|
@@ -17,135 +17,187 @@
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
*/
|
|
|
|
|
|
-#include <linux/init.h>
|
|
|
+#include <linux/bitops.h>
|
|
|
#include <linux/sched.h>
|
|
|
+#include <linux/slab.h>
|
|
|
#include <linux/mm.h>
|
|
|
-#include <linux/smp.h>
|
|
|
-#include <linux/percpu.h>
|
|
|
|
|
|
+#include <asm/cpufeature.h>
|
|
|
#include <asm/mmu_context.h>
|
|
|
#include <asm/tlbflush.h>
|
|
|
-#include <asm/cachetype.h>
|
|
|
|
|
|
-#define asid_bits(reg) \
|
|
|
- (((read_cpuid(ID_AA64MMFR0_EL1) & 0xf0) >> 2) + 8)
|
|
|
+static u32 asid_bits;
|
|
|
+static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
|
|
|
|
|
|
-#define ASID_FIRST_VERSION (1 << MAX_ASID_BITS)
|
|
|
+static atomic64_t asid_generation;
|
|
|
+static unsigned long *asid_map;
|
|
|
|
|
|
-static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
|
|
|
-unsigned int cpu_last_asid = ASID_FIRST_VERSION;
|
|
|
+static DEFINE_PER_CPU(atomic64_t, active_asids);
|
|
|
+static DEFINE_PER_CPU(u64, reserved_asids);
|
|
|
+static cpumask_t tlb_flush_pending;
|
|
|
|
|
|
-/*
|
|
|
- * We fork()ed a process, and we need a new context for the child to run in.
|
|
|
- */
|
|
|
-void __init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
|
+#define ASID_MASK (~GENMASK(asid_bits - 1, 0))
|
|
|
+#define ASID_FIRST_VERSION (1UL << asid_bits)
|
|
|
+#define NUM_USER_ASIDS ASID_FIRST_VERSION
|
|
|
+
|
|
|
+static void flush_context(unsigned int cpu)
|
|
|
{
|
|
|
- mm->context.id = 0;
|
|
|
- raw_spin_lock_init(&mm->context.id_lock);
|
|
|
+ int i;
|
|
|
+ u64 asid;
|
|
|
+
|
|
|
+ /* Update the list of reserved ASIDs and the ASID bitmap. */
|
|
|
+ bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Ensure the generation bump is observed before we xchg the
|
|
|
+ * active_asids.
|
|
|
+ */
|
|
|
+ smp_wmb();
|
|
|
+
|
|
|
+ for_each_possible_cpu(i) {
|
|
|
+ asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
|
|
|
+ /*
|
|
|
+ * If this CPU has already been through a
|
|
|
+ * rollover, but hasn't run another task in
|
|
|
+ * the meantime, we must preserve its reserved
|
|
|
+ * ASID, as this is the only trace we have of
|
|
|
+ * the process it is still running.
|
|
|
+ */
|
|
|
+ if (asid == 0)
|
|
|
+ asid = per_cpu(reserved_asids, i);
|
|
|
+ __set_bit(asid & ~ASID_MASK, asid_map);
|
|
|
+ per_cpu(reserved_asids, i) = asid;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Queue a TLB invalidate and flush the I-cache if necessary. */
|
|
|
+ cpumask_setall(&tlb_flush_pending);
|
|
|
+
|
|
|
+ if (icache_is_aivivt())
|
|
|
+ __flush_icache_all();
|
|
|
}
|
|
|
|
|
|
-static void flush_context(void)
|
|
|
+static int is_reserved_asid(u64 asid)
|
|
|
{
|
|
|
- /* set the reserved TTBR0 before flushing the TLB */
|
|
|
- cpu_set_reserved_ttbr0();
|
|
|
- local_flush_tlb_all();
|
|
|
- if (icache_is_aivivt())
|
|
|
- __local_flush_icache_all();
|
|
|
+ int cpu;
|
|
|
+ for_each_possible_cpu(cpu)
|
|
|
+ if (per_cpu(reserved_asids, cpu) == asid)
|
|
|
+ return 1;
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
-static void set_mm_context(struct mm_struct *mm, unsigned int asid)
|
|
|
+static u64 new_context(struct mm_struct *mm, unsigned int cpu)
|
|
|
{
|
|
|
- unsigned long flags;
|
|
|
+ static u32 cur_idx = 1;
|
|
|
+ u64 asid = atomic64_read(&mm->context.id);
|
|
|
+ u64 generation = atomic64_read(&asid_generation);
|
|
|
|
|
|
- /*
|
|
|
- * Locking needed for multi-threaded applications where the same
|
|
|
- * mm->context.id could be set from different CPUs during the
|
|
|
- * broadcast. This function is also called via IPI so the
|
|
|
- * mm->context.id_lock has to be IRQ-safe.
