|
@@ -66,33 +66,29 @@
|
|
|
*/
|
|
|
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
|
|
|
{
|
|
|
-
|
|
|
.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
|
|
|
+ .seq = SEQCNT_ZERO(hrtimer_bases.seq),
|
|
|
.clock_base =
|
|
|
{
|
|
|
{
|
|
|
.index = HRTIMER_BASE_MONOTONIC,
|
|
|
.clockid = CLOCK_MONOTONIC,
|
|
|
.get_time = &ktime_get,
|
|
|
- .resolution = KTIME_LOW_RES,
|
|
|
},
|
|
|
{
|
|
|
.index = HRTIMER_BASE_REALTIME,
|
|
|
.clockid = CLOCK_REALTIME,
|
|
|
.get_time = &ktime_get_real,
|
|
|
- .resolution = KTIME_LOW_RES,
|
|
|
},
|
|
|
{
|
|
|
.index = HRTIMER_BASE_BOOTTIME,
|
|
|
.clockid = CLOCK_BOOTTIME,
|
|
|
.get_time = &ktime_get_boottime,
|
|
|
- .resolution = KTIME_LOW_RES,
|
|
|
},
|
|
|
{
|
|
|
.index = HRTIMER_BASE_TAI,
|
|
|
.clockid = CLOCK_TAI,
|
|
|
.get_time = &ktime_get_clocktai,
|
|
|
- .resolution = KTIME_LOW_RES,
|
|
|
},
|
|
|
}
|
|
|
};
|
|
@@ -109,33 +105,24 @@ static inline int hrtimer_clockid_to_base(clockid_t clock_id)
|
|
|
return hrtimer_clock_to_base_table[clock_id];
|
|
|
}
|
|
|
|
|
|
-
|
|
|
-/*
|
|
|
- * Get the coarse grained time at the softirq based on xtime and
|
|
|
- * wall_to_monotonic.
|
|
|
- */
|
|
|
-static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
|
|
|
-{
|
|
|
- ktime_t xtim, mono, boot, tai;
|
|
|
- ktime_t off_real, off_boot, off_tai;
|
|
|
-
|
|
|
- mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
|
|
|
- boot = ktime_add(mono, off_boot);
|
|
|
- xtim = ktime_add(mono, off_real);
|
|
|
- tai = ktime_add(mono, off_tai);
|
|
|
-
|
|
|
- base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
|
|
|
- base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
|
|
|
- base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
|
|
|
- base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* Functions and macros which are different for UP/SMP systems are kept in a
|
|
|
* single place
|
|
|
*/
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
|
|
+/*
|
|
|
+ * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
|
|
|
+ * such that hrtimer_callback_running() can unconditionally dereference
|
|
|
+ * timer->base->cpu_base
|
|
|
+ */
|
|
|
+static struct hrtimer_cpu_base migration_cpu_base = {
|
|
|
+ .seq = SEQCNT_ZERO(migration_cpu_base),
|
|
|
+ .clock_base = { { .cpu_base = &migration_cpu_base, }, },
|
|
|
+};
|
|
|
+
|
|
|
+#define migration_base migration_cpu_base.clock_base[0]
|
|
|
+
|
|
|
/*
|
|
|
* We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
|
|
|
* means that all timers which are tied to this base via timer->base are
|
|
@@ -145,8 +132,8 @@ static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
|
|
|
* be found on the lists/queues.
|
|
|
*
|
|
|
* When the timer's base is locked, and the timer removed from list, it is
|
|
|
- * possible to set timer->base = NULL and drop the lock: the timer remains
|
|
|
- * locked.
|
|
|
+ * possible to set timer->base = &migration_base and drop the lock: the timer
|
|
|
+ * remains locked.
|
|
|
*/
|
|
|
static
|
|
|
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
|
|
@@ -156,7 +143,7 @@ struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
|
|
|
|
|
|
for (;;) {
|
|
|
base = timer->base;
|
|
|
- if (likely(base != NULL)) {
|
|
|
+ if (likely(base != &migration_base)) {
|
|
|
raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
|
|
|
if (likely(base == timer->base))
|
|
|
return base;
|
|
@@ -220,8 +207,8 @@ again:
|
|
|
if (unlikely(hrtimer_callback_running(timer)))
|
|
|
return base;
|
|
|
|
|
|
- /* See the comment in lock_timer_base() */
|
|
|
- timer->base = NULL;
|
|
|
+ /* See the comment in lock_hrtimer_base() */
|
|
|
+ timer->base = &migration_base;
|
|
|
raw_spin_unlock(&base->cpu_base->lock);
|
|
|
raw_spin_lock(&new_base->cpu_base->lock);
|
|
|
|
|
@@ -443,24 +430,35 @@ static inline void debug_deactivate(struct hrtimer *timer)
|
|
|
}
|
|
|
|
|
|
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
|
|
|
+static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
|
|
|
+ struct hrtimer *timer)
|
|
|
+{
|
|
|
+#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
+ cpu_base->next_timer = timer;
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
|
|
|
{
|
|
|
struct hrtimer_clock_base *base = cpu_base->clock_base;
|
|
|
ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
|
|
|
- int i;
|
|
|
+ unsigned int active = cpu_base->active_bases;
|
|
|
|
|
|
- for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
|
|
|
+ hrtimer_update_next_timer(cpu_base, NULL);
|
|
|
+ for (; active; base++, active >>= 1) {
|
|
|
struct timerqueue_node *next;
|
|
|
struct hrtimer *timer;
|
|
|
|
|
|
- next = timerqueue_getnext(&base->active);
|
|
|
- if (!next)
|
|
|
+ if (!(active & 0x01))
|
|
|
continue;
|
|
|
|
|
|
+ next = timerqueue_getnext(&base->active);
|
|
|
timer = container_of(next, struct hrtimer, node);
|
|
|
expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
|
|
|
- if (expires.tv64 < expires_next.tv64)
|
|
|
+ if (expires.tv64 < expires_next.tv64) {
|
|
|
expires_next = expires;
|
|
|
+ hrtimer_update_next_timer(cpu_base, timer);
|
|
|
+ }
|
|
|
}
|
|
|
/*
|
|
|
* clock_was_set() might have changed base->offset of any of
|
|
@@ -473,6 +471,16 @@ static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
+static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
|
|
|
+{
|
|
|
+ ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
|
|
|
+ ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
|
|
|
+ ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
|
|
|
+
|
|
|
+ return ktime_get_update_offsets_now(&base->clock_was_set_seq,
|
|
|
+ offs_real, offs_boot, offs_tai);
|
|
|
+}
|
|
|
+
|
|
|
/* High resolution timer related functions */
|
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
|
|
@@ -480,6 +488,8 @@ static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
|
|
|
* High resolution timer enabled ?
