|
@@ -1,8 +1,8 @@
|
|
|
/*****************************************************************************
|
|
|
* *
|
|
|
* File: sge.c *
|
|
|
- * $Revision: 1.13 $ *
|
|
|
- * $Date: 2005/03/23 07:41:27 $ *
|
|
|
+ * $Revision: 1.26 $ *
|
|
|
+ * $Date: 2005/06/21 18:29:48 $ *
|
|
|
* Description: *
|
|
|
* DMA engine. *
|
|
|
* part of the Chelsio 10Gb Ethernet Driver. *
|
|
@@ -58,59 +58,62 @@
|
|
|
#include "regs.h"
|
|
|
#include "espi.h"
|
|
|
|
|
|
+
|
|
|
+#ifdef NETIF_F_TSO
|
|
|
#include <linux/tcp.h>
|
|
|
+#endif
|
|
|
|
|
|
#define SGE_CMDQ_N 2
|
|
|
#define SGE_FREELQ_N 2
|
|
|
-#define SGE_CMDQ0_E_N 512
|
|
|
+#define SGE_CMDQ0_E_N 1024
|
|
|
#define SGE_CMDQ1_E_N 128
|
|
|
#define SGE_FREEL_SIZE 4096
|
|
|
#define SGE_JUMBO_FREEL_SIZE 512
|
|
|
#define SGE_FREEL_REFILL_THRESH 16
|
|
|
#define SGE_RESPQ_E_N 1024
|
|
|
-#define SGE_INTR_BUCKETSIZE 100
|
|
|
-#define SGE_INTR_LATBUCKETS 5
|
|
|
-#define SGE_INTR_MAXBUCKETS 11
|
|
|
-#define SGE_INTRTIMER0 1
|
|
|
-#define SGE_INTRTIMER1 50
|
|
|
-#define SGE_INTRTIMER_NRES 10000
|
|
|
-#define SGE_RX_COPY_THRESHOLD 256
|
|
|
+#define SGE_INTRTIMER_NRES 1000
|
|
|
+#define SGE_RX_COPY_THRES 256
|
|
|
#define SGE_RX_SM_BUF_SIZE 1536
|
|
|
|
|
|
-#define SGE_RESPQ_REPLENISH_THRES ((3 * SGE_RESPQ_E_N) / 4)
|
|
|
+# define SGE_RX_DROP_THRES 2
|
|
|
+
|
|
|
+#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
|
|
|
+
|
|
|
+/*
|
|
|
+ * Period of the TX buffer reclaim timer. This timer does not need to run
|
|
|
+ * frequently as TX buffers are usually reclaimed by new TX packets.
|
|
|
+ */
|
|
|
+#define TX_RECLAIM_PERIOD (HZ / 4)
|
|
|
|
|
|
-#define SGE_RX_OFFSET 2
|
|
|
#ifndef NET_IP_ALIGN
|
|
|
-# define NET_IP_ALIGN SGE_RX_OFFSET
|
|
|
+# define NET_IP_ALIGN 2
|
|
|
#endif
|
|
|
|
|
|
+#define M_CMD_LEN 0x7fffffff
|
|
|
+#define V_CMD_LEN(v) (v)
|
|
|
+#define G_CMD_LEN(v) ((v) & M_CMD_LEN)
|
|
|
+#define V_CMD_GEN1(v) ((v) << 31)
|
|
|
+#define V_CMD_GEN2(v) (v)
|
|
|
+#define F_CMD_DATAVALID (1 << 1)
|
|
|
+#define F_CMD_SOP (1 << 2)
|
|
|
+#define V_CMD_EOP(v) ((v) << 3)
|
|
|
+
|
|
|
/*
|
|
|
- * Memory Mapped HW Command, Freelist and Response Queue Descriptors
|
|
|
+ * Command queue, receive buffer list, and response queue descriptors.
|
|
|
*/
|
|
|
#if defined(__BIG_ENDIAN_BITFIELD)
|
|
|
struct cmdQ_e {
|
|
|
- u32 AddrLow;
|
|
|
- u32 GenerationBit : 1;
|
|
|
- u32 BufferLength : 31;
|
|
|
- u32 RespQueueSelector : 4;
|
|
|
- u32 ResponseTokens : 12;
|
|
|
- u32 CmdId : 8;
|
|
|
- u32 Reserved : 3;
|
|
|
- u32 TokenValid : 1;
|
|
|
- u32 Eop : 1;
|
|
|
- u32 Sop : 1;
|
|
|
- u32 DataValid : 1;
|
|
|
- u32 GenerationBit2 : 1;
|
|
|
- u32 AddrHigh;
|
|
|
+ u32 addr_lo;
|
|
|
+ u32 len_gen;
|
|
|
+ u32 flags;
|
|
|
+ u32 addr_hi;
|
|
|
};
|
|
|
|
|
|
struct freelQ_e {
|
|
|
- u32 AddrLow;
|
|
|
- u32 GenerationBit : 1;
|
|
|
- u32 BufferLength : 31;
|
|
|
- u32 Reserved : 31;
|
|
|
- u32 GenerationBit2 : 1;
|
|
|
- u32 AddrHigh;
|
|
|
+ u32 addr_lo;
|
|
|
+ u32 len_gen;
|
|
|
+ u32 gen2;
|
|
|
+ u32 addr_hi;
|
|
|
};
|
|
|
|
|
|
struct respQ_e {
|
|
@@ -128,31 +131,19 @@ struct respQ_e {
|
|
|
u32 GenerationBit : 1;
|
|
|
u32 BufferLength;
|
|
|
};
|
|
|
-
|
|
|
#elif defined(__LITTLE_ENDIAN_BITFIELD)
|
|
|
struct cmdQ_e {
|
|
|
- u32 BufferLength : 31;
|
|
|
- u32 GenerationBit : 1;
|
|
|
- u32 AddrLow;
|
|
|
- u32 AddrHigh;
|
|
|
- u32 GenerationBit2 : 1;
|
|
|
- u32 DataValid : 1;
|
|
|
- u32 Sop : 1;
|
|
|
- u32 Eop : 1;
|
|
|
- u32 TokenValid : 1;
|
|
|
- u32 Reserved : 3;
|
|
|
- u32 CmdId : 8;
|
|
|
- u32 ResponseTokens : 12;
|
|
|
- u32 RespQueueSelector : 4;
|
|
|
+ u32 len_gen;
|
|
|
+ u32 addr_lo;
|
|
|
+ u32 addr_hi;
|
|
|
+ u32 flags;
|
|
|
};
|
|
|
|
|
|
struct freelQ_e {
|
|
|
- u32 BufferLength : 31;
|
|
|
- u32 GenerationBit : 1;
|
|
|
- u32 AddrLow;
|
|
|
- u32 AddrHigh;
|
|
|
- u32 GenerationBit2 : 1;
|
|
|
- u32 Reserved : 31;
|
|
|
+ u32 len_gen;
|
|
|
+ u32 addr_lo;
|
|
|
+ u32 addr_hi;
|
|
|
+ u32 gen2;
|
|
|
};
|
|
|
|
|
|
struct respQ_e {
|
|
@@ -179,7 +170,6 @@ struct cmdQ_ce {
|
|
|
struct sk_buff *skb;
|
|
|
DECLARE_PCI_UNMAP_ADDR(dma_addr);
|
|
|
DECLARE_PCI_UNMAP_LEN(dma_len);
|
|
|
- unsigned int single;
|
|
|
};
|
|
|
|
|
|
struct freelQ_ce {
|
|
@@ -189,44 +179,52 @@ struct freelQ_ce {
|
|
|
};
|
|
|
|
|
|
/*
|
|
|
- * SW Command, Freelist and Response Queue
|
|
|
+ * SW command, freelist and response rings
|
|
|
*/
|
|
|
struct cmdQ {
|
|
|
- atomic_t asleep; /* HW DMA Fetch status */
|
|
|
- atomic_t credits; /* # available descriptors for TX */
|
|
|
- atomic_t pio_pidx; /* Variable updated on Doorbell */
|
|
|
- u16 entries_n; /* # descriptors for TX */
|
|
|
- u16 pidx; /* producer index (SW) */
|
|
|
- u16 cidx; /* consumer index (HW) */
|
|
|
- u8 genbit; /* current generation (=valid) bit */
|
|
|
- struct cmdQ_e *entries; /* HW command descriptor Q */
|
|
|
- struct cmdQ_ce *centries; /* SW command context descriptor Q */
|
|
|
- spinlock_t Qlock; /* Lock to protect cmdQ enqueuing */
|
|
|
- dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
|
|
|
+ unsigned long status; /* HW DMA fetch status */
|
|
|
+ unsigned int in_use; /* # of in-use command descriptors */
|
|
|
+ unsigned int size; /* # of descriptors */
|
|
|
+ unsigned int processed; /* total # of descs HW has processed */
|
|
|
+ unsigned int cleaned; /* total # of descs SW has reclaimed */
|
|
|
+ unsigned int stop_thres; /* SW TX queue suspend threshold */
|
|
|
+ u16 pidx; /* producer index (SW) */
|
|
|
+ u16 cidx; /* consumer index (HW) */
|
|
|
+ u8 genbit; /* current generation (=valid) bit */
|
|
|
+ u8 sop; /* is next entry start of packet? */
|
|
|
+ struct cmdQ_e *entries; /* HW command descriptor Q */
|
|
|
+ struct cmdQ_ce *centries; /* SW command context descriptor Q */
|
|
|
+ spinlock_t lock; /* Lock to protect cmdQ enqueuing */
|
|
|
+ dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
|
|
|
};
|
|
|
|
|
|
struct freelQ {
|
|
|
- unsigned int credits; /* # of available RX buffers */
|
|
|
- unsigned int entries_n; /* free list capacity */
|
|
|
- u16 pidx; /* producer index (SW) */
|
|
|
- u16 cidx; /* consumer index (HW) */
|
|
|
+ unsigned int credits; /* # of available RX buffers */
|
|
|
+ unsigned int size; /* free list capacity */
|
|
|
+ u16 pidx; /* producer index (SW) */
|
|
|
+ u16 cidx; /* consumer index (HW) */
|
|
|
u16 rx_buffer_size; /* Buffer size on this free list */
|
|
|
u16 dma_offset; /* DMA offset to align IP headers */
|
|
|
- u8 genbit; /* current generation (=valid) bit */
|
|
|
- struct freelQ_e *entries; /* HW freelist descriptor Q */
|
|
|
- struct freelQ_ce *centries; /* SW freelist conext descriptor Q */
|
|
|
- dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
|
|
|
+ u16 recycleq_idx; /* skb recycle q to use */
|
|
|
+ u8 genbit; /* current generation (=valid) bit */
|
|
|
+ struct freelQ_e *entries; /* HW freelist descriptor Q */
|
|
|
+ struct freelQ_ce *centries; /* SW freelist context descriptor Q */
|
|
|
+ dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
|
|
|
};
|
|
|
|
|
|
struct respQ {
|
|
|
- u16 credits; /* # of available respQ descriptors */
|
|
|
- u16 credits_pend; /* # of not yet returned descriptors */
|
|
|
- u16 entries_n; /* # of response Q descriptors */
|
|
|
- u16 pidx; /* producer index (HW) */
|
|
|
- u16 cidx; /* consumer index (SW) */
|
|
|
- u8 genbit; /* current generation(=valid) bit */
|
|
|
+ unsigned int credits; /* credits to be returned to SGE */
|
|
|
+ unsigned int size; /* # of response Q descriptors */
|
|
|
+ u16 cidx; /* consumer index (SW) */
|
|
|
+ u8 genbit; /* current generation(=valid) bit */
|
|
|
struct respQ_e *entries; /* HW response descriptor Q */
|
|
|
- dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
|
|
|
+ dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
|
|
|
+};
|
|
|
+
|
|
|
+/* Bit flags for cmdQ.status */
|
|
|
+enum {
|
|
|
+ CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
|
|
|
+ CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
|
|
|
};
|
|
|
|
|
|
/*
|
|
@@ -239,134 +237,50 @@ struct respQ {
|
|
|
*/
|
|
|
struct sge {
|
|
|
struct adapter *adapter; /* adapter backpointer */
|
|
|
- struct freelQ freelQ[SGE_FREELQ_N]; /* freelist Q(s) */
|
|
|
- struct respQ respQ; /* response Q instatiation */
|
|
|
+ struct net_device *netdev; /* netdevice backpointer */
|
|
|
+ struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
|
|
|
+ struct respQ respQ; /* response Q */
|
|
|
+ unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
|
|
|
unsigned int rx_pkt_pad; /* RX padding for L2 packets */
|
|
|
unsigned int jumbo_fl; /* jumbo freelist Q index */
|
|
|
- u32 intrtimer[SGE_INTR_MAXBUCKETS]; /* ! */
|
|
|
- u32 currIndex; /* current index into intrtimer[] */
|
|
|
- u32 intrtimer_nres; /* no resource interrupt timer value */
|
|
|
- u32 sge_control; /* shadow content of sge control reg */
|
|
|
- struct sge_intr_counts intr_cnt;
|
|
|
- struct timer_list ptimer;
|
|
|
- struct sk_buff *pskb;
|
|
|
- u32 ptimeout;
|
|
|
- struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned; /* command Q(s)*/
|
|
|
+ unsigned int intrtimer_nres; /* no-resource interrupt timer */
|
|
|
+ unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
|
|
|
+ struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
|
|
|
+ struct timer_list espibug_timer;
|
|
|
+ unsigned int espibug_timeout;
|
|
|
+ struct sk_buff *espibug_skb;
|
|
|
+ u32 sge_control; /* shadow value of sge control reg */
|
|
|
+ struct sge_intr_counts stats;
|
|
|
+ struct sge_port_stats port_stats[MAX_NPORTS];
|
|
|
+ struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
|
|
|
};
|
|
|
|
|
|
-static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
|
|
|
- unsigned int qid);
|
|
|
-
|
|
|
/*
|
|
|
* PIO to indicate that memory mapped Q contains valid descriptor(s).