|
|
|
- */
|
|
|
- raw_spin_lock_irqsave(&mm->context.id_lock, flags);
|
|
|
- if (likely((mm->context.id ^ cpu_last_asid) >> MAX_ASID_BITS)) {
|
|
|
+ if (asid != 0) {
|
|
|
/*
|
|
|
- * Old version of ASID found. Set the new one and reset
|
|
|
- * mm_cpumask(mm).
|
|
|
+ * If our current ASID was active during a rollover, we
|
|
|
+ * can continue to use it and this was just a false alarm.
|
|
|
*/
|
|
|
- mm->context.id = asid;
|
|
|
- cpumask_clear(mm_cpumask(mm));
|
|
|
+ if (is_reserved_asid(asid))
|
|
|
+ return generation | (asid & ~ASID_MASK);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We had a valid ASID in a previous life, so try to re-use
|
|
|
+ * it if possible.
|
|
|
+ */
|
|
|
+ asid &= ~ASID_MASK;
|
|
|
+ if (!__test_and_set_bit(asid, asid_map))
|
|
|
+ goto bump_gen;
|
|
|
}
|
|
|
- raw_spin_unlock_irqrestore(&mm->context.id_lock, flags);
|
|
|
|
|
|
/*
|
|
|
- * Set the mm_cpumask(mm) bit for the current CPU.
|
|
|
+ * Allocate a free ASID. If we can't find one, take a note of the
|
|
|
+ * currently active ASIDs and mark the TLBs as requiring flushes.
|
|
|
+ * We always count from ASID #1, as we use ASID #0 when setting a
|
|
|
+ * reserved TTBR0 for the init_mm.
|
|
|
*/
|
|
|
- cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
|
|
|
+ asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
|
|
|
+ if (asid != NUM_USER_ASIDS)
|
|
|
+ goto set_asid;
|
|
|
+
|
|
|
+ /* We're out of ASIDs, so increment the global generation count */
|
|
|
+ generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
|
|
|
+ &asid_generation);
|
|
|
+ flush_context(cpu);
|
|
|
+
|
|
|
+ /* We have at least 1 ASID per CPU, so this will always succeed */
|
|
|
+ asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
|
|
|
+
|
|
|
+set_asid:
|
|
|
+ __set_bit(asid, asid_map);
|
|
|
+ cur_idx = asid;
|
|
|
+
|
|
|
+bump_gen:
|
|
|
+ asid |= generation;
|
|
|
+ cpumask_clear(mm_cpumask(mm));
|
|
|
+ return asid;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Reset the ASID on the current CPU. This function call is broadcast from the
|
|
|
- * CPU handling the ASID rollover and holding cpu_asid_lock.
|
|
|
- */
|
|
|
-static void reset_context(void *info)
|
|
|
+void check_and_switch_context(struct mm_struct *mm, unsigned int cpu)
|
|
|
{
|
|
|
- unsigned int asid;
|
|
|
- unsigned int cpu = smp_processor_id();
|
|
|
- struct mm_struct *mm = current->active_mm;
|
|
|
+ unsigned long flags;
|
|
|
+ u64 asid;
|
|
|
+
|
|
|
+ asid = atomic64_read(&mm->context.id);
|
|
|
|
|
|
/*
|
|
|
- * current->active_mm could be init_mm for the idle thread immediately
|
|
|
- * after secondary CPU boot or hotplug. TTBR0_EL1 is already set to
|
|
|
- * the reserved value, so no need to reset any context.
|
|
|
+ * The memory ordering here is subtle. We rely on the control
|
|
|
+ * dependency between the generation read and the update of
|
|
|
+ * active_asids to ensure that we are synchronised with a
|
|
|
+ * parallel rollover (i.e. this pairs with the smp_wmb() in
|
|
|
+ * flush_context).