|
|
|
*/
|
|
|
static int hrtimer_hres_enabled __read_mostly = 1;
|
|
|
+unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
|
|
|
+EXPORT_SYMBOL_GPL(hrtimer_resolution);
|
|
|
|
|
|
/*
|
|
|
* Enable / Disable high resolution mode
|
|
@@ -508,9 +518,14 @@ static inline int hrtimer_is_hres_enabled(void)
|
|
|
/*
|
|
|
* Is the high resolution mode active ?
|
|
|
*/
|
|
|
+static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
|
|
|
+{
|
|
|
+ return cpu_base->hres_active;
|
|
|
+}
|
|
|
+
|
|
|
static inline int hrtimer_hres_active(void)
|
|
|
{
|
|
|
- return __this_cpu_read(hrtimer_bases.hres_active);
|
|
|
+ return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -521,7 +536,12 @@ static inline int hrtimer_hres_active(void)
|
|
|
static void
|
|
|
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
|
|
|
{
|
|
|
- ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
|
|
|
+ ktime_t expires_next;
|
|
|
+
|
|
|
+ if (!cpu_base->hres_active)
|
|
|
+ return;
|
|
|
+
|
|
|
+ expires_next = __hrtimer_get_next_event(cpu_base);
|
|
|
|
|
|
if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
|
|
|
return;
|
|
@@ -545,63 +565,53 @@ hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
|
|
|
if (cpu_base->hang_detected)
|
|
|
return;
|
|
|
|
|
|
- if (cpu_base->expires_next.tv64 != KTIME_MAX)
|
|
|
- tick_program_event(cpu_base->expires_next, 1);
|
|
|
+ tick_program_event(cpu_base->expires_next, 1);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Shared reprogramming for clock_realtime and clock_monotonic
|
|
|
- *
|
|
|
* When a timer is enqueued and expires earlier than the already enqueued
|
|
|
* timers, we have to check, whether it expires earlier than the timer for
|
|
|
* which the clock event device was armed.
|
|
|
*
|
|
|
- * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
|
|
|
- * and no expiry check happens. The timer gets enqueued into the rbtree. The
|
|
|
- * reprogramming and expiry check is done in the hrtimer_interrupt or in the
|
|
|
- * softirq.
|
|
|
- *
|
|
|
* Called with interrupts disabled and base->cpu_base.lock held
|
|
|
*/
|
|
|
-static int hrtimer_reprogram(struct hrtimer *timer,
|
|
|
- struct hrtimer_clock_base *base)
|
|
|
+static void hrtimer_reprogram(struct hrtimer *timer,
|
|
|
+ struct hrtimer_clock_base *base)
|
|
|
{
|
|
|
struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
|
|
|
ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
|
|
|
- int res;
|
|
|
|
|
|
WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
|
|
|
|
|
|
/*
|
|
|
- * When the callback is running, we do not reprogram the clock event
|
|
|
- * device. The timer callback is either running on a different CPU or
|
|
|
- * the callback is executed in the hrtimer_interrupt context. The
|
|
|
- * reprogramming is handled either by the softirq, which called the
|
|
|
- * callback or at the end of the hrtimer_interrupt.
|
|
|
+ * If the timer is not on the current cpu, we cannot reprogram
|
|
|
+ * the other cpus clock event device.
|
|
|
*/
|
|
|
- if (hrtimer_callback_running(timer))
|
|
|
- return 0;
|
|
|
+ if (base->cpu_base != cpu_base)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If the hrtimer interrupt is running, then it will
|
|
|
+ * reevaluate the clock bases and reprogram the clock event
|
|
|
+ * device. The callbacks are always executed in hard interrupt
|
|
|
+ * context so we don't need an extra check for a running
|
|
|
+ * callback.
|
|
|
+ */
|
|
|
+ if (cpu_base->in_hrtirq)
|
|
|
+ return;
|
|
|
|
|
|
/*
|
|
|
* CLOCK_REALTIME timer might be requested with an absolute
|
|
|
- * expiry time which is less than base->offset. Nothing wrong
|
|
|
- * about that, just avoid to call into the tick code, which
|
|
|
- * has now objections against negative expiry values.
|
|
|
+ * expiry time which is less than base->offset. Set it to 0.
|
|
|
*/
|
|
|
if (expires.tv64 < 0)
|
|
|
- return -ETIME;
|
|
|
+ expires.tv64 = 0;
|
|
|
|
|
|
if (expires.tv64 >= cpu_base->expires_next.tv64)
|
|
|
- return 0;
|
|
|
+ return;
|
|
|
|
|
|
- /*
|
|
|
- * When the target cpu of the timer is currently executing
|
|
|
- * hrtimer_interrupt(), then we do not touch the clock event
|
|
|
- * device. hrtimer_interrupt() will reevaluate all clock bases
|
|
|
- * before reprogramming the device.