|
|
|
*/
|
|
|
-static inline void doorbell_pio(struct sge *sge, u32 val)
|
|
|
+static inline void doorbell_pio(struct adapter *adapter, u32 val)
|
|
|
{
|
|
|
wmb();
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_DOORBELL, val);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Disables the DMA engine.
|
|
|
- */
|
|
|
-void t1_sge_stop(struct sge *sge)
|
|
|
-{
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_CONTROL, 0);
|
|
|
- t1_read_reg_4(sge->adapter, A_SG_CONTROL); /* flush write */
|
|
|
- if (is_T2(sge->adapter))
|
|
|
- del_timer_sync(&sge->ptimer);
|
|
|
-}
|
|
|
-
|
|
|
-static u8 ch_mac_addr[ETH_ALEN] = {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
|
|
|
-static void t1_espi_workaround(void *data)
|
|
|
-{
|
|
|
- struct adapter *adapter = (struct adapter *)data;
|
|
|
- struct sge *sge = adapter->sge;
|
|
|
-
|
|
|
- if (netif_running(adapter->port[0].dev) &&
|
|
|
- atomic_read(&sge->cmdQ[0].asleep)) {
|
|
|
-
|
|
|
- u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
|
|
|
-
|
|
|
- if ((seop & 0xfff0fff) == 0xfff && sge->pskb) {
|
|
|
- struct sk_buff *skb = sge->pskb;
|
|
|
- if (!skb->cb[0]) {
|
|
|
- memcpy(skb->data+sizeof(struct cpl_tx_pkt), ch_mac_addr, ETH_ALEN);
|
|
|
- memcpy(skb->data+skb->len-10, ch_mac_addr, ETH_ALEN);
|
|
|
-
|
|
|
- skb->cb[0] = 0xff;
|
|
|
- }
|
|
|
- t1_sge_tx(skb, adapter,0);
|
|
|
- }
|
|
|
- }
|
|
|
- mod_timer(&adapter->sge->ptimer, jiffies + sge->ptimeout);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Enables the DMA engine.
|
|
|
- */
|
|
|
-void t1_sge_start(struct sge *sge)
|
|
|
-{
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_CONTROL, sge->sge_control);
|
|
|
- t1_read_reg_4(sge->adapter, A_SG_CONTROL); /* flush write */
|
|
|
- if (is_T2(sge->adapter)) {
|
|
|
- init_timer(&sge->ptimer);
|
|
|
- sge->ptimer.function = (void *)&t1_espi_workaround;
|
|
|
- sge->ptimer.data = (unsigned long)sge->adapter;
|
|
|
- sge->ptimer.expires = jiffies + sge->ptimeout;
|
|
|
- add_timer(&sge->ptimer);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Creates a t1_sge structure and returns suggested resource parameters.
|
|
|
- */
|
|
|
-struct sge * __devinit t1_sge_create(struct adapter *adapter,
|
|
|
- struct sge_params *p)
|
|
|
-{
|
|
|
- struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL);
|
|
|
-
|
|
|
- if (!sge)
|
|
|
- return NULL;
|
|
|
- memset(sge, 0, sizeof(*sge));
|
|
|
-
|
|
|
- if (is_T2(adapter))
|
|
|
- sge->ptimeout = 1; /* finest allowed */
|
|
|
-
|
|
|
- sge->adapter = adapter;
|
|
|
- sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : SGE_RX_OFFSET;
|
|
|
- sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
|
|
|
-
|
|
|
- p->cmdQ_size[0] = SGE_CMDQ0_E_N;
|
|
|
- p->cmdQ_size[1] = SGE_CMDQ1_E_N;
|
|
|
- p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
|
|
|
- p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
|
|
|
- p->rx_coalesce_usecs = SGE_INTRTIMER1;
|
|
|
- p->last_rx_coalesce_raw = SGE_INTRTIMER1 *
|
|
|
- (board_info(sge->adapter)->clock_core / 1000000);
|
|
|
- p->default_rx_coalesce_usecs = SGE_INTRTIMER1;
|
|
|
- p->coalesce_enable = 0; /* Turn off adaptive algorithm by default */
|
|
|
- p->sample_interval_usecs = 0;
|
|
|
- return sge;
|
|
|
+ writel(val, adapter->regs + A_SG_DOORBELL);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* Frees all RX buffers on the freelist Q. The caller must make sure that
|
|
|
* the SGE is turned off before calling this function.
|
|
|
*/
|
|
|
-static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *Q)
|
|
|
+static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
|
|
|
{
|
|
|
- unsigned int cidx = Q->cidx, credits = Q->credits;
|
|
|
+ unsigned int cidx = q->cidx;
|
|
|
|
|
|
- while (credits--) {
|
|
|
- struct freelQ_ce *ce = &Q->centries[cidx];
|
|
|
+ while (q->credits--) {
|
|
|
+ struct freelQ_ce *ce = &q->centries[cidx];
|
|
|
|
|
|
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
|
|
|
pci_unmap_len(ce, dma_len),
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
dev_kfree_skb(ce->skb);
|
|
|
ce->skb = NULL;
|
|
|
- if (++cidx == Q->entries_n)
|
|
|
+ if (++cidx == q->size)
|
|
|
cidx = 0;
|
|
|
}
|
|
|
}
|
|
@@ -380,29 +294,29 @@ static void free_rx_resources(struct sge *sge)
|
|
|
unsigned int size, i;
|
|
|
|
|
|
if (sge->respQ.entries) {
|
|
|
- size = sizeof(struct respQ_e) * sge->respQ.entries_n;
|
|
|
+ size = sizeof(struct respQ_e) * sge->respQ.size;
|
|
|
pci_free_consistent(pdev, size, sge->respQ.entries,
|
|
|
sge->respQ.dma_addr);
|
|
|
}
|
|
|
|
|
|
for (i = 0; i < SGE_FREELQ_N; i++) {
|
|
|
- struct freelQ *Q = &sge->freelQ[i];
|
|
|
+ struct freelQ *q = &sge->freelQ[i];
|
|
|
|
|
|
- if (Q->centries) {
|
|
|
- free_freelQ_buffers(pdev, Q);
|
|
|
- kfree(Q->centries);
|
|
|
+ if (q->centries) {
|
|
|
+ free_freelQ_buffers(pdev, q);
|
|
|
+ kfree(q->centries);
|
|
|
}
|
|
|
- if (Q->entries) {
|
|
|
- size = sizeof(struct freelQ_e) * Q->entries_n;
|
|
|
- pci_free_consistent(pdev, size, Q->entries,
|
|
|
- Q->dma_addr);
|
|
|
+ if (q->entries) {
|
|
|
+ size = sizeof(struct freelQ_e) * q->size;
|
|
|
+ pci_free_consistent(pdev, size, q->entries,
|
|
|
+ q->dma_addr);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* Allocates basic RX resources, consisting of memory mapped freelist Qs and a
|
|
|
- * response Q.
|
|
|
+ * response queue.
|
|
|
*/
|
|
|
static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
|
|
|
{
|
|
@@ -410,21 +324,22 @@ static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
|
|
|
unsigned int size, i;
|
|
|
|
|
|
for (i = 0; i < SGE_FREELQ_N; i++) {
|
|
|
- struct freelQ *Q = &sge->freelQ[i];
|
|
|
-
|
|
|
- Q->genbit = 1;
|
|
|
- Q->entries_n = p->freelQ_size[i];
|
|
|
- Q->dma_offset = SGE_RX_OFFSET - sge->rx_pkt_pad;
|
|
|
- size = sizeof(struct freelQ_e) * Q->entries_n;
|
|
|
- Q->entries = (struct freelQ_e *)
|
|
|
- pci_alloc_consistent(pdev, size, &Q->dma_addr);
|
|
|
- if (!Q->entries)
|
|
|
+ struct freelQ *q = &sge->freelQ[i];
|
|
|
+
|
|
|
+ q->genbit = 1;
|
|
|
+ q->size = p->freelQ_size[i];
|
|
|
+ q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
|
|
|
+ size = sizeof(struct freelQ_e) * q->size;
|
|
|
+ q->entries = (struct freelQ_e *)
|
|
|
+ pci_alloc_consistent(pdev, size, &q->dma_addr);
|
|
|
+ if (!q->entries)
|
|
|
goto err_no_mem;
|
|
|
- memset(Q->entries, 0, size);
|
|
|
- Q->centries = kcalloc(Q->entries_n, sizeof(struct freelQ_ce),
|
|
|
- GFP_KERNEL);
|
|
|
- if (!Q->centries)
|
|
|
+ memset(q->entries, 0, size);
|
|
|
+ size = sizeof(struct freelQ_ce) * q->size;
|
|
|
+ q->centries = kmalloc(size, GFP_KERNEL);
|
|
|
+ if (!q->centries)
|
|
|
goto err_no_mem;
|
|
|
+ memset(q->centries, 0, size);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -440,10 +355,17 @@ static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
|
|
|
sge->freelQ[sge->jumbo_fl].rx_buffer_size = (16 * 1024) -
|
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
|
|
|
|
+ /*
|
|
|
+ * Setup which skb recycle Q should be used when recycling buffers from
|
|
|
+ * each free list.
|
|
|
+ */
|
|
|
+ sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
|
|
|
+ sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
|
|
|
+
|
|
|
sge->respQ.genbit = 1;
|
|
|
- sge->respQ.entries_n = SGE_RESPQ_E_N;
|
|
|
- sge->respQ.credits = SGE_RESPQ_E_N;
|
|
|
- size = sizeof(struct respQ_e) * sge->respQ.entries_n;
|
|
|
+ sge->respQ.size = SGE_RESPQ_E_N;
|
|
|
+ sge->respQ.credits = 0;
|
|
|
+ size = sizeof(struct respQ_e) * sge->respQ.size;
|
|
|
sge->respQ.entries = (struct respQ_e *)
|
|
|
pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
|
|
|
if (!sge->respQ.entries)
|
|
@@ -457,48 +379,37 @@ err_no_mem:
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Frees 'credits_pend' TX buffers and returns the credits to Q->credits.
|
|
|
- *
|
|
|
- * The adaptive algorithm receives the total size of the buffers freed
|
|
|
- * accumulated in @*totpayload. No initialization of this argument here.
|
|
|
- *
|
|
|
+ * Reclaims n TX descriptors and frees the buffers associated with them.
