|
@@ -186,6 +186,80 @@ void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect);
|
|
|
# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
|
|
|
#endif
|
|
|
|
|
|
+#include <uapi/linux/types.h>
|
|
|
+
|
|
|
+static __always_inline void data_access_exceeds_word_size(void)
|
|
|
+#ifdef __compiletime_warning
|
|
|
+__compiletime_warning("data access exceeds word size and won't be atomic")
|
|
|
+#endif
|
|
|
+;
|
|
|
+
|
|
|
+static __always_inline void data_access_exceeds_word_size(void)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+static __always_inline void __read_once_size(volatile void *p, void *res, int size)
|
|
|
+{
|
|
|
+ switch (size) {
|
|
|
+ case 1: *(__u8 *)res = *(volatile __u8 *)p; break;
|
|
|
+ case 2: *(__u16 *)res = *(volatile __u16 *)p; break;
|
|
|
+ case 4: *(__u32 *)res = *(volatile __u32 *)p; break;
|
|
|
+#ifdef CONFIG_64BIT
|
|
|
+ case 8: *(__u64 *)res = *(volatile __u64 *)p; break;
|
|
|
+#endif
|
|
|
+ default:
|
|
|
+ barrier();
|
|
|
+ __builtin_memcpy((void *)res, (const void *)p, size);
|
|
|
+ data_access_exceeds_word_size();
|
|
|
+ barrier();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static __always_inline void __assign_once_size(volatile void *p, void *res, int size)
|
|
|
+{
|
|
|
+ switch (size) {
|
|
|
+ case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
|
|
|
+ case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
|
|
|
+ case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
|
|
|
+#ifdef CONFIG_64BIT
|
|
|
+ case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
|
|
|
+#endif
|
|
|
+ default:
|
|
|
+ barrier();
|
|
|
+ __builtin_memcpy((void *)p, (const void *)res, size);
|
|
|
+ data_access_exceeds_word_size();
|
|
|
+ barrier();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Prevent the compiler from merging or refetching reads or writes. The
|
|
|
+ * compiler is also forbidden from reordering successive instances of
|
|
|
+ * READ_ONCE, ASSIGN_ONCE and ACCESS_ONCE (see below), but only when the
|
|
|
+ * compiler is aware of some particular ordering. One way to make the
|
|
|
+ * compiler aware of ordering is to put the two invocations of READ_ONCE,
|
|
|
+ * ASSIGN_ONCE or ACCESS_ONCE() in different C statements.
|
|
|
+ *
|
|
|
+ * In contrast to ACCESS_ONCE these two macros will also work on aggregate
|
|
|
+ * data types like structs or unions. If the size of the accessed data
|
|
|
+ * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
|
|
|
+ * READ_ONCE() and ASSIGN_ONCE() will fall back to memcpy and print a
|
|
|
+ * compile-time warning.
|
|
|
+ *
|
|
|
+ * Their two major use cases are: (1) Mediating communication between
|
|
|
+ * process-level code and irq/NMI handlers, all running on the same CPU,
|
|
|
+ * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
|
|
|
+ * mutilate accesses that either do not require ordering or that interact
|
|
|
+ * with an explicit memory barrier or atomic instruction that provides the
|
|
|
+ * required ordering.
|
|
|
+ */
|
|
|
+
|
|
|
+#define READ_ONCE(x) \
|
|
|
+ ({ typeof(x) __val; __read_once_size(&x, &__val, sizeof(__val)); __val; })
|
|
|
+
|
|
|
+#define ASSIGN_ONCE(val, x) \
|
|
|
+ ({ typeof(x) __val; __val = val; __assign_once_size(&x, &__val, sizeof(__val)); __val; })
|
|
|
+
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
|
|
#endif /* __ASSEMBLY__ */
|