpu_id = riscv_of_processor_hart(n), error;
|
|
|
+ struct clocksource *cs;
|
|
|
+
|
|
|
+ if (cpu_id != smp_processor_id())
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ cs = per_cpu_ptr(&riscv_clocksource, cpu_id);
|
|
|
+ clocksource_register_hz(cs, riscv_timebase);
|
|
|
+
|
|
|
+ error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
|
|
|
+ "clockevents/riscv/timer:starting",
|
|
|
+ riscv_timer_starting_cpu, riscv_timer_dying_cpu);
|
|
|
+ if (error)
|
|
|
+ pr_err("RISCV timer register failed [%d] for cpu = [%d]\n",
|
|
|
+ error, cpu_id);
|
|
|
+ return error;
|
|
|
+}
|
|
|
+
|
|
|
+TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);
|