|
@@ -0,0 +1,226 @@
|
|
|
+/*
|
|
|
+ * Copyright (C) 2011-12 Synopsys, Inc. (www.synopsys.com)
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License version 2 as
|
|
|
+ * published by the Free Software Foundation.
|
|
|
+ *
|
|
|
+ */
|
|
|
+
|
|
|
+#include <linux/interrupt.h>
|
|
|
+#include <linux/module.h>
|
|
|
+#include <linux/of.h>
|
|
|
+#include <linux/irqdomain.h>
|
|
|
+#include <linux/irqchip.h>
|
|
|
+#include "../../drivers/irqchip/irqchip.h"
|
|
|
+#include <asm/irq.h>
|
|
|
+
|
|
|
+/*
|
|
|
+ * Early Hardware specific Interrupt setup
|
|
|
+ * -Platform independent, needed for each CPU (not foldable into init_IRQ)
|
|
|
+ * -Called very early (start_kernel -> setup_arch -> setup_processor)
|
|
|
+ *
|
|
|
+ * what it does ?
|
|
|
+ * -Optionally, setup the High priority Interrupts as Level 2 IRQs
|
|
|
+ */
|
|
|
+void arc_init_IRQ(void)
|
|
|
+{
|
|
|
+ int level_mask = 0;
|
|
|
+
|
|
|
+ /* setup any high priority Interrupts (Level2 in ARCompact jargon) */
|
|
|
+ level_mask |= IS_ENABLED(CONFIG_ARC_IRQ3_LV2) << 3;
|
|
|
+ level_mask |= IS_ENABLED(CONFIG_ARC_IRQ5_LV2) << 5;
|
|
|
+ level_mask |= IS_ENABLED(CONFIG_ARC_IRQ6_LV2) << 6;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Write to register, even if no LV2 IRQs configured to reset it
|
|
|
+ * in case bootloader had mucked with it
|
|
|
+ */
|
|
|
+ write_aux_reg(AUX_IRQ_LEV, level_mask);
|
|
|
+
|
|
|
+ if (level_mask)
|
|
|
+ pr_info("Level-2 interrupts bitset %x\n", level_mask);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * ARC700 core includes a simple on-chip intc supporting
|
|
|
+ * -per IRQ enable/disable
|
|
|
+ * -2 levels of interrupts (high/low)
|
|
|
+ * -all interrupts being level triggered
|
|
|
+ *
|
|
|
+ * To reduce platform code, we assume all IRQs directly hooked-up into intc.
|
|
|
+ * Platforms with external intc, hence cascaded IRQs, are free to over-ride
|
|
|
+ * below, per IRQ.
|
|
|
+ */
|
|
|
+
|
|
|
+static void arc_irq_mask(struct irq_data *data)
|
|
|
+{
|
|
|
+ unsigned int ienb;
|
|
|
+
|
|
|
+ ienb = read_aux_reg(AUX_IENABLE);
|
|
|
+ ienb &= ~(1 << data->irq);
|
|
|
+ write_aux_reg(AUX_IENABLE, ienb);
|
|
|
+}
|
|
|
+
|
|
|
+static void arc_irq_unmask(struct irq_data *data)
|
|
|
+{
|
|
|
+ unsigned int ienb;
|
|
|
+
|
|
|
+ ienb = read_aux_reg(AUX_IENABLE);
|
|
|
+ ienb |= (1 << data->irq);
|
|
|
+ write_aux_reg(AUX_IENABLE, ienb);
|
|
|
+}
|
|
|
+
|
|
|
+static struct irq_chip onchip_intc = {
|
|
|
+ .name = "ARC In-core Intc",
|
|
|
+ .irq_mask = arc_irq_mask,
|
|
|
+ .irq_unmask = arc_irq_unmask,
|
|
|
+};
|
|
|
+
|
|
|
+static int arc_intc_domain_map(struct irq_domain *d, unsigned int irq,
|
|
|
+ irq_hw_number_t hw)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * XXX: the IPI IRQ needs to be handled like TIMER too. However ARC core
|
|
|
+ * code doesn't own it (like TIMER0). ISS IDU / ezchip define it
|
|
|
+ * in platform header which can't be included here as it goes
|
|
|
+ * against multi-platform image philisophy
|
|
|
+ */
|
|
|
+ if (irq == TIMER0_IRQ)
|
|
|
+ irq_set_chip_and_handler(irq, &onchip_intc, handle_percpu_irq);
|
|
|
+ else
|
|
|
+ irq_set_chip_and_handler(irq, &onchip_intc, handle_level_irq);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static const struct irq_domain_ops arc_intc_domain_ops = {
|
|
|
+ .xlate = irq_domain_xlate_onecell,
|
|
|
+ .map = arc_intc_domain_map,
|
|
|
+};
|
|
|
+
|
|
|
+static struct irq_domain *root_domain;
|
|
|
+
|
|
|
+static int __init
|
|
|
+init_onchip_IRQ(struct device_node *intc, struct device_node *parent)
|
|
|
+{
|
|
|
+ if (parent)
|
|
|
+ panic("DeviceTree incore intc not a root irq controller\n");
|
|
|
+
|
|
|
+ root_domain = irq_domain_add_legacy(intc, NR_CPU_IRQS, 0, 0,
|
|
|
+ &arc_intc_domain_ops, NULL);
|
|
|
+
|
|
|
+ if (!root_domain)
|
|
|
+ panic("root irq domain not avail\n");
|
|
|
+
|
|
|
+ /* with this we don't need to export root_domain */
|
|
|
+ irq_set_default_host(root_domain);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+IRQCHIP_DECLARE(arc_intc, "snps,arc700-intc", init_onchip_IRQ);
|
|
|
+
|
|
|
+/*
|
|
|
+ * arch_local_irq_enable - Enable interrupts.