|
|
|
- */
|
|
|
- if (cpu_base->in_hrtirq)
|
|
|
- return 0;
|
|
|
+ /* Update the pointer to the next expiring timer */
|
|
|
+ cpu_base->next_timer = timer;
|
|
|
|
|
|
/*
|
|
|
* If a hang was detected in the last timer interrupt then we
|
|
@@ -610,15 +620,14 @@ static int hrtimer_reprogram(struct hrtimer *timer,
|
|
|
* to make progress.
|
|
|
*/
|
|
|
if (cpu_base->hang_detected)
|
|
|
- return 0;
|
|
|
+ return;
|
|
|
|
|
|
/*
|
|
|
- * Clockevents returns -ETIME, when the event was in the past.
|
|
|
+ * Program the timer hardware. We enforce the expiry for
|
|
|
+ * events which are already in the past.
|
|
|
*/
|
|
|
- res = tick_program_event(expires, 0);
|
|
|
- if (!IS_ERR_VALUE(res))
|
|
|
- cpu_base->expires_next = expires;
|
|
|
- return res;
|
|
|
+ cpu_base->expires_next = expires;
|
|
|
+ tick_program_event(expires, 1);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -630,15 +639,6 @@ static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
|
|
|
base->hres_active = 0;
|
|
|
}
|
|
|
|
|
|
-static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
|
|
|
-{
|
|
|
- ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
|
|
|
- ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
|
|
|
- ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
|
|
|
-
|
|
|
- return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* Retrigger next event is called after clock was set
|
|
|
*
|
|
@@ -648,7 +648,7 @@ static void retrigger_next_event(void *arg)
|
|
|
{
|
|
|
struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
|
|
|
|
|
|
- if (!hrtimer_hres_active())
|
|
|
+ if (!base->hres_active)
|
|
|
return;
|
|
|
|
|
|
raw_spin_lock(&base->lock);
|
|
@@ -662,29 +662,19 @@ static void retrigger_next_event(void *arg)
|
|
|
*/
|
|
|
static int hrtimer_switch_to_hres(void)
|
|
|
{
|
|
|
- int i, cpu = smp_processor_id();
|
|
|
- struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- if (base->hres_active)
|
|
|
- return 1;
|
|
|
-
|
|
|
- local_irq_save(flags);
|
|
|
+ struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
|
|
|
|
|
|
if (tick_init_highres()) {
|
|
|
- local_irq_restore(flags);
|
|
|
printk(KERN_WARNING "Could not switch to high resolution "
|
|
|
- "mode on CPU %d\n", cpu);
|
|
|
+ "mode on CPU %d\n", base->cpu);
|
|
|
return 0;
|
|
|
}
|
|
|
base->hres_active = 1;
|
|
|
- for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
|
|
|
- base->clock_base[i].resolution = KTIME_HIGH_RES;
|
|
|
+ hrtimer_resolution = HIGH_RES_NSEC;
|
|
|
|
|
|
tick_setup_sched_timer();
|
|
|
/* "Retrigger" the interrupt to get things going */
|
|
|
retrigger_next_event(NULL);
|
|
|
- local_irq_restore(flags);
|
|
|
return 1;
|
|
|
}
|
|
|
|
|
@@ -706,6 +696,7 @@ void clock_was_set_delayed(void)
|
|
|
|
|
|
#else
|
|
|
|
|
|
+static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
|
|
|
static inline int hrtimer_hres_active(void) { return 0; }
|
|
|
static inline int hrtimer_is_hres_enabled(void) { return 0; }
|
|
|
static inline int hrtimer_switch_to_hres(void) { return 0; }
|
|
@@ -803,6 +794,14 @@ void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
|
|
|
*
|
|
|
* Forward the timer expiry so it will expire in the future.
|
|
|
* Returns the number of overruns.
|
|
|
+ *
|
|
|
+ * Can be safely called from the callback function of @timer. If
|
|
|
+ * called from other contexts @timer must neither be enqueued nor
|
|
|
+ * running the callback and the caller needs to take care of
|
|
|
+ * serialization.
|
|
|
+ *
|
|
|
+ * Note: This only updates the timer expiry value and does not requeue
|
|
|
+ * the timer.
|
|
|
*/
|
|
|
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
|
|
|
{
|
|
@@ -814,8 +813,11 @@ u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
|
|
|
if (delta.tv64 < 0)
|
|
|
return 0;
|
|
|
|
|
|
- if (interval.tv64 < timer->base->resolution.tv64)
|
|
|
- interval.tv64 = timer->base->resolution.tv64;
|
|
|
+ if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ if (interval.tv64 < hrtimer_resolution)
|
|
|
+ interval.tv64 = hrtimer_resolution;
|
|
|
|
|
|
if (unlikely(delta.tv64 >= interval.tv64)) {
|
|
|
s64 incr = ktime_to_ns(interval);
|
|
@@ -849,16 +851,11 @@ static int enqueue_hrtimer(struct hrtimer *timer,
|
|
|
{
|
|
|
debug_activate(timer);
|
|
|
|
|
|
- timerqueue_add(&base->active, &timer->node);
|
|
|
base->cpu_base->active_bases |= 1 << base->index;
|
|
|
|
|
|
- /*
|
|
|
- * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
|
|
|
- * state of a possibly running callback.