|
|
|
*/
|
|
|
-static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *Q,
|
|
|
- unsigned int credits_pend, unsigned int *totpayload)
|
|
|
+static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
|
|
|
{
|
|
|
+ struct cmdQ_ce *ce;
|
|
|
struct pci_dev *pdev = sge->adapter->pdev;
|
|
|
- struct sk_buff *skb;
|
|
|
- struct cmdQ_ce *ce, *cq = Q->centries;
|
|
|
- unsigned int entries_n = Q->entries_n, cidx = Q->cidx,
|
|
|
- i = credits_pend;
|
|
|
-
|
|
|
+ unsigned int cidx = q->cidx;
|
|
|
|
|
|
- ce = &cq[cidx];
|
|
|
- while (i--) {
|
|
|
- if (ce->single)
|
|
|
+ q->in_use -= n;
|
|
|
+ ce = &q->centries[cidx];
|
|
|
+ while (n--) {
|
|
|
+ if (q->sop)
|
|
|
pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
|
|
|
- pci_unmap_len(ce, dma_len),
|
|
|
+ pci_unmap_len(ce, dma_len),
|
|
|
PCI_DMA_TODEVICE);
|
|
|
else
|
|
|
pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr),
|
|
|
- pci_unmap_len(ce, dma_len),
|
|
|
+ pci_unmap_len(ce, dma_len),
|
|
|
PCI_DMA_TODEVICE);
|
|
|
- if (totpayload)
|
|
|
- *totpayload += pci_unmap_len(ce, dma_len);
|
|
|
-
|
|
|
- skb = ce->skb;
|
|
|
- if (skb)
|
|
|
- dev_kfree_skb_irq(skb);
|
|
|
-
|
|
|
+ q->sop = 0;
|
|
|
+ if (ce->skb) {
|
|
|
+ dev_kfree_skb(ce->skb);
|
|
|
+ q->sop = 1;
|
|
|
+ }
|
|
|
ce++;
|
|
|
- if (++cidx == entries_n) {
|
|
|
+ if (++cidx == q->size) {
|
|
|
cidx = 0;
|
|
|
- ce = cq;
|
|
|
+ ce = q->centries;
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
- Q->cidx = cidx;
|
|
|
- atomic_add(credits_pend, &Q->credits);
|
|
|
+ q->cidx = cidx;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -512,20 +423,17 @@ static void free_tx_resources(struct sge *sge)
|
|
|
unsigned int size, i;
|
|
|
|
|
|
for (i = 0; i < SGE_CMDQ_N; i++) {
|
|
|
- struct cmdQ *Q = &sge->cmdQ[i];
|
|
|
+ struct cmdQ *q = &sge->cmdQ[i];
|
|
|
|
|
|
- if (Q->centries) {
|
|
|
- unsigned int pending = Q->entries_n -
|
|
|
- atomic_read(&Q->credits);
|
|
|
-
|
|
|
- if (pending)
|
|
|
- free_cmdQ_buffers(sge, Q, pending, NULL);
|
|
|
- kfree(Q->centries);
|
|
|
+ if (q->centries) {
|
|
|
+ if (q->in_use)
|
|
|
+ free_cmdQ_buffers(sge, q, q->in_use);
|
|
|
+ kfree(q->centries);
|
|
|
}
|
|
|
- if (Q->entries) {
|
|
|
- size = sizeof(struct cmdQ_e) * Q->entries_n;
|
|
|
- pci_free_consistent(pdev, size, Q->entries,
|
|
|
- Q->dma_addr);
|
|
|
+ if (q->entries) {
|
|
|
+ size = sizeof(struct cmdQ_e) * q->size;
|
|
|
+ pci_free_consistent(pdev, size, q->entries,
|
|
|
+ q->dma_addr);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -539,25 +447,38 @@ static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
|
|
|
unsigned int size, i;
|
|
|
|
|
|
for (i = 0; i < SGE_CMDQ_N; i++) {
|
|
|
- struct cmdQ *Q = &sge->cmdQ[i];
|
|
|
-
|
|
|
- Q->genbit = 1;
|
|
|
- Q->entries_n = p->cmdQ_size[i];
|
|
|
- atomic_set(&Q->credits, Q->entries_n);
|
|
|
- atomic_set(&Q->asleep, 1);
|
|
|
- spin_lock_init(&Q->Qlock);
|
|
|
- size = sizeof(struct cmdQ_e) * Q->entries_n;
|
|
|
- Q->entries = (struct cmdQ_e *)
|
|
|
- pci_alloc_consistent(pdev, size, &Q->dma_addr);
|
|
|
- if (!Q->entries)
|
|
|
+ struct cmdQ *q = &sge->cmdQ[i];
|
|
|
+
|
|
|
+ q->genbit = 1;
|
|
|
+ q->sop = 1;
|
|
|
+ q->size = p->cmdQ_size[i];
|
|
|
+ q->in_use = 0;
|
|
|
+ q->status = 0;
|
|
|
+ q->processed = q->cleaned = 0;
|
|
|
+ q->stop_thres = 0;
|
|
|
+ spin_lock_init(&q->lock);
|
|
|
+ size = sizeof(struct cmdQ_e) * q->size;
|
|
|
+ q->entries = (struct cmdQ_e *)
|
|
|
+ pci_alloc_consistent(pdev, size, &q->dma_addr);
|
|
|
+ if (!q->entries)
|
|
|
goto err_no_mem;
|
|
|
- memset(Q->entries, 0, size);
|
|
|
- Q->centries = kcalloc(Q->entries_n, sizeof(struct cmdQ_ce),
|
|
|
- GFP_KERNEL);
|
|
|
- if (!Q->centries)
|
|
|
+ memset(q->entries, 0, size);
|
|
|
+ size = sizeof(struct cmdQ_ce) * q->size;
|
|
|
+ q->centries = kmalloc(size, GFP_KERNEL);
|
|
|
+ if (!q->centries)
|
|
|
goto err_no_mem;
|
|
|
+ memset(q->centries, 0, size);
|
|
|
}
|
|
|
|
|
|
+ /*
|
|
|
+ * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
|
|
|
+ * only. For queue 0 set the stop threshold so we can handle one more
|
|
|
+ * packet from each port, plus reserve an additional 24 entries for
|
|
|
+ * Ethernet packets only. Queue 1 never suspends nor do we reserve
|
|
|
+ * space for Ethernet packets.
|
|
|
+ */
|
|
|
+ sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
|
|
|
+ (MAX_SKB_FRAGS + 1);
|
|
|
return 0;
|
|
|
|
|
|
err_no_mem:
|
|
@@ -569,9 +490,9 @@ static inline void setup_ring_params(struct adapter *adapter, u64 addr,
|
|
|
u32 size, int base_reg_lo,
|
|
|
int base_reg_hi, int size_reg)
|
|
|
{
|
|
|
- t1_write_reg_4(adapter, base_reg_lo, (u32)addr);
|
|
|
- t1_write_reg_4(adapter, base_reg_hi, addr >> 32);
|
|
|
- t1_write_reg_4(adapter, size_reg, size);
|
|
|
+ writel((u32)addr, adapter->regs + base_reg_lo);
|
|
|
+ writel(addr >> 32, adapter->regs + base_reg_hi);
|
|
|
+ writel(size, adapter->regs + size_reg);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -585,29 +506,11 @@ void t1_set_vlan_accel(struct adapter *adapter, int on_off)
|
|
|
if (on_off)
|
|
|
sge->sge_control |= F_VLAN_XTRACT;
|
|
|
if (adapter->open_device_map) {
|
|
|
- t1_write_reg_4(adapter, A_SG_CONTROL, sge->sge_control);
|
|
|
- t1_read_reg_4(adapter, A_SG_CONTROL); /* flush */
|
|
|
+ writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
|
|
|
+ readl(adapter->regs + A_SG_CONTROL); /* flush */
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Sets the interrupt latency timer when the adaptive Rx coalescing
|
|
|
- * is turned off. Do nothing when it is turned on again.
|
|
|
- *
|
|
|
- * This routine relies on the fact that the caller has already set
|
|
|
- * the adaptive policy in adapter->sge_params before calling it.
|
|
|
-*/
|
|
|
-int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
|
|
|
-{
|
|
|
- if (!p->coalesce_enable) {
|
|
|
- u32 newTimer = p->rx_coalesce_usecs *
|
|
|
- (board_info(sge->adapter)->clock_core / 1000000);
|
|
|
-
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, newTimer);
|
|
|
- }
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* Programs the various SGE registers. However, the engine is not yet enabled,
|
|
|
* but sge->sge_control is setup and ready to go.
|
|
@@ -615,67 +518,40 @@ int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
|
|
|
static void configure_sge(struct sge *sge, struct sge_params *p)
|
|
|
{
|
|
|
struct adapter *ap = sge->adapter;
|
|
|
- int i;
|
|
|
-
|
|
|
- t1_write_reg_4(ap, A_SG_CONTROL, 0);
|
|
|
- setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].entries_n,
|
|
|
+
|
|
|
+ writel(0, ap->regs + A_SG_CONTROL);
|
|
|
+ setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
|
|
|
A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
|
|
|
- setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].entries_n,
|
|
|
+ setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
|
|
|
A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
|
|
|
setup_ring_params(ap, sge->freelQ[0].dma_addr,
|
|
|
- sge->freelQ[0].entries_n, A_SG_FL0BASELWR,
|
|
|
+ sge->freelQ[0].size, A_SG_FL0BASELWR,
|
|
|
A_SG_FL0BASEUPR, A_SG_FL0SIZE);
|
|
|
setup_ring_params(ap, sge->freelQ[1].dma_addr,
|
|
|
- sge->freelQ[1].entries_n, A_SG_FL1BASELWR,
|
|
|
+ sge->freelQ[1].size, A_SG_FL1BASELWR,
|
|
|
A_SG_FL1BASEUPR, A_SG_FL1SIZE);
|
|
|
|
|
|
/* The threshold comparison uses <. */
|
|
|
- t1_write_reg_4(ap, A_SG_FLTHRESHOLD, SGE_RX_SM_BUF_SIZE + 1);
|
|
|
+ writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
|
|
|
|
|
|
- setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.entries_n,
|
|
|
- A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
|
|
|
- t1_write_reg_4(ap, A_SG_RSPQUEUECREDIT, (u32)sge->respQ.entries_n);
|
|
|
+ setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
|
|
|
+ A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
|
|
|
+ writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
|
|
|
|
|
|
sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
|
|
|
F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
|
|
|
V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
|
|
|
+ F_DISABLE_FL0_GTS | F_DISABLE_FL1_GTS |
|
|
|
V_RX_PKT_OFFSET(sge->rx_pkt_pad);
|
|
|
|
|
|
#if defined(__BIG_ENDIAN_BITFIELD)
|
|
|
sge->sge_control |= F_ENABLE_BIG_ENDIAN;
|
|
|
#endif
|
|
|
|
|
|
- /*
|
|
|
- * Initialize the SGE Interrupt Timer arrray:
|
|
|
- * intrtimer[0] = (SGE_INTRTIMER0) usec
|
|
|
- * intrtimer[0<i<5] = (SGE_INTRTIMER0 + i*2) usec
|
|
|
- * intrtimer[4<i<10] = ((i - 3) * 6) usec
|
|
|
- * intrtimer[10] = (SGE_INTRTIMER1) usec
|
|
|
- *
|
|
|
- */
|
|
|
- sge->intrtimer[0] = board_info(sge->adapter)->clock_core / 1000000;
|
|
|
- for (i = 1; i < SGE_INTR_LATBUCKETS; ++i) {
|
|
|
- sge->intrtimer[i] = SGE_INTRTIMER0 + (2 * i);
|
|
|
- sge->intrtimer[i] *= sge->intrtimer[0];
|
|
|
- }
|
|
|
- for (i = SGE_INTR_LATBUCKETS; i < SGE_INTR_MAXBUCKETS - 1; ++i) {
|
|
|
- sge->intrtimer[i] = (i - 3) * 6;
|
|
|
- sge->intrtimer[i] *= sge->intrtimer[0];
|
|
|
- }
|
|
|
- sge->intrtimer[SGE_INTR_MAXBUCKETS - 1] =
|
|
|
- sge->intrtimer[0] * SGE_INTRTIMER1;
|
|
|
- /* Initialize resource timer */
|
|
|
- sge->intrtimer_nres = sge->intrtimer[0] * SGE_INTRTIMER_NRES;
|
|
|
- /* Finally finish initialization of intrtimer[0] */
|
|
|
- sge->intrtimer[0] *= SGE_INTRTIMER0;
|
|
|
- /* Initialize for a throughput oriented workload */
|
|
|
- sge->currIndex = SGE_INTR_MAXBUCKETS - 1;
|
|
|
-
|
|
|
- if (p->coalesce_enable)
|
|
|
- t1_write_reg_4(ap, A_SG_INTRTIMER,
|
|
|
- sge->intrtimer[sge->currIndex]);
|
|
|
- else
|
|
|
- t1_sge_set_coalesce_params(sge, p);
|
|
|
+ /* Initialize no-resource timer */
|
|
|
+ sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
|
|
|
+
|
|
|
+ t1_sge_set_coalesce_params(sge, p);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -684,31 +560,8 @@ static void configure_sge(struct sge *sge, struct sge_params *p)
|
|
|
static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
|
|
|
{
|
|
|
return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
|
|
|
- sizeof(struct cpl_rx_data) - SGE_RX_OFFSET + sge->rx_pkt_pad;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Allocates both RX and TX resources and configures the SGE. However,
|
|
|
- * the hardware is not enabled yet.
|
|
|
- */
|
|
|
-int t1_sge_configure(struct sge *sge, struct sge_params *p)
|
|
|
-{
|
|
|
- if (alloc_rx_resources(sge, p))
|
|
|
- return -ENOMEM;
|
|
|
- if (alloc_tx_resources(sge, p)) {
|
|
|
- free_rx_resources(sge);
|
|
|
- return -ENOMEM;
|
|
|
- }
|
|
|
- configure_sge(sge, p);
|
|
|
-
|
|
|
- /*
|
|
|
- * Now that we have sized the free lists calculate the payload
|
|
|
- * capacity of the large buffers. Other parts of the driver use
|
|
|
- * this to set the max offload coalescing size so that RX packets
|
|
|
- * do not overflow our large buffers.