|
|
|
+ *
|
|
|
+ * 1. Explicitly called to re-enable interrupts
|
|
|
+ * 2. Implicitly called from spin_unlock_irq, write_unlock_irq etc
|
|
|
+ * which maybe in hard ISR itself
|
|
|
+ *
|
|
|
+ * Semantics of this function change depending on where it is called from:
|
|
|
+ *
|
|
|
+ * -If called from hard-ISR, it must not invert interrupt priorities
|
|
|
+ * e.g. suppose TIMER is high priority (Level 2) IRQ
|
|
|
+ * Time hard-ISR, timer_interrupt( ) calls spin_unlock_irq several times.
|
|
|
+ * Here local_irq_enable( ) shd not re-enable lower priority interrupts
|
|
|
+ * -If called from soft-ISR, it must re-enable all interrupts
|
|
|
+ * soft ISR are low prioity jobs which can be very slow, thus all IRQs
|
|
|
+ * must be enabled while they run.
|
|
|
+ * Now hardware context wise we may still be in L2 ISR (not done rtie)
|
|
|
+ * still we must re-enable both L1 and L2 IRQs
|
|
|
+ * Another twist is prev scenario with flow being
|
|
|
+ * L1 ISR ==> interrupted by L2 ISR ==> L2 soft ISR
|
|
|
+ * here we must not re-enable Ll as prev Ll Interrupt's h/w context will get
|
|
|
+ * over-written (this is deficiency in ARC700 Interrupt mechanism)
|
|
|
+ */
|
|
|
+
|
|
|
+#ifdef CONFIG_ARC_COMPACT_IRQ_LEVELS /* Complex version for 2 IRQ levels */
|
|
|
+
|
|
|
+void arch_local_irq_enable(void)
|
|
|
+{
|
|
|
+
|
|
|
+ unsigned long flags = arch_local_save_flags();
|
|
|
+
|
|
|
+ /* Allow both L1 and L2 at the onset */
|
|
|
+ flags |= (STATUS_E1_MASK | STATUS_E2_MASK);
|
|
|
+
|
|
|
+ /* Called from hard ISR (between irq_enter and irq_exit) */
|
|
|
+ if (in_irq()) {
|
|
|
+
|
|
|
+ /* If in L2 ISR, don't re-enable any further IRQs as this can
|
|
|
+ * cause IRQ priorities to get upside down. e.g. it could allow
|
|
|
+ * L1 be taken while in L2 hard ISR which is wrong not only in
|
|
|
+ * theory, it can also cause the dreaded L1-L2-L1 scenario
|
|
|
+ */
|
|
|
+ if (flags & STATUS_A2_MASK)
|
|
|
+ flags &= ~(STATUS_E1_MASK | STATUS_E2_MASK);
|
|
|
+
|
|
|
+ /* Even if in L1 ISR, allowe Higher prio L2 IRQs */
|
|
|
+ else if (flags & STATUS_A1_MASK)
|
|
|
+ flags &= ~(STATUS_E1_MASK);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* called from soft IRQ, ideally we want to re-enable all levels */
|
|
|
+
|
|
|
+ else if (in_softirq()) {
|
|
|
+
|
|
|
+ /* However if this is case of L1 interrupted by L2,
|
|
|
+ * re-enabling both may cause whaco L1-L2-L1 scenario
|
|
|
+ * because ARC700 allows level 1 to interrupt an active L2 ISR
|
|
|
+ * Thus we disable both
|
|
|
+ * However some code, executing in soft ISR wants some IRQs
|
|
|
+ * to be enabled so we re-enable L2 only
|
|
|
+ *
|
|
|
+ * How do we determine L1 intr by L2
|
|
|
+ * -A2 is set (means in L2 ISR)
|
|
|
+ * -E1 is set in this ISR's pt_regs->status32 which is
|
|
|
+ * saved copy of status32_l2 when l2 ISR happened
|
|
|
+ */
|
|
|
+ struct pt_regs *pt = get_irq_regs();
|
|
|
+
|
|
|
+ if ((flags & STATUS_A2_MASK) && pt &&
|
|
|
+ (pt->status32 & STATUS_A1_MASK)) {
|
|
|
+ /*flags &= ~(STATUS_E1_MASK | STATUS_E2_MASK); */
|
|
|
+ flags &= ~(STATUS_E1_MASK);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ arch_local_irq_restore(flags);
|
|
|
+}
|
|
|
+
|
|
|
+#else /* ! CONFIG_ARC_COMPACT_IRQ_LEVELS */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Simpler version for only 1 level of interrupt
|
|
|
+ * Here we only Worry about Level 1 Bits
|
|
|
+ */
|
|
|
+void arch_local_irq_enable(void)
|
|
|
+{
|
|
|
+ unsigned long flags;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * ARC IDE Drivers tries to re-enable interrupts from hard-isr
|
|
|
+ * context which is simply wrong
|
|
|
+ */
|
|
|
+ if (in_irq()) {
|
|
|
+ WARN_ONCE(1, "IRQ enabled from hard-isr");
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ flags = arch_local_save_flags();
|
|
|
+ flags |= (STATUS_E1_MASK | STATUS_E2_MASK);
|
|
|
+ arch_local_irq_restore(flags);
|
|
|
+}
|
|
|
+#endif
|
|
|
+EXPORT_SYMBOL(arch_local_irq_enable);
|