|
|
|
- */
|
|
|
- timer->state |= HRTIMER_STATE_ENQUEUED;
|
|
|
+ timer->state = HRTIMER_STATE_ENQUEUED;
|
|
|
|
|
|
- return (&timer->node == base->active.next);
|
|
|
+ return timerqueue_add(&base->active, &timer->node);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -875,39 +872,38 @@ static void __remove_hrtimer(struct hrtimer *timer,
|
|
|
struct hrtimer_clock_base *base,
|
|
|
unsigned long newstate, int reprogram)
|
|
|
{
|
|
|
- struct timerqueue_node *next_timer;
|
|
|
- if (!(timer->state & HRTIMER_STATE_ENQUEUED))
|
|
|
- goto out;
|
|
|
+ struct hrtimer_cpu_base *cpu_base = base->cpu_base;
|
|
|
+ unsigned int state = timer->state;
|
|
|
+
|
|
|
+ timer->state = newstate;
|
|
|
+ if (!(state & HRTIMER_STATE_ENQUEUED))
|
|
|
+ return;
|
|
|
+
|
|
|
+ if (!timerqueue_del(&base->active, &timer->node))
|
|
|
+ cpu_base->active_bases &= ~(1 << base->index);
|
|
|
|
|
|
- next_timer = timerqueue_getnext(&base->active);
|
|
|
- timerqueue_del(&base->active, &timer->node);
|
|
|
- if (&timer->node == next_timer) {
|
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
- /* Reprogram the clock event device. if enabled */
|
|
|
- if (reprogram && hrtimer_hres_active()) {
|
|
|
- ktime_t expires;
|
|
|
-
|
|
|
- expires = ktime_sub(hrtimer_get_expires(timer),
|
|
|
- base->offset);
|
|
|
- if (base->cpu_base->expires_next.tv64 == expires.tv64)
|
|
|
- hrtimer_force_reprogram(base->cpu_base, 1);
|
|
|
- }
|
|
|
+ /*
|
|
|
+ * Note: If reprogram is false we do not update
|
|
|
+ * cpu_base->next_timer. This happens when we remove the first
|
|
|
+ * timer on a remote cpu. No harm as we never dereference
|
|
|
+ * cpu_base->next_timer. So the worst thing what can happen is
|
|
|
+ * an superflous call to hrtimer_force_reprogram() on the
|
|
|
+ * remote cpu later on if the same timer gets enqueued again.
|
|
|
+ */
|
|
|
+ if (reprogram && timer == cpu_base->next_timer)
|
|
|
+ hrtimer_force_reprogram(cpu_base, 1);
|
|
|
#endif
|
|
|
- }
|
|
|
- if (!timerqueue_getnext(&base->active))
|
|
|
- base->cpu_base->active_bases &= ~(1 << base->index);
|
|
|
-out:
|
|
|
- timer->state = newstate;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* remove hrtimer, called with base lock held
|
|
|
*/
|
|
|
static inline int
|
|
|
-remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
|
|
|
+remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
|
|
|
{
|
|
|
if (hrtimer_is_queued(timer)) {
|
|
|
- unsigned long state;
|
|
|
+ unsigned long state = timer->state;
|
|
|
int reprogram;
|
|
|
|
|
|
/*
|
|
@@ -921,30 +917,35 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
|
|
|
debug_deactivate(timer);
|
|
|
timer_stats_hrtimer_clear_start_info(timer);
|
|
|
reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
|
|
|
- /*
|
|
|
- * We must preserve the CALLBACK state flag here,
|
|
|
- * otherwise we could move the timer base in
|
|
|
- * switch_hrtimer_base.
|
|
|
- */
|
|
|
- state = timer->state & HRTIMER_STATE_CALLBACK;
|
|
|
+
|
|
|
+ if (!restart)
|
|
|
+ state = HRTIMER_STATE_INACTIVE;
|
|
|
+
|
|
|
__remove_hrtimer(timer, base, state, reprogram);
|
|
|
return 1;
|
|
|
}
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
|
|
- unsigned long delta_ns, const enum hrtimer_mode mode,
|
|
|
- int wakeup)
|
|
|
+/**
|
|
|
+ * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
|
|
|
+ * @timer: the timer to be added
|
|
|
+ * @tim: expiry time
|
|
|
+ * @delta_ns: "slack" range for the timer
|
|
|
+ * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
|
|
|
+ * relative (HRTIMER_MODE_REL)
|
|
|
+ */
|
|
|
+void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
|
|
+ unsigned long delta_ns, const enum hrtimer_mode mode)
|
|
|
{
|
|
|
struct hrtimer_clock_base *base, *new_base;
|
|
|
unsigned long flags;
|
|
|
- int ret, leftmost;
|
|
|
+ int leftmost;
|
|
|
|
|
|
base = lock_hrtimer_base(timer, &flags);
|
|
|
|
|
|
/* Remove an active timer from the queue: */
|
|
|
- ret = remove_hrtimer(timer, base);
|
|
|
+ remove_hrtimer(timer, base, true);
|
|
|
|
|
|
if (mode & HRTIMER_MODE_REL) {
|
|
|
tim = ktime_add_safe(tim, base->get_time());
|
|
@@ -956,7 +957,7 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
|
|
* timeouts. This will go away with the GTOD framework.
|
|
|
*/
|
|
|
#ifdef CONFIG_TIME_LOW_RES
|
|
|
- tim = ktime_add_safe(tim, base->resolution);
|
|
|
+ tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
|
|
|
#endif
|
|
|
}
|
|
|
|
|
@@ -968,11 +969,8 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
|
|
timer_stats_hrtimer_set_start_info(timer);
|
|
|
|
|
|
leftmost = enqueue_hrtimer(timer, new_base);
|
|
|
-
|
|
|
- if (!leftmost) {
|
|
|
- unlock_hrtimer_base(timer, &flags);
|
|
|
- return ret;
|
|
|
- }
|
|
|
+ if (!leftmost)
|
|
|
+ goto unlock;
|
|
|
|
|
|
if (!hrtimer_is_hres_active(timer)) {
|
|
|
/*
|
|
@@ -980,72 +978,14 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
|
|
* on dynticks target.
|
|
|
*/
|
|
|
wake_up_nohz_cpu(new_base->cpu_base->cpu);
|
|
|
- } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
|
|
|
- hrtimer_reprogram(timer, new_base)) {
|
|
|
- /*
|
|
|
- * Only allow reprogramming if the new base is on this CPU.
|
|
|
- * (it might still be on another CPU if the timer was pending)
|
|
|
- *
|
|
|
- * XXX send_remote_softirq() ?