|
|
|
- */
|
|
|
- p->large_buf_capacity = jumbo_payload_capacity(sge);
|
|
|
- return 0;
|
|
|
+ sge->freelQ[sge->jumbo_fl].dma_offset -
|
|
|
+ sizeof(struct cpl_rx_data);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -716,8 +569,9 @@ int t1_sge_configure(struct sge *sge, struct sge_params *p)
|
|
|
*/
|
|
|
void t1_sge_destroy(struct sge *sge)
|
|
|
{
|
|
|
- if (sge->pskb)
|
|
|
- dev_kfree_skb(sge->pskb);
|
|
|
+ if (sge->espibug_skb)
|
|
|
+ kfree_skb(sge->espibug_skb);
|
|
|
+
|
|
|
free_tx_resources(sge);
|
|
|
free_rx_resources(sge);
|
|
|
kfree(sge);
|
|
@@ -735,75 +589,75 @@ void t1_sge_destroy(struct sge *sge)
|
|
|
* we specify a RX_OFFSET in order to make sure that the IP header is 4B
|
|
|
* aligned.
|
|
|
*/
|
|
|
-static void refill_free_list(struct sge *sge, struct freelQ *Q)
|
|
|
+static void refill_free_list(struct sge *sge, struct freelQ *q)
|
|
|
{
|
|
|
struct pci_dev *pdev = sge->adapter->pdev;
|
|
|
- struct freelQ_ce *ce = &Q->centries[Q->pidx];
|
|
|
- struct freelQ_e *e = &Q->entries[Q->pidx];
|
|
|
- unsigned int dma_len = Q->rx_buffer_size - Q->dma_offset;
|
|
|
+ struct freelQ_ce *ce = &q->centries[q->pidx];
|
|
|
+ struct freelQ_e *e = &q->entries[q->pidx];
|
|
|
+ unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
|
|
|
|
|
|
|
|
|
- while (Q->credits < Q->entries_n) {
|
|
|
- if (e->GenerationBit != Q->genbit) {
|
|
|
- struct sk_buff *skb;
|
|
|
- dma_addr_t mapping;
|
|
|
+ while (q->credits < q->size) {
|
|
|
+ struct sk_buff *skb;
|
|
|
+ dma_addr_t mapping;
|
|
|
|
|
|
- skb = alloc_skb(Q->rx_buffer_size, GFP_ATOMIC);
|
|
|
- if (!skb)
|
|
|
- break;
|
|
|
- if (Q->dma_offset)
|
|
|
- skb_reserve(skb, Q->dma_offset);
|
|
|
- mapping = pci_map_single(pdev, skb->data, dma_len,
|
|
|
- PCI_DMA_FROMDEVICE);
|
|
|
- ce->skb = skb;
|
|
|
- pci_unmap_addr_set(ce, dma_addr, mapping);
|
|
|
- pci_unmap_len_set(ce, dma_len, dma_len);
|
|
|
- e->AddrLow = (u32)mapping;
|
|
|
- e->AddrHigh = (u64)mapping >> 32;
|
|
|
- e->BufferLength = dma_len;
|
|
|
- e->GenerationBit = e->GenerationBit2 = Q->genbit;
|
|
|
- }
|
|
|
+ skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
|
|
|
+ if (!skb)
|
|
|
+ break;
|
|
|
+
|
|
|
+ skb_reserve(skb, q->dma_offset);
|
|
|
+ mapping = pci_map_single(pdev, skb->data, dma_len,
|
|
|
+ PCI_DMA_FROMDEVICE);
|
|
|
+ ce->skb = skb;
|
|
|
+ pci_unmap_addr_set(ce, dma_addr, mapping);
|
|
|
+ pci_unmap_len_set(ce, dma_len, dma_len);
|
|
|
+ e->addr_lo = (u32)mapping;
|
|
|
+ e->addr_hi = (u64)mapping >> 32;
|
|
|
+ e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
|
|
|
+ wmb();
|
|
|
+ e->gen2 = V_CMD_GEN2(q->genbit);
|
|
|
|
|
|
e++;
|
|
|
ce++;
|
|
|
- if (++Q->pidx == Q->entries_n) {
|
|
|
- Q->pidx = 0;
|
|
|
- Q->genbit ^= 1;
|
|
|
- ce = Q->centries;
|
|
|
- e = Q->entries;
|
|
|
+ if (++q->pidx == q->size) {
|
|
|
+ q->pidx = 0;
|
|
|
+ q->genbit ^= 1;
|
|
|
+ ce = q->centries;
|
|
|
+ e = q->entries;
|
|
|
}
|
|
|
- Q->credits++;
|
|
|
+ q->credits++;
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Calls refill_free_list for both freelist Qs. If we cannot
|
|
|
- * fill at least 1/4 of both Qs, we go into 'few interrupt mode' in order
|
|
|
- * to give the system time to free up resources.
|
|
|
+ * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
|
|
|
+ * of both rings, we go into 'few interrupt mode' in order to give the system
|
|
|
+ * time to free up resources.
|
|
|
*/
|
|
|
static void freelQs_empty(struct sge *sge)
|
|
|
{
|
|
|
- u32 irq_reg = t1_read_reg_4(sge->adapter, A_SG_INT_ENABLE);
|
|
|
+ struct adapter *adapter = sge->adapter;
|
|
|
+ u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
|
|
|
u32 irqholdoff_reg;
|
|
|
|
|
|
refill_free_list(sge, &sge->freelQ[0]);
|
|
|
refill_free_list(sge, &sge->freelQ[1]);
|
|
|
|
|
|
- if (sge->freelQ[0].credits > (sge->freelQ[0].entries_n >> 2) &&
|
|
|
- sge->freelQ[1].credits > (sge->freelQ[1].entries_n >> 2)) {
|
|
|
+ if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
|
|
|
+ sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
|
|
|
irq_reg |= F_FL_EXHAUSTED;
|
|
|
- irqholdoff_reg = sge->intrtimer[sge->currIndex];
|
|
|
+ irqholdoff_reg = sge->fixed_intrtimer;
|
|
|
} else {
|
|
|
/* Clear the F_FL_EXHAUSTED interrupts for now */
|
|
|
irq_reg &= ~F_FL_EXHAUSTED;
|
|
|
irqholdoff_reg = sge->intrtimer_nres;
|
|
|
}
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, irqholdoff_reg);
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, irq_reg);
|
|
|
+ writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
|
|
|
+ writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
|
|
|
|
|
|
/* We reenable the Qs to force a freelist GTS interrupt later */
|
|
|
- doorbell_pio(sge, F_FL0_ENABLE | F_FL1_ENABLE);
|
|
|
+ doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
|
|
|
}
|
|
|
|
|
|
#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
|
|
@@ -816,10 +670,10 @@ static void freelQs_empty(struct sge *sge)
|
|
|
*/
|
|
|
void t1_sge_intr_disable(struct sge *sge)
|
|
|
{
|
|
|
- u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE);
|
|
|
+ u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
|
|
|
|
|
|
- t1_write_reg_4(sge->adapter, A_PL_ENABLE, val & ~SGE_PL_INTR_MASK);
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, 0);
|
|
|
+ writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
|
|
|
+ writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -828,12 +682,12 @@ void t1_sge_intr_disable(struct sge *sge)
|
|
|
void t1_sge_intr_enable(struct sge *sge)
|
|
|
{
|
|
|
u32 en = SGE_INT_ENABLE;
|
|
|
- u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE);
|
|
|
+ u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
|
|
|
|
|
|
if (sge->adapter->flags & TSO_CAPABLE)
|
|
|
en &= ~F_PACKET_TOO_BIG;
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, en);
|
|
|
- t1_write_reg_4(sge->adapter, A_PL_ENABLE, val | SGE_PL_INTR_MASK);
|
|
|
+ writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
|
|
|
+ writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -841,8 +695,8 @@ void t1_sge_intr_enable(struct sge *sge)
|
|
|
*/
|
|
|
void t1_sge_intr_clear(struct sge *sge)
|
|
|
{
|
|
|
- t1_write_reg_4(sge->adapter, A_PL_CAUSE, SGE_PL_INTR_MASK);
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_INT_CAUSE, 0xffffffff);
|
|
|
+ writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
|
|
|
+ writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -851,464 +705,673 @@ void t1_sge_intr_clear(struct sge *sge)
|
|
|
int t1_sge_intr_error_handler(struct sge *sge)
|
|
|
{
|
|
|
struct adapter *adapter = sge->adapter;
|
|
|
- u32 cause = t1_read_reg_4(adapter, A_SG_INT_CAUSE);
|
|
|
+ u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
|
|
|
|
|
|
if (adapter->flags & TSO_CAPABLE)
|
|
|
cause &= ~F_PACKET_TOO_BIG;
|
|
|
if (cause & F_RESPQ_EXHAUSTED)
|
|
|
- sge->intr_cnt.respQ_empty++;
|
|
|
+ sge->stats.respQ_empty++;
|
|
|
if (cause & F_RESPQ_OVERFLOW) {
|
|
|
- sge->intr_cnt.respQ_overflow++;
|
|
|
+ sge->stats.respQ_overflow++;
|
|
|
CH_ALERT("%s: SGE response queue overflow\n",
|
|
|
adapter->name);
|
|
|
}
|
|
|
if (cause & F_FL_EXHAUSTED) {
|
|
|
- sge->intr_cnt.freelistQ_empty++;
|
|
|
+ sge->stats.freelistQ_empty++;
|
|
|
freelQs_empty(sge);
|
|
|
}
|
|
|
if (cause & F_PACKET_TOO_BIG) {
|
|
|
- sge->intr_cnt.pkt_too_big++;
|
|
|
+ sge->stats.pkt_too_big++;
|
|
|
CH_ALERT("%s: SGE max packet size exceeded\n",
|
|
|
adapter->name);
|
|
|
}
|
|
|
if (cause & F_PACKET_MISMATCH) {
|
|
|
- sge->intr_cnt.pkt_mismatch++;
|
|
|
+ sge->stats.pkt_mismatch++;
|
|
|
CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
|
|
|
}
|
|
|
if (cause & SGE_INT_FATAL)
|
|
|
t1_fatal_err(adapter);
|
|
|
|
|
|
- t1_write_reg_4(adapter, A_SG_INT_CAUSE, cause);
|
|
|
+ writel(cause, adapter->regs + A_SG_INT_CAUSE);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * The following code is copied from 2.6, where the skb_pull is doing the
|
|
|
- * right thing and only pulls ETH_HLEN.
|
|
|
+const struct sge_intr_counts *t1_sge_get_intr_counts(struct sge *sge)
|
|
|
+{
|
|
|
+ return &sge->stats;
|
|
|
+}
|
|
|
+
|
|
|
+const struct sge_port_stats *t1_sge_get_port_stats(struct sge *sge, int port)
|
|
|
+{
|
|
|
+ return &sge->port_stats[port];
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * recycle_fl_buf - recycle a free list buffer
|
|
|
+ * @fl: the free list
|
|
|
+ * @idx: index of buffer to recycle
|
|
|
*
|
|
|
- * Determine the packet's protocol ID. The rule here is that we
|
|
|
- * assume 802.3 if the type field is short enough to be a length.
|
|
|
- * This is normal practice and works for any 'now in use' protocol.
|
|
|
+ * Recycles the specified buffer on the given free list by adding it at
|
|
|
+ * the next available slot on the list.
|
|
|
*/
|
|
|
-static unsigned short sge_eth_type_trans(struct sk_buff *skb,
|
|
|
- struct net_device *dev)
|
|
|
+static void recycle_fl_buf(struct freelQ *fl, int idx)
|
|
|
{
|
|
|
- struct ethhdr *eth;
|
|
|
- unsigned char *rawp;
|
|
|
+ struct freelQ_e *from = &fl->entries[idx];
|
|
|
+ struct freelQ_e *to = &fl->entries[fl->pidx];
|
|
|
|
|
|
- skb->mac.raw = skb->data;
|
|
|
- skb_pull(skb, ETH_HLEN);
|
|
|
- eth = (struct ethhdr *)skb->mac.raw;
|
|
|
+ fl->centries[fl->pidx] = fl->centries[idx];
|
|
|
+ to->addr_lo = from->addr_lo;
|
|
|
+ to->addr_hi = from->addr_hi;
|
|
|
+ to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
|
|
|
+ wmb();
|
|
|
+ to->gen2 = V_CMD_GEN2(fl->genbit);
|
|
|
+ fl->credits++;
|
|
|
|
|
|
- if (*eth->h_dest&1) {
|
|
|
- if(memcmp(eth->h_dest, dev->broadcast, ETH_ALEN) == 0)
|
|
|
- skb->pkt_type = PACKET_BROADCAST;
|
|
|
- else
|
|
|
- skb->pkt_type = PACKET_MULTICAST;
|
|
|
+ if (++fl->pidx == fl->size) {
|
|
|
+ fl->pidx = 0;
|
|
|
+ fl->genbit ^= 1;
|
|
|
}
|
|
|
+}
|
|
|
|
|
|
- /*
|
|
|
- * This ALLMULTI check should be redundant by 1.4
|
|
|
- * so don't forget to remove it.
|
|
|
- *
|
|
|
- * Seems, you forgot to remove it. All silly devices
|
|
|
- * seems to set IFF_PROMISC.