|
|
|
*/
|
|
|
- if (mm == &init_mm)
|
|
|
- return;
|
|
|
+ if (!((asid ^ atomic64_read(&asid_generation)) >> asid_bits)
|
|
|
+ && atomic64_xchg_relaxed(&per_cpu(active_asids, cpu), asid))
|
|
|
+ goto switch_mm_fastpath;
|
|
|
+
|
|
|
+ raw_spin_lock_irqsave(&cpu_asid_lock, flags);
|
|
|
+ /* Check that our ASID belongs to the current generation. */
|
|
|
+ asid = atomic64_read(&mm->context.id);
|
|
|
+ if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) {
|
|
|
+ asid = new_context(mm, cpu);
|
|
|
+ atomic64_set(&mm->context.id, asid);
|
|
|
+ }
|
|
|
|
|
|
- smp_rmb();
|
|
|
- asid = cpu_last_asid + cpu;
|
|
|
+ if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
|
|
|
+ local_flush_tlb_all();
|
|
|
|
|
|
- flush_context();
|
|
|
- set_mm_context(mm, asid);
|
|
|
+ atomic64_set(&per_cpu(active_asids, cpu), asid);
|
|
|
+ cpumask_set_cpu(cpu, mm_cpumask(mm));
|
|
|
+ raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
|
|
|
|
|
|
- /* set the new ASID */
|
|
|
+switch_mm_fastpath:
|
|
|
cpu_switch_mm(mm->pgd, mm);
|
|
|
}
|
|
|
|
|
|
-void __new_context(struct mm_struct *mm)
|
|
|
+static int asids_init(void)
|
|
|
{
|
|
|
- unsigned int asid;
|
|
|
- unsigned int bits = asid_bits();
|
|
|
-
|
|
|
- raw_spin_lock(&cpu_asid_lock);
|
|
|
- /*
|
|
|
- * Check the ASID again, in case the change was broadcast from another
|
|
|
- * CPU before we acquired the lock.
|
|
|
- */
|
|
|
- if (!unlikely((mm->context.id ^ cpu_last_asid) >> MAX_ASID_BITS)) {
|
|
|
- cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
|
|
|
- raw_spin_unlock(&cpu_asid_lock);
|
|
|
- return;
|
|
|
- }
|
|
|
- /*
|
|
|
- * At this point, it is guaranteed that the current mm (with an old
|
|
|
- * ASID) isn't active on any other CPU since the ASIDs are changed
|
|
|
- * simultaneously via IPI.
|
|
|
- */
|
|
|
- asid = ++cpu_last_asid;
|
|
|
-
|
|
|
- /*
|
|
|
- * If we've used up all our ASIDs, we need to start a new version and
|
|
|
- * flush the TLB.
|
|
|
- */
|
|
|
- if (unlikely((asid & ((1 << bits) - 1)) == 0)) {
|
|
|
- /* increment the ASID version */
|
|
|
- cpu_last_asid += (1 << MAX_ASID_BITS) - (1 << bits);
|
|
|
- if (cpu_last_asid == 0)
|
|
|
- cpu_last_asid = ASID_FIRST_VERSION;
|
|
|
- asid = cpu_last_asid + smp_processor_id();
|
|
|
- flush_context();
|
|
|
- smp_wmb();
|
|
|
- smp_call_function(reset_context, NULL, 1);
|
|
|
- cpu_last_asid += NR_CPUS - 1;
|
|
|
+ int fld = cpuid_feature_extract_field(read_cpuid(ID_AA64MMFR0_EL1), 4);
|
|
|
+
|
|
|
+ switch (fld) {
|
|
|
+ default:
|
|
|
+ pr_warn("Unknown ASID size (%d); assuming 8-bit\n", fld);
|
|
|
+ /* Fallthrough */
|
|
|
+ case 0:
|
|
|
+ asid_bits = 8;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ asid_bits = 16;
|
|
|
}
|
|
|
|
|
|
- set_mm_context(mm, asid);
|
|
|
- raw_spin_unlock(&cpu_asid_lock);
|
|
|
+ /* If we end up with more CPUs than ASIDs, expect things to crash */
|
|
|
+ WARN_ON(NUM_USER_ASIDS < num_possible_cpus());
|
|
|
+ atomic64_set(&asid_generation, ASID_FIRST_VERSION);
|
|
|
+ asid_map = kzalloc(BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(*asid_map),
|
|
|
+ GFP_KERNEL);
|
|
|
+ if (!asid_map)
|
|
|
+ panic("Failed to allocate bitmap for %lu ASIDs\n",
|
|
|
+ NUM_USER_ASIDS);
|
|
|
+
|
|
|
+ pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS);
|
|
|
+ return 0;
|
|
|
}
|
|
|
+early_initcall(asids_init);
|