|
|
|
- */
|
|
|
- if (wakeup) {
|
|
|
- /*
|
|
|
- * We need to drop cpu_base->lock to avoid a
|
|
|
- * lock ordering issue vs. rq->lock.
|
|
|
- */
|
|
|
- raw_spin_unlock(&new_base->cpu_base->lock);
|
|
|
- raise_softirq_irqoff(HRTIMER_SOFTIRQ);
|
|
|
- local_irq_restore(flags);
|
|
|
- return ret;
|
|
|
- } else {
|
|
|
- __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
|
|
|
- }
|
|
|
+ } else {
|
|
|
+ hrtimer_reprogram(timer, new_base);
|
|
|
}
|
|
|
-
|
|
|
+unlock:
|
|
|
unlock_hrtimer_base(timer, &flags);
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
|
|
|
-
|
|
|
-/**
|
|
|
- * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
|
|
|
- * @timer: the timer to be added
|
|
|
- * @tim: expiry time
|
|
|
- * @delta_ns: "slack" range for the timer
|
|
|
- * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
|
|
|
- * relative (HRTIMER_MODE_REL)
|
|
|
- *
|
|
|
- * Returns:
|
|
|
- * 0 on success
|
|
|
- * 1 when the timer was active
|
|
|
- */
|
|
|
-int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
|
|
- unsigned long delta_ns, const enum hrtimer_mode mode)
|
|
|
-{
|
|
|
- return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
|
|
|
}
|
|
|
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
|
|
|
|
|
|
-/**
|
|
|
- * hrtimer_start - (re)start an hrtimer on the current CPU
|
|
|
- * @timer: the timer to be added
|
|
|
- * @tim: expiry time
|
|
|
- * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
|
|
|
- * relative (HRTIMER_MODE_REL)
|
|
|
- *
|
|
|
- * Returns:
|
|
|
- * 0 on success
|
|
|
- * 1 when the timer was active
|
|
|
- */
|
|
|
-int
|
|
|
-hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
|
|
|
-{
|
|
|
- return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL_GPL(hrtimer_start);
|
|
|
-
|
|
|
-
|
|
|
/**
|
|
|
* hrtimer_try_to_cancel - try to deactivate a timer
|
|
|
* @timer: hrtimer to stop
|
|
@@ -1062,10 +1002,19 @@ int hrtimer_try_to_cancel(struct hrtimer *timer)
|
|
|
unsigned long flags;
|
|
|
int ret = -1;
|
|
|
|
|
|
+ /*
|
|
|
+ * Check lockless first. If the timer is not active (neither
|
|
|
+ * enqueued nor running the callback, nothing to do here. The
|
|
|
+ * base lock does not serialize against a concurrent enqueue,
|
|
|
+ * so we can avoid taking it.
|
|
|
+ */
|
|
|
+ if (!hrtimer_active(timer))
|
|
|
+ return 0;
|
|
|
+
|
|
|
base = lock_hrtimer_base(timer, &flags);
|
|
|
|
|
|
if (!hrtimer_callback_running(timer))
|
|
|
- ret = remove_hrtimer(timer, base);
|
|
|
+ ret = remove_hrtimer(timer, base, false);
|
|
|
|
|
|
unlock_hrtimer_base(timer, &flags);
|
|
|
|
|
@@ -1115,26 +1064,22 @@ EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
|
|
|
/**
|
|
|
* hrtimer_get_next_event - get the time until next expiry event
|
|
|
*
|
|
|
- * Returns the delta to the next expiry event or KTIME_MAX if no timer
|
|
|
- * is pending.
|
|
|
+ * Returns the next expiry time or KTIME_MAX if no timer is pending.
|
|
|
*/
|
|
|
-ktime_t hrtimer_get_next_event(void)
|
|
|
+u64 hrtimer_get_next_event(void)
|
|
|
{
|
|
|
struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
|
|
|
- ktime_t mindelta = { .tv64 = KTIME_MAX };
|
|
|
+ u64 expires = KTIME_MAX;
|
|
|
unsigned long flags;
|
|
|
|
|
|
raw_spin_lock_irqsave(&cpu_base->lock, flags);
|
|
|
|
|
|
- if (!hrtimer_hres_active())
|
|
|
- mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
|
|
|
- ktime_get());
|
|
|
+ if (!__hrtimer_hres_active(cpu_base))
|
|
|
+ expires = __hrtimer_get_next_event(cpu_base).tv64;
|
|
|
|
|
|
raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
|
|
|
|
|
|
- if (mindelta.tv64 < 0)
|
|
|
- mindelta.tv64 = 0;
|
|
|
- return mindelta;
|
|
|
+ return expires;
|
|
|
}
|
|
|
#endif
|
|
|
|
|
@@ -1176,37 +1121,73 @@ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
|
|
|
}
|
|
|
EXPORT_SYMBOL_GPL(hrtimer_init);
|
|
|
|
|
|
-/**
|
|
|
- * hrtimer_get_res - get the timer resolution for a clock
|
|
|
- * @which_clock: which clock to query
|
|
|
- * @tp: pointer to timespec variable to store the resolution
|
|
|
+/*
|
|
|
+ * A timer is active, when it is enqueued into the rbtree or the
|
|
|
+ * callback function is running or it's in the state of being migrated
|
|
|
+ * to another cpu.
|
|
|
*
|
|
|
- * Store the resolution of the clock selected by @which_clock in the
|
|
|
- * variable pointed to by @tp.
|
|
|
+ * It is important for this function to not return a false negative.