|
|
|
- */
|
|
|
+/**
|
|
|
+ * get_packet - return the next ingress packet buffer
|
|
|
+ * @pdev: the PCI device that received the packet
|
|
|
+ * @fl: the SGE free list holding the packet
|
|
|
+ * @len: the actual packet length, excluding any SGE padding
|
|
|
+ * @dma_pad: padding at beginning of buffer left by SGE DMA
|
|
|
+ * @skb_pad: padding to be used if the packet is copied
|
|
|
+ * @copy_thres: length threshold under which a packet should be copied
|
|
|
+ * @drop_thres: # of remaining buffers before we start dropping packets
|
|
|
+ *
|
|
|
+ * Get the next packet from a free list and complete setup of the
|
|
|
+ * sk_buff. If the packet is small we make a copy and recycle the
|
|
|
+ * original buffer, otherwise we use the original buffer itself. If a
|
|
|
+ * positive drop threshold is supplied packets are dropped and their
|
|
|
+ * buffers recycled if (a) the number of remaining buffers is under the
|
|
|
+ * threshold and the packet is too big to copy, or (b) the packet should
|
|
|
+ * be copied but there is no memory for the copy.
|
|
|
+ */
|
|
|
+static inline struct sk_buff *get_packet(struct pci_dev *pdev,
|
|
|
+ struct freelQ *fl, unsigned int len,
|
|
|
+ int dma_pad, int skb_pad,
|
|
|
+ unsigned int copy_thres,
|
|
|
+ unsigned int drop_thres)
|
|
|
+{
|
|
|
+ struct sk_buff *skb;
|
|
|
+ struct freelQ_ce *ce = &fl->centries[fl->cidx];
|
|
|
+
|
|
|
+ if (len < copy_thres) {
|
|
|
+ skb = alloc_skb(len + skb_pad, GFP_ATOMIC);
|
|
|
+ if (likely(skb != NULL)) {
|
|
|
+ skb_reserve(skb, skb_pad);
|
|
|
+ skb_put(skb, len);
|
|
|
+ pci_dma_sync_single_for_cpu(pdev,
|
|
|
+ pci_unmap_addr(ce, dma_addr),
|
|
|
+ pci_unmap_len(ce, dma_len),
|
|
|
+ PCI_DMA_FROMDEVICE);
|
|
|
+ memcpy(skb->data, ce->skb->data + dma_pad, len);
|
|
|
+ pci_dma_sync_single_for_device(pdev,
|
|
|
+ pci_unmap_addr(ce, dma_addr),
|
|
|
+ pci_unmap_len(ce, dma_len),
|
|
|
+ PCI_DMA_FROMDEVICE);
|
|
|
+ } else if (!drop_thres)
|
|
|
+ goto use_orig_buf;
|
|
|
|
|
|
- else if (1 /*dev->flags&IFF_PROMISC*/)
|
|
|
- {
|
|
|
- if(memcmp(eth->h_dest,dev->dev_addr, ETH_ALEN))
|
|
|
- skb->pkt_type=PACKET_OTHERHOST;
|
|
|
+ recycle_fl_buf(fl, fl->cidx);
|
|
|
+ return skb;
|
|
|
}
|
|
|
|
|
|
- if (ntohs(eth->h_proto) >= 1536)
|
|
|
- return eth->h_proto;
|
|
|
-
|
|
|
- rawp = skb->data;
|
|
|
+ if (fl->credits < drop_thres) {
|
|
|
+ recycle_fl_buf(fl, fl->cidx);
|
|
|
+ return NULL;
|
|
|
+ }
|
|
|
|
|
|
- /*
|
|
|
- * This is a magic hack to spot IPX packets. Older Novell breaks
|
|
|
- * the protocol design and runs IPX over 802.3 without an 802.2 LLC
|
|
|
- * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
|
|
|
- * won't work for fault tolerant netware but does for the rest.
|
|
|
- */
|
|
|
- if (*(unsigned short *)rawp == 0xFFFF)
|
|
|
- return htons(ETH_P_802_3);
|
|
|
+use_orig_buf:
|
|
|
+ pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
|
|
|
+ pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
|
|
|
+ skb = ce->skb;
|
|
|
+ skb_reserve(skb, dma_pad);
|
|
|
+ skb_put(skb, len);
|
|
|
+ return skb;
|
|
|
+}
|
|
|
|
|
|
- /*
|
|
|
- * Real 802.2 LLC
|
|
|
- */
|
|
|
- return htons(ETH_P_802_2);
|
|
|
+/**
|
|
|
+ * unexpected_offload - handle an unexpected offload packet
|
|
|
+ * @adapter: the adapter
|
|
|
+ * @fl: the free list that received the packet
|
|
|
+ *
|
|
|
+ * Called when we receive an unexpected offload packet (e.g., the TOE
|
|
|
+ * function is disabled or the card is a NIC). Prints a message and
|
|
|
+ * recycles the buffer.
|
|
|
+ */
|
|
|
+static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
|
|
|
+{
|
|
|
+ struct freelQ_ce *ce = &fl->centries[fl->cidx];
|
|
|
+ struct sk_buff *skb = ce->skb;
|
|
|
+
|
|
|
+ pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
|
|
|
+ pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
|
|
|
+ CH_ERR("%s: unexpected offload packet, cmd %u\n",
|
|
|
+ adapter->name, *skb->data);
|
|
|
+ recycle_fl_buf(fl, fl->cidx);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Prepare the received buffer and pass it up the stack. If it is small enough
|
|
|
- * and allocation doesn't fail, we use a new sk_buff and copy the content.
|
|
|
+ * Write the command descriptors to transmit the given skb starting at
|
|
|
+ * descriptor pidx with the given generation.
|
|
|
*/
|
|
|
-static unsigned int t1_sge_rx(struct sge *sge, struct freelQ *Q,
|
|
|
- unsigned int len, unsigned int offload)
|
|
|
+static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
|
|
|
+ unsigned int pidx, unsigned int gen,
|
|
|
+ struct cmdQ *q)
|
|
|
{
|
|
|
- struct sk_buff *skb;
|
|
|
- struct adapter *adapter = sge->adapter;
|
|
|
- struct freelQ_ce *ce = &Q->centries[Q->cidx];
|
|
|
+ dma_addr_t mapping;
|
|
|
+ struct cmdQ_e *e, *e1;
|
|
|
+ struct cmdQ_ce *ce;
|
|
|
+ unsigned int i, flags, nfrags = skb_shinfo(skb)->nr_frags;
|
|
|
+
|
|
|
+ mapping = pci_map_single(adapter->pdev, skb->data,
|
|
|
+ skb->len - skb->data_len, PCI_DMA_TODEVICE);
|
|
|
+ ce = &q->centries[pidx];
|
|
|
+ ce->skb = NULL;
|
|
|
+ pci_unmap_addr_set(ce, dma_addr, mapping);
|
|
|
+ pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
|
|
|
|
|
|
- if (len <= SGE_RX_COPY_THRESHOLD &&
|
|
|
- (skb = alloc_skb(len + NET_IP_ALIGN, GFP_ATOMIC))) {
|
|
|
- struct freelQ_e *e;
|
|
|
- char *src = ce->skb->data;
|
|
|
+ flags = F_CMD_DATAVALID | F_CMD_SOP | V_CMD_EOP(nfrags == 0) |
|
|
|
+ V_CMD_GEN2(gen);
|
|
|
+ e = &q->entries[pidx];
|
|
|
+ e->addr_lo = (u32)mapping;
|
|
|
+ e->addr_hi = (u64)mapping >> 32;
|
|
|
+ e->len_gen = V_CMD_LEN(skb->len - skb->data_len) | V_CMD_GEN1(gen);
|
|
|
+ for (e1 = e, i = 0; nfrags--; i++) {
|
|
|
+ skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
|
|
- pci_dma_sync_single_for_cpu(adapter->pdev,
|
|
|
- pci_unmap_addr(ce, dma_addr),
|
|
|
- pci_unmap_len(ce, dma_len),
|
|
|
- PCI_DMA_FROMDEVICE);
|
|
|
- if (!offload) {
|
|
|
- skb_reserve(skb, NET_IP_ALIGN);
|
|
|
- src += sge->rx_pkt_pad;
|
|
|
+ ce++;
|
|
|
+ e1++;
|
|
|
+ if (++pidx == q->size) {
|
|
|
+ pidx = 0;
|
|
|
+ gen ^= 1;
|
|
|
+ ce = q->centries;
|
|
|
+ e1 = q->entries;
|
|
|
}
|
|
|
- memcpy(skb->data, src, len);
|
|
|
|
|
|
- /* Reuse the entry. */
|
|
|
- e = &Q->entries[Q->cidx];
|
|
|
- e->GenerationBit ^= 1;
|
|
|
- e->GenerationBit2 ^= 1;
|
|
|
- } else {
|
|
|
- pci_unmap_single(adapter->pdev, pci_unmap_addr(ce, dma_addr),
|
|
|
- pci_unmap_len(ce, dma_len),
|
|
|
- PCI_DMA_FROMDEVICE);
|
|
|
- skb = ce->skb;
|
|
|
- if (!offload && sge->rx_pkt_pad)
|
|
|
- __skb_pull(skb, sge->rx_pkt_pad);
|
|
|
+ mapping = pci_map_page(adapter->pdev, frag->page,
|
|
|
+ frag->page_offset, frag->size,
|
|
|
+ PCI_DMA_TODEVICE);
|
|
|
+ ce->skb = NULL;
|
|
|
+ pci_unmap_addr_set(ce, dma_addr, mapping);
|
|
|
+ pci_unmap_len_set(ce, dma_len, frag->size);
|
|
|
+
|
|
|
+ e1->addr_lo = (u32)mapping;
|
|
|
+ e1->addr_hi = (u64)mapping >> 32;
|
|
|
+ e1->len_gen = V_CMD_LEN(frag->size) | V_CMD_GEN1(gen);
|
|
|
+ e1->flags = F_CMD_DATAVALID | V_CMD_EOP(nfrags == 0) |
|
|
|
+ V_CMD_GEN2(gen);
|
|
|
}
|
|
|
|
|
|
- skb_put(skb, len);
|
|
|
+ ce->skb = skb;
|
|
|
+ wmb();
|
|
|
+ e->flags = flags;
|
|
|
+}
|
|
|
|
|
|
+/*
|
|
|
+ * Clean up completed Tx buffers.
|
|
|
+ */
|
|
|
+static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
|
|
|
+{
|
|
|
+ unsigned int reclaim = q->processed - q->cleaned;
|
|
|
|
|
|
- if (unlikely(offload)) {
|
|
|
- {
|
|
|
- printk(KERN_ERR
|
|
|
- "%s: unexpected offloaded packet, cmd %u\n",
|
|
|
- adapter->name, *skb->data);
|
|
|
- dev_kfree_skb_any(skb);
|
|
|
- }
|
|
|
- } else {
|
|
|
- struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)skb->data;
|
|
|
-
|
|
|
- skb_pull(skb, sizeof(*p));
|
|
|
- skb->dev = adapter->port[p->iff].dev;
|
|
|
- skb->dev->last_rx = jiffies;
|
|
|
- skb->protocol = sge_eth_type_trans(skb, skb->dev);
|
|
|
- if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
|
|
|
- skb->protocol == htons(ETH_P_IP) &&
|
|
|
- (skb->data[9] == IPPROTO_TCP ||
|
|
|
- skb->data[9] == IPPROTO_UDP))
|
|
|
- skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
- else
|
|
|
- skb->ip_summed = CHECKSUM_NONE;
|
|
|
- if (adapter->vlan_grp && p->vlan_valid)
|
|
|
- vlan_hwaccel_rx(skb, adapter->vlan_grp,
|
|
|
- ntohs(p->vlan));
|
|
|
- else
|
|
|
- netif_rx(skb);
|
|
|
+ if (reclaim) {
|
|
|
+ free_cmdQ_buffers(sge, q, reclaim);
|
|
|
+ q->cleaned += reclaim;
|
|
|
}
|
|
|
+}
|
|
|
|
|
|
- if (++Q->cidx == Q->entries_n)
|
|
|
- Q->cidx = 0;
|
|
|
+#ifndef SET_ETHTOOL_OPS
|
|
|
+# define __netif_rx_complete(dev) netif_rx_complete(dev)
|
|
|
+#endif
|
|
|
|
|
|
- if (unlikely(--Q->credits < Q->entries_n - SGE_FREEL_REFILL_THRESH))
|
|
|
- refill_free_list(sge, Q);
|
|
|
- return 1;
|
|
|
+/*
|
|
|
+ * We cannot use the standard netif_rx_schedule_prep() because we have multiple
|
|
|
+ * ports plus the TOE all multiplexing onto a single response queue, therefore
|
|
|
+ * accepting new responses cannot depend on the state of any particular port.
|
|
|
+ * So define our own equivalent that omits the netif_running() test.
