|
@@ -0,0 +1,61 @@
|
|
|
+
|
|
|
+#include <linux/interrupt.h>
|
|
|
+#include <linux/kernel.h>
|
|
|
+#include <linux/slab.h>
|
|
|
+#include <linux/cpu.h>
|
|
|
+
|
|
|
+static int get_first_sibling(unsigned int cpu)
|
|
|
+{
|
|
|
+ unsigned int ret;
|
|
|
+
|
|
|
+ ret = cpumask_first(topology_sibling_cpumask(cpu));
|
|
|
+ if (ret < nr_cpu_ids)
|
|
|
+ return ret;
|
|
|
+ return cpu;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Take a map of online CPUs and the number of available interrupt vectors
|
|
|
+ * and generate an output cpumask suitable for spreading MSI/MSI-X vectors
|
|
|
+ * so that they are distributed as good as possible around the CPUs. If
|
|
|
+ * more vectors than CPUs are available we'll map one to each CPU,
|
|
|
+ * otherwise we map one to the first sibling of each socket.
|
|
|
+ *
|
|
|
+ * If there are more vectors than CPUs we will still only have one bit
|
|
|
+ * set per CPU, but interrupt code will keep on assigning the vectors from
|
|
|
+ * the start of the bitmap until we run out of vectors.
|
|
|
+ */
|
|
|
+struct cpumask *irq_create_affinity_mask(unsigned int *nr_vecs)
|
|
|
+{
|
|
|
+ struct cpumask *affinity_mask;
|
|
|
+ unsigned int max_vecs = *nr_vecs;
|
|
|
+
|
|
|
+ if (max_vecs == 1)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ affinity_mask = kzalloc(cpumask_size(), GFP_KERNEL);
|
|
|
+ if (!affinity_mask) {
|
|
|
+ *nr_vecs = 1;
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (max_vecs >= num_online_cpus()) {
|
|
|
+ cpumask_copy(affinity_mask, cpu_online_mask);
|
|
|
+ *nr_vecs = num_online_cpus();
|
|
|
+ } else {
|
|
|
+ unsigned int vecs = 0, cpu;
|
|
|
+
|
|
|
+ for_each_online_cpu(cpu) {
|
|
|
+ if (cpu == get_first_sibling(cpu)) {
|
|
|
+ cpumask_set_cpu(cpu, affinity_mask);
|
|
|
+ vecs++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (--max_vecs == 0)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ *nr_vecs = vecs;
|
|
|
+ }
|
|
|
+
|
|
|
+ return affinity_mask;
|
|
|
+}
|