|
|
|
*/
|
|
|
-int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
|
|
|
+bool hrtimer_active(const struct hrtimer *timer)
|
|
|
{
|
|
|
struct hrtimer_cpu_base *cpu_base;
|
|
|
- int base = hrtimer_clockid_to_base(which_clock);
|
|
|
+ unsigned int seq;
|
|
|
|
|
|
- cpu_base = raw_cpu_ptr(&hrtimer_bases);
|
|
|
- *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
|
|
|
+ do {
|
|
|
+ cpu_base = READ_ONCE(timer->base->cpu_base);
|
|
|
+ seq = raw_read_seqcount_begin(&cpu_base->seq);
|
|
|
|
|
|
- return 0;
|
|
|
+ if (timer->state != HRTIMER_STATE_INACTIVE ||
|
|
|
+ cpu_base->running == timer)
|
|
|
+ return true;
|
|
|
+
|
|
|
+ } while (read_seqcount_retry(&cpu_base->seq, seq) ||
|
|
|
+ cpu_base != READ_ONCE(timer->base->cpu_base));
|
|
|
+
|
|
|
+ return false;
|
|
|
}
|
|
|
-EXPORT_SYMBOL_GPL(hrtimer_get_res);
|
|
|
+EXPORT_SYMBOL_GPL(hrtimer_active);
|
|
|
|
|
|
-static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
|
|
|
+/*
|
|
|
+ * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
|
|
|
+ * distinct sections:
|
|
|
+ *
|
|
|
+ * - queued: the timer is queued
|
|
|
+ * - callback: the timer is being ran
|
|
|
+ * - post: the timer is inactive or (re)queued
|
|
|
+ *
|
|
|
+ * On the read side we ensure we observe timer->state and cpu_base->running
|
|
|
+ * from the same section, if anything changed while we looked at it, we retry.
|
|
|
+ * This includes timer->base changing because sequence numbers alone are
|
|
|
+ * insufficient for that.
|
|
|
+ *
|
|
|
+ * The sequence numbers are required because otherwise we could still observe
|
|
|
+ * a false negative if the read side got smeared over multiple consequtive
|
|
|
+ * __run_hrtimer() invocations.
|
|
|
+ */
|
|
|
+
|
|
|
+static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
|
|
|
+ struct hrtimer_clock_base *base,
|
|
|
+ struct hrtimer *timer, ktime_t *now)
|
|
|
{
|
|
|
- struct hrtimer_clock_base *base = timer->base;
|
|
|
- struct hrtimer_cpu_base *cpu_base = base->cpu_base;
|
|
|
enum hrtimer_restart (*fn)(struct hrtimer *);
|
|
|
int restart;
|
|
|
|
|
|
- WARN_ON(!irqs_disabled());
|
|
|
+ lockdep_assert_held(&cpu_base->lock);
|
|
|
|
|
|
debug_deactivate(timer);
|
|
|
- __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
|
|
|
+ cpu_base->running = timer;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Separate the ->running assignment from the ->state assignment.
|
|
|
+ *
|
|
|
+ * As with a regular write barrier, this ensures the read side in
|
|
|
+ * hrtimer_active() cannot observe cpu_base->running == NULL &&
|
|
|
+ * timer->state == INACTIVE.
|
|
|
+ */
|
|
|
+ raw_write_seqcount_barrier(&cpu_base->seq);
|
|
|
+
|
|
|
+ __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
|
|
|
timer_stats_account_hrtimer(timer);
|
|
|
fn = timer->function;
|
|
|
|
|
@@ -1222,58 +1203,43 @@ static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
|
|
|
raw_spin_lock(&cpu_base->lock);
|
|
|
|
|
|
/*
|
|
|
- * Note: We clear the CALLBACK bit after enqueue_hrtimer and
|
|
|
+ * Note: We clear the running state after enqueue_hrtimer and
|
|
|
* we do not reprogramm the event hardware. Happens either in
|
|
|
* hrtimer_start_range_ns() or in hrtimer_interrupt()
|
|
|
+ *
|
|
|
+ * Note: Because we dropped the cpu_base->lock above,
|
|
|
+ * hrtimer_start_range_ns() can have popped in and enqueued the timer
|
|
|
+ * for us already.
|
|
|
*/
|
|
|
- if (restart != HRTIMER_NORESTART) {
|
|
|
- BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
|
|
|
+ if (restart != HRTIMER_NORESTART &&
|
|
|
+ !(timer->state & HRTIMER_STATE_ENQUEUED))
|
|
|
enqueue_hrtimer(timer, base);
|
|
|
- }
|
|
|
|
|
|
- WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
|
|
|
+ /*
|
|
|
+ * Separate the ->running assignment from the ->state assignment.
|
|
|
+ *
|
|
|
+ * As with a regular write barrier, this ensures the read side in
|
|
|
+ * hrtimer_active() cannot observe cpu_base->running == NULL &&
|
|
|
+ * timer->state == INACTIVE.
|
|
|
+ */
|
|
|
+ raw_write_seqcount_barrier(&cpu_base->seq);
|
|
|
|
|
|
- timer->state &= ~HRTIMER_STATE_CALLBACK;
|
|
|
+ WARN_ON_ONCE(cpu_base->running != timer);
|
|
|
+ cpu_base->running = NULL;
|
|
|
}
|
|
|
|
|
|
-#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
-
|
|
|
-/*
|
|
|
- * High resolution timer interrupt
|
|
|
- * Called with interrupts disabled
|
|
|
- */
|
|
|
-void hrtimer_interrupt(struct clock_event_device *dev)
|
|
|
+static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
|
|
|
{
|
|
|
- struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
|
|
|
- ktime_t expires_next, now, entry_time, delta;
|
|
|
- int i, retries = 0;
|
|
|
-
|
|
|
- BUG_ON(!cpu_base->hres_active);
|
|
|
- cpu_base->nr_events++;
|
|
|
- dev->next_event.tv64 = KTIME_MAX;
|
|
|
-
|
|
|
- raw_spin_lock(&cpu_base->lock);
|
|
|
- entry_time = now = hrtimer_update_base(cpu_base);
|
|
|
-retry:
|
|
|
- cpu_base->in_hrtirq = 1;
|
|
|
- /*
|
|
|
- * We set expires_next to KTIME_MAX here with cpu_base->lock
|
|
|
- * held to prevent that a timer is enqueued in our queue via
|
|
|
- * the migration code. This does not affect enqueueing of
|
|
|
- * timers which run their callback and need to be requeued on
|
|
|
- * this CPU.