|
|
|
+ */
|
|
|
+static inline int napi_schedule_prep(struct net_device *dev)
|
|
|
+{
|
|
|
+ return !test_and_set_bit(__LINK_STATE_RX_SCHED, &dev->state);
|
|
|
}
|
|
|
|
|
|
|
|
|
-/*
|
|
|
- * Adaptive interrupt timer logic to keep the CPU utilization to
|
|
|
- * manageable levels. Basically, as the Average Packet Size (APS)
|
|
|
- * gets higher, the interrupt latency setting gets longer. Every
|
|
|
- * SGE_INTR_BUCKETSIZE (of 100B) causes a bump of 2usec to the
|
|
|
- * base value of SGE_INTRTIMER0. At large values of payload the
|
|
|
- * latency hits the ceiling value of SGE_INTRTIMER1 stored at
|
|
|
- * index SGE_INTR_MAXBUCKETS-1 in sge->intrtimer[].
|
|
|
+/**
|
|
|
+ * sge_rx - process an ingress ethernet packet
|
|
|
+ * @sge: the sge structure
|
|
|
+ * @fl: the free list that contains the packet buffer
|
|
|
+ * @len: the packet length
|
|
|
*
|
|
|
- * sge->currIndex caches the last index to save unneeded PIOs.
|
|
|
+ * Process an ingress ethernet pakcet and deliver it to the stack.
|
|
|
*/
|
|
|
-static inline void update_intr_timer(struct sge *sge, unsigned int avg_payload)
|
|
|
+static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
|
|
|
{
|
|
|
- unsigned int newIndex;
|
|
|
+ struct sk_buff *skb;
|
|
|
+ struct cpl_rx_pkt *p;
|
|
|
+ struct adapter *adapter = sge->adapter;
|
|
|
|
|
|
- newIndex = avg_payload / SGE_INTR_BUCKETSIZE;
|
|
|
- if (newIndex > SGE_INTR_MAXBUCKETS - 1) {
|
|
|
- newIndex = SGE_INTR_MAXBUCKETS - 1;
|
|
|
- }
|
|
|
- /* Save a PIO with this check....maybe */
|
|
|
- if (newIndex != sge->currIndex) {
|
|
|
- t1_write_reg_4(sge->adapter, A_SG_INTRTIMER,
|
|
|
- sge->intrtimer[newIndex]);
|
|
|
- sge->currIndex = newIndex;
|
|
|
- sge->adapter->params.sge.last_rx_coalesce_raw =
|
|
|
- sge->intrtimer[newIndex];
|
|
|
+ sge->stats.ethernet_pkts++;
|
|
|
+ skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad,
|
|
|
+ sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES,
|
|
|
+ SGE_RX_DROP_THRES);
|
|
|
+ if (!skb) {
|
|
|
+ sge->port_stats[0].rx_drops++; /* charge only port 0 for now */
|
|
|
+ return 0;
|
|
|
}
|
|
|
+
|
|
|
+ p = (struct cpl_rx_pkt *)skb->data;
|
|
|
+ skb_pull(skb, sizeof(*p));
|
|
|
+ skb->dev = adapter->port[p->iff].dev;
|
|
|
+ skb->dev->last_rx = jiffies;
|
|
|
+ skb->protocol = eth_type_trans(skb, skb->dev);
|
|
|
+ if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
|
|
|
+ skb->protocol == htons(ETH_P_IP) &&
|
|
|
+ (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
|
|
|
+ sge->port_stats[p->iff].rx_cso_good++;
|
|
|
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
+ } else
|
|
|
+ skb->ip_summed = CHECKSUM_NONE;
|
|
|
+
|
|
|
+ if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
|
|
|
+ sge->port_stats[p->iff].vlan_xtract++;
|
|
|
+ if (adapter->params.sge.polling)
|
|
|
+ vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
|
|
|
+ ntohs(p->vlan));
|
|
|
+ else
|
|
|
+ vlan_hwaccel_rx(skb, adapter->vlan_grp,
|
|
|
+ ntohs(p->vlan));
|
|
|
+ } else if (adapter->params.sge.polling)
|
|
|
+ netif_receive_skb(skb);
|
|
|
+ else
|
|
|
+ netif_rx(skb);
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Returns true if command queue q_num has enough available descriptors that
|
|
|
+ * Returns true if a command queue has enough available descriptors that
|
|
|
* we can resume Tx operation after temporarily disabling its packet queue.
|
|
|
*/
|
|
|
-static inline int enough_free_Tx_descs(struct sge *sge, int q_num)
|
|
|
+static inline int enough_free_Tx_descs(const struct cmdQ *q)
|
|
|
{
|
|
|
- return atomic_read(&sge->cmdQ[q_num].credits) >
|
|
|
- (sge->cmdQ[q_num].entries_n >> 2);
|
|
|
+ unsigned int r = q->processed - q->cleaned;
|
|
|
+
|
|
|
+ return q->in_use - r < (q->size >> 1);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Main interrupt handler, optimized assuming that we took a 'DATA'
|
|
|
- * interrupt.
|
|
|
- *
|
|
|
- * 1. Clear the interrupt
|
|
|
- * 2. Loop while we find valid descriptors and process them; accumulate
|
|
|
- * information that can be processed after the loop
|
|
|
- * 3. Tell the SGE at which index we stopped processing descriptors
|
|
|
- * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
|
|
|
- * outstanding TX buffers waiting, replenish RX buffers, potentially
|
|
|
- * reenable upper layers if they were turned off due to lack of TX
|
|
|
- * resources which are available again.
|
|
|
- * 5. If we took an interrupt, but no valid respQ descriptors was found we
|
|
|
- * let the slow_intr_handler run and do error handling.
|
|
|
+ * Called when sufficient space has become available in the SGE command queues
|
|
|
+ * after the Tx packet schedulers have been suspended to restart the Tx path.
|
|
|
*/
|
|
|
-irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs)
|
|
|
+static void restart_tx_queues(struct sge *sge)
|
|
|
{
|
|
|
- struct net_device *netdev;
|
|
|
- struct adapter *adapter = cookie;
|
|
|
- struct sge *sge = adapter->sge;
|
|
|
- struct respQ *Q = &sge->respQ;
|
|
|
- unsigned int credits = Q->credits, flags = 0, ret = 0;
|
|
|
- unsigned int tot_rxpayload = 0, tot_txpayload = 0, n_rx = 0, n_tx = 0;
|
|
|
- unsigned int credits_pend[SGE_CMDQ_N] = { 0, 0 };
|
|
|
+ struct adapter *adap = sge->adapter;
|
|
|
|
|
|
- struct respQ_e *e = &Q->entries[Q->cidx];
|
|
|
- prefetch(e);
|
|
|
+ if (enough_free_Tx_descs(&sge->cmdQ[0])) {
|
|
|
+ int i;
|
|
|
+
|
|
|
+ for_each_port(adap, i) {
|
|
|
+ struct net_device *nd = adap->port[i].dev;
|
|
|
+
|
|
|
+ if (test_and_clear_bit(nd->if_port,
|
|
|
+ &sge->stopped_tx_queues) &&
|
|
|
+ netif_running(nd)) {
|
|
|
+ sge->stats.cmdQ_restarted[3]++;
|
|
|
+ netif_wake_queue(nd);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
|
|
|
+ * information.
|
|
|
+ */
|
|
|
+static unsigned int update_tx_info(struct adapter *adapter,
|
|
|
+ unsigned int flags,
|
|
|
+ unsigned int pr0)
|
|
|
+{
|
|
|
+ struct sge *sge = adapter->sge;
|
|
|
+ struct cmdQ *cmdq = &sge->cmdQ[0];
|
|
|
|
|
|
- t1_write_reg_4(adapter, A_PL_CAUSE, F_PL_INTR_SGE_DATA);
|
|
|
+ cmdq->processed += pr0;
|
|
|
|
|
|
+ if (flags & F_CMDQ0_ENABLE) {
|
|
|
+ clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
|
|
|
+
|
|
|
+ if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
|
|
|
+ !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
|
|
|
+ set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
|
|
|
+ writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
|
|
|
+ }
|
|
|
+ flags &= ~F_CMDQ0_ENABLE;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (unlikely(sge->stopped_tx_queues != 0))
|
|
|
+ restart_tx_queues(sge);
|
|
|
|
|
|
- while (e->GenerationBit == Q->genbit) {
|
|
|
- if (--credits < SGE_RESPQ_REPLENISH_THRES) {
|
|
|
- u32 n = Q->entries_n - credits - 1;
|
|
|
+ return flags;
|
|
|
+}
|
|
|
|
|
|
- t1_write_reg_4(adapter, A_SG_RSPQUEUECREDIT, n);
|
|
|
- credits += n;
|
|
|
+/*
|
|
|
+ * Process SGE responses, up to the supplied budget. Returns the number of
|
|
|
+ * responses processed. A negative budget is effectively unlimited.
|
|
|
+ */
|
|
|
+static int process_responses(struct adapter *adapter, int budget)
|
|
|
+{
|
|
|
+ struct sge *sge = adapter->sge;
|
|
|
+ struct respQ *q = &sge->respQ;
|
|
|
+ struct respQ_e *e = &q->entries[q->cidx];
|
|
|
+ int budget_left = budget;
|
|
|
+ unsigned int flags = 0;
|
|
|
+ unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
|
|
|
+
|
|
|
+
|
|
|
+ while (likely(budget_left && e->GenerationBit == q->genbit)) {
|
|
|
+ flags |= e->Qsleeping;
|
|
|
+
|
|
|
+ cmdq_processed[0] += e->Cmdq0CreditReturn;
|
|
|
+ cmdq_processed[1] += e->Cmdq1CreditReturn;
|
|
|
+
|
|
|
+ /* We batch updates to the TX side to avoid cacheline
|
|
|
+ * ping-pong of TX state information on MP where the sender
|
|
|
+ * might run on a different CPU than this function...
|
|
|
+ */
|
|
|
+ if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) {
|
|
|
+ flags = update_tx_info(adapter, flags, cmdq_processed[0]);
|
|
|
+ cmdq_processed[0] = 0;
|
|
|
+ }
|
|
|
+ if (unlikely(cmdq_processed[1] > 16)) {
|
|
|
+ sge->cmdQ[1].processed += cmdq_processed[1];
|
|
|
+ cmdq_processed[1] = 0;
|
|
|
}
|
|
|
if (likely(e->DataValid)) {
|
|
|
- if (!e->Sop || !e->Eop)
|
|
|
+ struct freelQ *fl = &sge->freelQ[e->FreelistQid];
|
|
|
+
|
|
|
+ if (unlikely(!e->Sop || !e->Eop))
|
|
|
BUG();
|
|
|
- t1_sge_rx(sge, &sge->freelQ[e->FreelistQid],
|
|
|
- e->BufferLength, e->Offload);
|
|
|
- tot_rxpayload += e->BufferLength;
|
|
|
- ++n_rx;
|
|
|
- }
|
|
|
- flags |= e->Qsleeping;
|
|
|
- credits_pend[0] += e->Cmdq0CreditReturn;
|
|
|
- credits_pend[1] += e->Cmdq1CreditReturn;
|
|
|
+ if (unlikely(e->Offload))
|
|
|
+ unexpected_offload(adapter, fl);
|
|
|
+ else
|
|
|
+ sge_rx(sge, fl, e->BufferLength);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Note: this depends on each packet consuming a
|
|
|
+ * single free-list buffer; cf. the BUG above.
|
|
|
+ */
|
|
|
+ if (++fl->cidx == fl->size)
|
|
|
+ fl->cidx = 0;
|
|
|
+ if (unlikely(--fl->credits <
|
|
|
+ fl->size - SGE_FREEL_REFILL_THRESH))
|
|
|
+ refill_free_list(sge, fl);
|
|
|
+ } else
|
|
|
+ sge->stats.pure_rsps++;
|
|
|
|
|
|
-#ifdef CONFIG_SMP
|
|
|
- /*
|
|
|
- * If enough cmdQ0 buffers have finished DMAing free them so
|
|
|
- * anyone that may be waiting for their release can continue.
|
|
|
- * We do this only on MP systems to allow other CPUs to proceed
|
|
|
- * promptly. UP systems can wait for the free_cmdQ_buffers()
|
|
|
- * calls after this loop as the sole CPU is currently busy in
|
|
|
- * this loop.
|
|
|
- */
|
|
|
- if (unlikely(credits_pend[0] > SGE_FREEL_REFILL_THRESH)) {
|
|
|
- free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0],
|
|
|
- &tot_txpayload);
|
|
|
- n_tx += credits_pend[0];
|
|
|
- credits_pend[0] = 0;
|
|
|
- }
|
|
|
-#endif
|
|
|
- ret++;
|
|
|
e++;
|
|
|
- if (unlikely(++Q->cidx == Q->entries_n)) {
|
|
|
- Q->cidx = 0;
|
|
|
- Q->genbit ^= 1;
|
|
|
- e = Q->entries;
|
|
|
+ if (unlikely(++q->cidx == q->size)) {
|
|
|
+ q->cidx = 0;
|
|
|
+ q->genbit ^= 1;
|
|
|
+ e = q->entries;
|
|
|
+ }
|
|
|
+ prefetch(e);
|
|
|
+
|
|
|
+ if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
|
|
|
+ writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
|
|
|
+ q->credits = 0;
|
|
|
}
|
|
|
+ --budget_left;
|
|
|
}
|
|
|
|
|
|
- Q->credits = credits;
|
|
|
- t1_write_reg_4(adapter, A_SG_SLEEPING, Q->cidx);
|
|
|
+ flags = update_tx_info(adapter, flags, cmdq_processed[0]);
|
|
|
+ sge->cmdQ[1].processed += cmdq_processed[1];
|
|
|
|
|
|
- if (credits_pend[0])
|
|
|
- free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0], &tot_txpayload);
|
|
|
- if (credits_pend[1])
|
|
|
- free_cmdQ_buffers(sge, &sge->cmdQ[1], credits_pend[1], &tot_txpayload);
|
|
|
+ budget -= budget_left;
|
|
|
+ return budget;
|
|
|
+}
|
|
|
|
|
|
- /* Do any coalescing and interrupt latency timer adjustments */
|
|
|
- if (adapter->params.sge.coalesce_enable) {
|
|
|
- unsigned int avg_txpayload = 0, avg_rxpayload = 0;
|
|
|
+/*
|
|
|
+ * A simpler version of process_responses() that handles only pure (i.e.,
|
|
|
+ * non data-carrying) responses. Such respones are too light-weight to justify
|
|
|
+ * calling a softirq when using NAPI, so we handle them specially in hard
|
|
|
+ * interrupt context. The function is called with a pointer to a response,
|
|
|
+ * which the caller must ensure is a valid pure response. Returns 1 if it
|
|
|
+ * encounters a valid data-carrying response, 0 otherwise.
|
|
|
+ */
|
|
|
+static int process_pure_responses(struct adapter *adapter, struct respQ_e *e)
|
|
|
+{
|
|
|
+ struct sge *sge = adapter->sge;
|
|
|
+ struct respQ *q = &sge->respQ;
|
|
|
+ unsigned int flags = 0;
|
|
|
+ unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
|
|
|
|
|
|
- n_tx += credits_pend[0] + credits_pend[1];
|
|
|
+ do {
|
|
|
+ flags |= e->Qsleeping;
|
|
|
|
|
|
- /*
|
|
|
- * Choose larger avg. payload size to increase
|
|
|
- * throughput and reduce [CPU util., intr/s.]
|
|
|
- *
|
|
|
- * Throughput behavior favored in mixed-mode.
|
|
|
- */
|
|
|
- if (n_tx)
|
|
|
- avg_txpayload = tot_txpayload/n_tx;
|
|
|
- if (n_rx)
|
|
|
- avg_rxpayload = tot_rxpayload/n_rx;
|
|
|
-
|
|
|
- if (n_tx && avg_txpayload > avg_rxpayload){
|
|
|
- update_intr_timer(sge, avg_txpayload);
|
|
|
- } else if (n_rx) {
|
|
|
- update_intr_timer(sge, avg_rxpayload);
|
|
|
+ cmdq_processed[0] += e->Cmdq0CreditReturn;
|
|
|
+ cmdq_processed[1] += e->Cmdq1CreditReturn;
|
|
|
+
|
|
|
+ e++;
|
|
|
+ if (unlikely(++q->cidx == q->size)) {
|
|
|
+ q->cidx = 0;
|
|
|
+ q->genbit ^= 1;
|
|
|
+ e = q->entries;
|
|
|
}
|
|
|
- }
|
|
|
-
|
|
|
- if (flags & F_CMDQ0_ENABLE) {
|
|
|
- struct cmdQ *cmdQ = &sge->cmdQ[0];
|
|
|
+ prefetch(e);
|
|
|
|
|
|
- atomic_set(&cmdQ->asleep, 1);
|
|
|
- if (atomic_read(&cmdQ->pio_pidx) != cmdQ->pidx) {
|
|
|
- doorbell_pio(sge, F_CMDQ0_ENABLE);
|
|
|
- atomic_set(&cmdQ->pio_pidx, cmdQ->pidx);
|
|
|
+ if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
|
|
|
+ writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
|
|
|
+ q->credits = 0;
|
|
|
}
|
|
|
- }
|
|
|
- if (unlikely(flags & (F_FL0_ENABLE | F_FL1_ENABLE)))
|
|
|
- freelQs_empty(sge);
|
|
|
+ sge->stats.pure_rsps++;
|
|
|
+ } while (e->GenerationBit == q->genbit && !e->DataValid);
|
|
|
|
|
|
- netdev = adapter->port[0].dev;
|
|
|
- if (unlikely(netif_queue_stopped(netdev) && netif_carrier_ok(netdev) &&
|
|
|
- enough_free_Tx_descs(sge, 0) &&
|
|
|
- enough_free_Tx_descs(sge, 1))) {
|
|
|
- netif_wake_queue(netdev);
|
|
|
- }
|
|
|
- if (unlikely(!ret))
|
|
|
- ret = t1_slow_intr_handler(adapter);
|
|
|
+ flags = update_tx_info(adapter, flags, cmdq_processed[0]);
|
|
|
+ sge->cmdQ[1].processed += cmdq_processed[1];
|
|
|
|
|
|
- return IRQ_RETVAL(ret != 0);
|
|
|
+ return e->GenerationBit == q->genbit;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
|
|
|
- *
|
|
|
- * The code figures out how many entries the sk_buff will require in the
|
|
|
- * cmdQ and updates the cmdQ data structure with the state once the enqueue
|
|
|
- * has complete. Then, it doesn't access the global structure anymore, but
|
|
|
- * uses the corresponding fields on the stack. In conjuction with a spinlock
|
|
|
- * around that code, we can make the function reentrant without holding the
|
|
|
- * lock when we actually enqueue (which might be expensive, especially on
|
|
|
- * architectures with IO MMUs).
|
|
|
+ * Handler for new data events when using NAPI. This does not need any locking
|
|
|
+ * or protection from interrupts as data interrupts are off at this point and
|
|
|
+ * other adapter interrupts do not interfere.
|
|
|
*/
|
|
|
-static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
|
|
|
- unsigned int qid)
|
|
|
+static int t1_poll(struct net_device *dev, int *budget)
|
|
|
{
|
|
|
- struct sge *sge = adapter->sge;
|
|
|
- struct cmdQ *Q = &sge->cmdQ[qid];
|
|
|
- struct cmdQ_e *e;
|
|
|
- struct cmdQ_ce *ce;
|
|
|
- dma_addr_t mapping;
|
|
|
- unsigned int credits, pidx, genbit;
|
|
|
+ struct adapter *adapter = dev->priv;
|
|
|
+ int effective_budget = min(*budget, dev->quota);
|
|
|
+
|
|
|
+ int work_done = process_responses(adapter, effective_budget);
|
|
|
+ *budget -= work_done;
|
|
|
+ dev->quota -= work_done;
|
|
|
|
|
|
- unsigned int count = 1 + skb_shinfo(skb)->nr_frags;
|
|
|
+ if (work_done >= effective_budget)
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ __netif_rx_complete(dev);
|
|
|
|
|
|
/*
|
|
|
- * Coming from the timer
|
|
|
+ * Because we don't atomically flush the following write it is
|
|
|
+ * possible that in very rare cases it can reach the device in a way
|
|
|
+ * that races with a new response being written plus an error interrupt
|
|
|
+ * causing the NAPI interrupt handler below to return unhandled status
|
|
|
+ * to the OS. To protect against this would require flushing the write
|
|
|
+ * and doing both the write and the flush with interrupts off. Way too
|
|
|
+ * expensive and unjustifiable given the rarity of the race.
|
|
|
*/
|
|
|
- if ((skb == sge->pskb)) {
|
|
|
- /*
|
|
|
- * Quit if any cmdQ activities
|
|
|
- */
|
|
|
- if (!spin_trylock(&Q->Qlock))
|
|
|
- return 0;
|
|
|
- if (atomic_read(&Q->credits) != Q->entries_n) {
|
|
|
- spin_unlock(&Q->Qlock);
|
|
|
- return 0;
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- spin_lock(&Q->Qlock);
|
|
|
-
|
|
|
- genbit = Q->genbit;
|
|
|
- pidx = Q->pidx;
|
|
|
- credits = atomic_read(&Q->credits);
|
|
|
-
|
|
|
- credits -= count;
|
|
|
- atomic_sub(count, &Q->credits);
|
|
|
- Q->pidx += count;
|
|
|
- if (Q->pidx >= Q->entries_n) {
|
|
|
- Q->pidx -= Q->entries_n;
|
|
|
- Q->genbit ^= 1;
|
|
|
- }
|
|
|
+ writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
|
|
|
- if (unlikely(credits < (MAX_SKB_FRAGS + 1))) {
|
|
|
- sge->intr_cnt.cmdQ_full[qid]++;
|
|
|
- netif_stop_queue(adapter->port[0].dev);
|
|
|
- }
|
|
|
- spin_unlock(&Q->Qlock);
|
|
|
+/*
|
|
|
+ * Returns true if the device is already scheduled for polling.
|
|
|
+ */
|
|
|
+static inline int napi_is_scheduled(struct net_device *dev)
|
|
|
+{
|
|
|
+ return test_bit(__LINK_STATE_RX_SCHED, &dev->state);
|
|
|
+}
|
|
|
|
|
|
- mapping = pci_map_single(adapter->pdev, skb->data,
|
|
|
- skb->len - skb->data_len, PCI_DMA_TODEVICE);
|
|
|
- ce = &Q->centries[pidx];
|
|
|
- ce->skb = NULL;
|
|
|
- pci_unmap_addr_set(ce, dma_addr, mapping);
|
|
|
- pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
|
|
|
- ce->single = 1;
|
|
|
+/*
|
|
|
+ * NAPI version of the main interrupt handler.
|
|
|
+ */
|
|
|
+static irqreturn_t t1_interrupt_napi(int irq, void *data, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ int handled;
|
|
|
+ struct adapter *adapter = data;
|
|
|
+ struct sge *sge = adapter->sge;
|
|
|
+ struct respQ *q = &adapter->sge->respQ;
|
|
|
|
|
|
- e = &Q->entries[pidx];
|
|
|
- e->Sop = 1;
|
|
|
- e->DataValid = 1;
|
|
|
- e->BufferLength = skb->len - skb->data_len;
|
|
|
- e->AddrHigh = (u64)mapping >> 32;
|
|
|
- e->AddrLow = (u32)mapping;
|
|
|
+ /*
|
|
|
+ * Clear the SGE_DATA interrupt first thing. Normally the NAPI
|
|
|
+ * handler has control of the response queue and the interrupt handler
|
|
|
+ * can look at the queue reliably only once it knows NAPI is off.
|
|
|
+ * We can't wait that long to clear the SGE_DATA interrupt because we
|
|
|
+ * could race with t1_poll rearming the SGE interrupt, so we need to
|
|
|
+ * clear the interrupt speculatively and really early on.
|
|
|
+ */
|
|
|
+ writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
|
|
|
+
|
|
|
+ spin_lock(&adapter->async_lock);
|
|
|
+ if (!napi_is_scheduled(sge->netdev)) {
|
|
|
+ struct respQ_e *e = &q->entries[q->cidx];
|
|
|
+
|
|
|
+ if (e->GenerationBit == q->genbit) {
|
|
|
+ if (e->DataValid ||
|
|
|
+ process_pure_responses(adapter, e)) {
|
|
|
+ if (likely(napi_schedule_prep(sge->netdev)))
|
|
|
+ __netif_rx_schedule(sge->netdev);
|
|
|
+ else
|
|
|
+ printk(KERN_CRIT
|
|
|
+ "NAPI schedule failure!\n");
|
|
|
+ } else
|
|
|
+ writel(q->cidx, adapter->regs + A_SG_SLEEPING);
|
|
|
+ handled = 1;
|
|
|
+ goto unlock;
|
|
|
+ } else
|
|
|
+ writel(q->cidx, adapter->regs + A_SG_SLEEPING);
|
|
|
+ } else
|
|
|
+ if (readl(adapter->regs + A_PL_CAUSE) & F_PL_INTR_SGE_DATA)
|
|
|
+ printk(KERN_ERR "data interrupt while NAPI running\n");
|
|
|
+
|
|
|
+ handled = t1_slow_intr_handler(adapter);
|
|
|
+ if (!handled)
|
|
|
+ sge->stats.unhandled_irqs++;
|
|
|
+ unlock:
|
|
|
+ spin_unlock(&adapter->async_lock);
|
|
|
+ return IRQ_RETVAL(handled != 0);
|
|
|
+}
|
|
|
|
|
|
- if (--count > 0) {
|
|
|
- unsigned int i;
|
|
|
+/*
|
|
|
+ * Main interrupt handler, optimized assuming that we took a 'DATA'
|
|
|
+ * interrupt.