|
|
|
- */
|
|
|
- cpu_base->expires_next.tv64 = KTIME_MAX;
|
|
|
+ struct hrtimer_clock_base *base = cpu_base->clock_base;
|
|
|
+ unsigned int active = cpu_base->active_bases;
|
|
|
|
|
|
- for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
|
|
|
- struct hrtimer_clock_base *base;
|
|
|
+ for (; active; base++, active >>= 1) {
|
|
|
struct timerqueue_node *node;
|
|
|
ktime_t basenow;
|
|
|
|
|
|
- if (!(cpu_base->active_bases & (1 << i)))
|
|
|
+ if (!(active & 0x01))
|
|
|
continue;
|
|
|
|
|
|
- base = cpu_base->clock_base + i;
|
|
|
basenow = ktime_add(now, base->offset);
|
|
|
|
|
|
while ((node = timerqueue_getnext(&base->active))) {
|
|
@@ -1296,9 +1262,42 @@ retry:
|
|
|
if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
|
|
|
break;
|
|
|
|
|
|
- __run_hrtimer(timer, &basenow);
|
|
|
+ __run_hrtimer(cpu_base, base, timer, &basenow);
|
|
|
}
|
|
|
}
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
+
|
|
|
+/*
|
|
|
+ * High resolution timer interrupt
|
|
|
+ * Called with interrupts disabled
|
|
|
+ */
|
|
|
+void hrtimer_interrupt(struct clock_event_device *dev)
|
|
|
+{
|
|
|
+ struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
|
|
|
+ ktime_t expires_next, now, entry_time, delta;
|
|
|
+ int retries = 0;
|
|
|
+
|
|
|
+ BUG_ON(!cpu_base->hres_active);
|
|
|
+ cpu_base->nr_events++;
|
|
|
+ dev->next_event.tv64 = KTIME_MAX;
|
|
|
+
|
|
|
+ raw_spin_lock(&cpu_base->lock);
|
|
|
+ entry_time = now = hrtimer_update_base(cpu_base);
|
|
|
+retry:
|
|
|
+ cpu_base->in_hrtirq = 1;
|
|
|
+ /*
|
|
|
+ * We set expires_next to KTIME_MAX here with cpu_base->lock
|
|
|
+ * held to prevent that a timer is enqueued in our queue via
|
|
|
+ * the migration code. This does not affect enqueueing of
|
|
|
+ * timers which run their callback and need to be requeued on
|
|
|
+ * this CPU.
|
|
|
+ */
|
|
|
+ cpu_base->expires_next.tv64 = KTIME_MAX;
|
|
|
+
|
|
|
+ __hrtimer_run_queues(cpu_base, now);
|
|
|
+
|
|
|
/* Reevaluate the clock bases for the next expiry */
|
|
|
expires_next = __hrtimer_get_next_event(cpu_base);
|
|
|
/*
|
|
@@ -1310,8 +1309,7 @@ retry:
|
|
|
raw_spin_unlock(&cpu_base->lock);
|
|
|
|
|
|
/* Reprogramming necessary ? */
|
|
|
- if (expires_next.tv64 == KTIME_MAX ||
|
|
|
- !tick_program_event(expires_next, 0)) {
|
|
|
+ if (!tick_program_event(expires_next, 0)) {
|
|
|
cpu_base->hang_detected = 0;
|
|
|
return;
|
|
|
}
|
|
@@ -1344,8 +1342,8 @@ retry:
|
|
|
cpu_base->hang_detected = 1;
|
|
|
raw_spin_unlock(&cpu_base->lock);
|
|
|
delta = ktime_sub(now, entry_time);
|
|
|
- if (delta.tv64 > cpu_base->max_hang_time.tv64)
|
|
|
- cpu_base->max_hang_time = delta;
|
|
|
+ if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
|
|
|
+ cpu_base->max_hang_time = (unsigned int) delta.tv64;
|
|
|
/*
|
|
|
* Limit it to a sensible value as we enforce a longer
|
|
|
* delay. Give the CPU at least 100ms to catch up.
|
|
@@ -1363,7 +1361,7 @@ retry:
|
|
|
* local version of hrtimer_peek_ahead_timers() called with interrupts
|
|
|
* disabled.
|
|
|
*/
|
|
|
-static void __hrtimer_peek_ahead_timers(void)
|
|
|
+static inline void __hrtimer_peek_ahead_timers(void)
|
|
|
{
|
|
|
struct tick_device *td;
|
|
|
|
|
@@ -1375,29 +1373,6 @@ static void __hrtimer_peek_ahead_timers(void)
|
|
|
hrtimer_interrupt(td->evtdev);
|
|
|
}
|
|
|
|
|
|
-/**
|
|
|
- * hrtimer_peek_ahead_timers -- run soft-expired timers now
|
|
|
- *
|
|
|
- * hrtimer_peek_ahead_timers will peek at the timer queue of
|
|
|
- * the current cpu and check if there are any timers for which
|
|
|
- * the soft expires time has passed. If any such timers exist,
|
|
|
- * they are run immediately and then removed from the timer queue.
|
|
|
- *
|
|
|
- */
|
|
|
-void hrtimer_peek_ahead_timers(void)
|
|
|
-{
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- local_irq_save(flags);
|
|
|
- __hrtimer_peek_ahead_timers();
|
|
|
- local_irq_restore(flags);
|
|
|
-}
|
|
|
-
|
|
|
-static void run_hrtimer_softirq(struct softirq_action *h)
|
|
|
-{
|
|
|
- hrtimer_peek_ahead_timers();
|
|
|
-}
|
|
|
-
|
|
|
#else /* CONFIG_HIGH_RES_TIMERS */
|
|
|
|
|
|
static inline void __hrtimer_peek_ahead_timers(void) { }
|
|
@@ -1405,66 +1380,32 @@ static inline void __hrtimer_peek_ahead_timers(void) { }
|
|
|
#endif /* !CONFIG_HIGH_RES_TIMERS */
|
|
|
|
|
|
/*
|
|
|
- * Called from timer softirq every jiffy, expire hrtimers:
|
|
|
- *
|
|
|
- * For HRT its the fall back code to run the softirq in the timer
|
|
|
- * softirq context in case the hrtimer initialization failed or has
|
|
|
- * not been done yet.
|
|
|
+ * Called from run_local_timers in hardirq context every jiffy
|
|
|
*/
|
|
|
-void hrtimer_run_pending(void)
|
|
|
+void hrtimer_run_queues(void)
|
|
|
{
|
|
|
- if (hrtimer_hres_active())
|
|
|
+ struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
|
|
|
+ ktime_t now;
|
|
|
+
|
|
|
+ if (__hrtimer_hres_active(cpu_base))
|
|
|
return;
|
|
|
|
|
|
/*
|
|
|
- * This _is_ ugly: We have to check in the softirq context,
|
|
|
- * whether we can switch to highres and / or nohz mode. The
|
|
|
- * clocksource switch happens in the timer interrupt with
|
|
|
- * xtime_lock held. Notification from there only sets the
|
|
|
- * check bit in the tick_oneshot code, otherwise we might
|
|
|
- * deadlock vs. xtime_lock.
|
|
|
+ * This _is_ ugly: We have to check periodically, whether we
|
|
|
+ * can switch to highres and / or nohz mode. The clocksource
|
|
|
+ * switch happens with xtime_lock held. Notification from
|
|
|
+ * there only sets the check bit in the tick_oneshot code,
|
|
|
+ * otherwise we might deadlock vs. xtime_lock.
|
|
|
*/
|
|
|
- if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
|
|
|
+ if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
|
|
|
hrtimer_switch_to_hres();
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Called from hardirq context every jiffy
|
|
|
- */
|
|
|
-void hrtimer_run_queues(void)
|
|
|
-{
|
|
|
- struct timerqueue_node *node;
|
|
|
- struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
|
|
|
- struct hrtimer_clock_base *base;
|
|
|
- int index, gettime = 1;
|
|
|
-
|
|
|
- if (hrtimer_hres_active())
|
|
|
return;
|
|
|
-
|
|
|
- for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
|
|
|
- base = &cpu_base->clock_base[index];
|
|
|
- if (!timerqueue_getnext(&base->active))
|
|
|
- continue;
|
|
|
-
|
|
|
- if (gettime) {
|
|
|
- hrtimer_get_softirq_time(cpu_base);
|
|
|
- gettime = 0;
|
|
|
- }
|
|
|
-
|
|
|
- raw_spin_lock(&cpu_base->lock);
|
|
|
-
|
|
|
- while ((node = timerqueue_getnext(&base->active))) {
|
|
|
- struct hrtimer *timer;
|
|
|
-
|
|
|
- timer = container_of(node, struct hrtimer, node);
|
|
|
- if (base->softirq_time.tv64 <=
|
|
|
- hrtimer_get_expires_tv64(timer))
|
|
|
- break;
|
|
|
-
|
|
|
- __run_hrtimer(timer, &base->softirq_time);
|
|
|
- }
|
|
|
- raw_spin_unlock(&cpu_base->lock);
|
|
|
}
|
|
|
+
|
|
|
+ raw_spin_lock(&cpu_base->lock);
|
|
|
+ now = hrtimer_update_base(cpu_base);
|
|
|
+ __hrtimer_run_queues(cpu_base, now);
|
|
|
+ raw_spin_unlock(&cpu_base->lock);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -1497,8 +1438,6 @@ static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mod
|
|
|
do {
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
hrtimer_start_expires(&t->timer, mode);
|
|
|
- if (!hrtimer_active(&t->timer))
|
|
|
- t->task = NULL;
|
|
|
|
|
|
if (likely(t->task))
|
|
|
freezable_schedule();
|
|
@@ -1642,11 +1581,11 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
|
|
|
debug_deactivate(timer);
|
|
|
|
|
|
/*
|
|
|
- * Mark it as STATE_MIGRATE not INACTIVE otherwise the
|
|
|
+ * Mark it as ENQUEUED not INACTIVE otherwise the
|
|
|
* timer could be seen as !active and just vanish away
|
|
|
* under us on another CPU
|
|
|
*/
|
|
|
- __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
|
|
|
+ __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
|
|
|
timer->base = new_base;
|
|
|
/*
|
|
|
* Enqueue the timers on the new cpu. This does not
|
|
@@ -1657,9 +1596,6 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
|
|
|
* event device.
|
|
|
*/
|
|
|
enqueue_hrtimer(timer, new_base);
|
|
|
-
|
|
|
- /* Clear the migration state bit */
|
|
|
- timer->state &= ~HRTIMER_STATE_MIGRATE;
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -1731,9 +1667,6 @@ void __init hrtimers_init(void)
|
|
|
hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
|
|
|
(void *)(long)smp_processor_id());
|
|
|
register_cpu_notifier(&hrtimers_nb);
|
|
|
-#ifdef CONFIG_HIGH_RES_TIMERS
|
|
|
- open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
|
|
|
-#endif
|
|
|
}
|
|
|
|
|
|
/**
|
|
@@ -1772,8 +1705,6 @@ schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
|
|
|
hrtimer_init_sleeper(&t, current);
|
|
|
|
|
|
hrtimer_start_expires(&t.timer, mode);
|
|
|
- if (!hrtimer_active(&t.timer))
|
|
|
- t.task = NULL;
|
|
|
|
|
|
if (likely(t.task))
|
|
|
schedule();
|