|
|
|
+ *
|
|
|
+ * 1. Clear the interrupt
|
|
|
+ * 2. Loop while we find valid descriptors and process them; accumulate
|
|
|
+ * information that can be processed after the loop
|
|
|
+ * 3. Tell the SGE at which index we stopped processing descriptors
|
|
|
+ * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
|
|
|
+ * outstanding TX buffers waiting, replenish RX buffers, potentially
|
|
|
+ * reenable upper layers if they were turned off due to lack of TX
|
|
|
+ * resources which are available again.
|
|
|
+ * 5. If we took an interrupt, but no valid respQ descriptors was found we
|
|
|
+ * let the slow_intr_handler run and do error handling.
|
|
|
+ */
|
|
|
+static irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ int work_done;
|
|
|
+ struct respQ_e *e;
|
|
|
+ struct adapter *adapter = cookie;
|
|
|
+ struct respQ *Q = &adapter->sge->respQ;
|
|
|
|
|
|
- e->Eop = 0;
|
|
|
- wmb();
|
|
|
- e->GenerationBit = e->GenerationBit2 = genbit;
|
|
|
+ spin_lock(&adapter->async_lock);
|
|
|
+ e = &Q->entries[Q->cidx];
|
|
|
+ prefetch(e);
|
|
|
|
|
|
- for (i = 0; i < count; i++) {
|
|
|
- skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
+ writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
|
|
|
|
|
|
- ce++; e++;
|
|
|
- if (++pidx == Q->entries_n) {
|
|
|
- pidx = 0;
|
|
|
- genbit ^= 1;
|
|
|
- ce = Q->centries;
|
|
|
- e = Q->entries;
|
|
|
- }
|
|
|
+ if (likely(e->GenerationBit == Q->genbit))
|
|
|
+ work_done = process_responses(adapter, -1);
|
|
|
+ else
|
|
|
+ work_done = t1_slow_intr_handler(adapter);
|
|
|
|
|
|
- mapping = pci_map_page(adapter->pdev, frag->page,
|
|
|
- frag->page_offset,
|
|
|
- frag->size,
|
|
|
- PCI_DMA_TODEVICE);
|
|
|
- ce->skb = NULL;
|
|
|
- pci_unmap_addr_set(ce, dma_addr, mapping);
|
|
|
- pci_unmap_len_set(ce, dma_len, frag->size);
|
|
|
- ce->single = 0;
|
|
|
-
|
|
|
- e->Sop = 0;
|
|
|
- e->DataValid = 1;
|
|
|
- e->BufferLength = frag->size;
|
|
|
- e->AddrHigh = (u64)mapping >> 32;
|
|
|
- e->AddrLow = (u32)mapping;
|
|
|
-
|
|
|
- if (i < count - 1) {
|
|
|
- e->Eop = 0;
|
|
|
- wmb();
|
|
|
- e->GenerationBit = e->GenerationBit2 = genbit;
|
|
|
- }
|
|
|
+ /*
|
|
|
+ * The unconditional clearing of the PL_CAUSE above may have raced
|
|
|
+ * with DMA completion and the corresponding generation of a response
|
|
|
+ * to cause us to miss the resulting data interrupt. The next write
|
|
|
+ * is also unconditional to recover the missed interrupt and render
|
|
|
+ * this race harmless.
|
|
|
+ */
|
|
|
+ writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
|
|
|
+
|
|
|
+ if (!work_done)
|
|
|
+ adapter->sge->stats.unhandled_irqs++;
|
|
|
+ spin_unlock(&adapter->async_lock);
|
|
|
+ return IRQ_RETVAL(work_done != 0);
|
|
|
+}
|
|
|
+
|
|
|
+intr_handler_t t1_select_intr_handler(adapter_t *adapter)
|
|
|
+{
|
|
|
+ return adapter->params.sge.polling ? t1_interrupt_napi : t1_interrupt;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
|
|
|
+ *
|
|
|
+ * The code figures out how many entries the sk_buff will require in the
|
|
|
+ * cmdQ and updates the cmdQ data structure with the state once the enqueue
|
|
|
+ * has complete. Then, it doesn't access the global structure anymore, but
|
|
|
+ * uses the corresponding fields on the stack. In conjuction with a spinlock
|
|
|
+ * around that code, we can make the function reentrant without holding the
|
|
|
+ * lock when we actually enqueue (which might be expensive, especially on
|
|
|
+ * architectures with IO MMUs).
|
|
|
+ *
|
|
|
+ * This runs with softirqs disabled.
|
|
|
+ */
|
|
|
+unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
|
|
|
+ unsigned int qid, struct net_device *dev)
|
|
|
+{
|
|
|
+ struct sge *sge = adapter->sge;
|
|
|
+ struct cmdQ *q = &sge->cmdQ[qid];
|
|
|
+ unsigned int credits, pidx, genbit, count;
|
|
|
+
|
|
|
+ spin_lock(&q->lock);
|
|
|
+ reclaim_completed_tx(sge, q);
|
|
|
+
|
|
|
+ pidx = q->pidx;
|
|
|
+ credits = q->size - q->in_use;
|
|
|
+ count = 1 + skb_shinfo(skb)->nr_frags;
|
|
|
+
|
|
|
+ { /* Ethernet packet */
|
|
|
+ if (unlikely(credits < count)) {
|
|
|
+ netif_stop_queue(dev);
|
|
|
+ set_bit(dev->if_port, &sge->stopped_tx_queues);
|
|
|
+ sge->stats.cmdQ_full[3]++;
|
|
|
+ spin_unlock(&q->lock);
|
|
|
+ CH_ERR("%s: Tx ring full while queue awake!\n",
|
|
|
+ adapter->name);
|
|
|
+ return 1;
|
|
|
}
|
|
|
+ if (unlikely(credits - count < q->stop_thres)) {
|
|
|
+ sge->stats.cmdQ_full[3]++;
|
|
|
+ netif_stop_queue(dev);
|
|
|
+ set_bit(dev->if_port, &sge->stopped_tx_queues);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ q->in_use += count;
|
|
|
+ genbit = q->genbit;
|
|
|
+ q->pidx += count;
|
|
|
+ if (q->pidx >= q->size) {
|
|
|
+ q->pidx -= q->size;
|
|
|
+ q->genbit ^= 1;
|
|
|
}
|
|
|
+ spin_unlock(&q->lock);
|
|
|
|
|
|
- if (skb != sge->pskb)
|
|
|
- ce->skb = skb;
|
|
|
- e->Eop = 1;
|
|
|
- wmb();
|
|
|
- e->GenerationBit = e->GenerationBit2 = genbit;
|
|
|
+ write_tx_descs(adapter, skb, pidx, genbit, q);
|
|
|
|
|
|
/*
|
|
|
* We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
|
|
@@ -1317,50 +1380,50 @@ static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
|
|
|
* then the interrupt handler will detect the outstanding TX packet
|
|
|
* and ring the doorbell for us.
|
|
|
*/
|
|
|
- if (qid) {
|
|
|
- doorbell_pio(sge, F_CMDQ1_ENABLE);
|
|
|
- } else if (atomic_read(&Q->asleep)) {
|
|
|
- atomic_set(&Q->asleep, 0);
|
|
|
- doorbell_pio(sge, F_CMDQ0_ENABLE);
|
|
|
- atomic_set(&Q->pio_pidx, Q->pidx);
|
|
|
+ if (qid)
|
|
|
+ doorbell_pio(adapter, F_CMDQ1_ENABLE);
|
|
|
+ else {
|
|
|
+ clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
|
|
|
+ if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
|
|
|
+ set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
|
|
|
+ writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
|
|
|
+ }
|
|
|
}
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
|
|
|
|
|
|
+/*
|
|
|
+ * eth_hdr_len - return the length of an Ethernet header
|
|
|
+ * @data: pointer to the start of the Ethernet header
|
|
|
+ *
|
|
|
+ * Returns the length of an Ethernet header, including optional VLAN tag.
|
|
|
+ */
|
|
|
+static inline int eth_hdr_len(const void *data)
|
|
|
+{
|
|
|
+ const struct ethhdr *e = data;
|
|
|
+
|
|
|
+ return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
* Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
|
|
|
*/
|
|
|
int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
|
{
|
|
|
struct adapter *adapter = dev->priv;
|
|
|
+ struct sge_port_stats *st = &adapter->sge->port_stats[dev->if_port];
|
|
|
+ struct sge *sge = adapter->sge;
|
|
|
struct cpl_tx_pkt *cpl;
|
|
|
- struct ethhdr *eth;
|
|
|
- size_t max_len;
|
|
|
-
|
|
|
- /*
|
|
|
- * We are using a non-standard hard_header_len and some kernel
|
|
|
- * components, such as pktgen, do not handle it right. Complain
|
|
|
- * when this happens but try to fix things up.
|
|
|
- */
|
|
|
- if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
|
|
|
- struct sk_buff *orig_skb = skb;
|
|
|
-
|
|
|
- if (net_ratelimit())
|
|
|
- printk(KERN_ERR
|
|
|
- "%s: Tx packet has inadequate headroom\n",
|
|
|
- dev->name);
|
|
|
- skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
|
|
|
- dev_kfree_skb_any(orig_skb);
|
|
|
- if (!skb)
|
|
|
- return -ENOMEM;
|
|
|
- }
|
|
|
|
|
|
+#ifdef NETIF_F_TSO
|
|
|
if (skb_shinfo(skb)->tso_size) {
|
|
|
int eth_type;
|
|
|
struct cpl_tx_pkt_lso *hdr;
|
|
|
|
|
|
+ st->tso++;
|
|
|
+
|
|
|
eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
|
|
|
CPL_ETH_II : CPL_ETH_II_VLAN;
|
|
|
|
|
@@ -1373,40 +1436,72 @@ int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
|
skb_shinfo(skb)->tso_size));
|
|
|
hdr->len = htonl(skb->len - sizeof(*hdr));
|
|
|
cpl = (struct cpl_tx_pkt *)hdr;
|
|
|
+ sge->stats.tx_lso_pkts++;
|
|
|
} else
|
|
|
+#endif
|
|
|
{
|
|
|
/*
|
|
|
- * An Ethernet packet must have at least space for
|
|
|
- * the DIX Ethernet header and be no greater than
|
|
|
- * the device set MTU. Otherwise trash the packet.
|
|
|
+ * Packets shorter than ETH_HLEN can break the MAC, drop them
|
|
|
+ * early. Also, we may get oversized packets because some
|
|
|
+ * parts of the kernel don't handle our unusual hard_header_len
|
|
|
+ * right, drop those too.
|
|
|
*/
|
|
|
- if (skb->len < ETH_HLEN)
|
|
|
- goto t1_start_xmit_fail2;
|
|
|
- eth = (struct ethhdr *)skb->data;
|
|
|
- if (eth->h_proto == htons(ETH_P_8021Q))
|
|
|
- max_len = dev->mtu + VLAN_ETH_HLEN;
|
|
|
- else
|
|
|
- max_len = dev->mtu + ETH_HLEN;
|
|
|
- if (skb->len > max_len)
|
|
|
- goto t1_start_xmit_fail2;
|
|
|
+ if (unlikely(skb->len < ETH_HLEN ||
|
|
|
+ skb->len > dev->mtu + eth_hdr_len(skb->data))) {
|
|
|
+ dev_kfree_skb_any(skb);
|
|
|
+ return NET_XMIT_SUCCESS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We are using a non-standard hard_header_len and some kernel
|
|
|
+ * components, such as pktgen, do not handle it right.
|
|
|
+ * Complain when this happens but try to fix things up.
|
|
|
+ */
|
|
|
+ if (unlikely(skb_headroom(skb) <
|
|
|
+ dev->hard_header_len - ETH_HLEN)) {
|
|
|
+ struct sk_buff *orig_skb = skb;
|
|
|
+
|
|
|
+ if (net_ratelimit())
|
|
|
+ printk(KERN_ERR "%s: inadequate headroom in "
|
|
|
+ "Tx packet\n", dev->name);
|
|
|
+ skb = skb_realloc_headroom(skb, sizeof(*cpl));
|
|
|
+ dev_kfree_skb_any(orig_skb);
|
|
|
+ if (!skb)
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
|
|
|
if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
|
|
|
skb->ip_summed == CHECKSUM_HW &&
|
|
|
- skb->nh.iph->protocol == IPPROTO_UDP &&
|
|
|
- skb_checksum_help(skb, 0))
|
|
|
- goto t1_start_xmit_fail3;
|
|
|
-
|
|
|
+ skb->nh.iph->protocol == IPPROTO_UDP)
|
|
|
+ if (unlikely(skb_checksum_help(skb, 0))) {
|
|
|
+ dev_kfree_skb_any(skb);
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
|
|
|
- if (!adapter->sge->pskb) {
|
|
|
+ /* Hmmm, assuming to catch the gratious arp... and we'll use
|
|
|
+ * it to flush out stuck espi packets...
|
|
|
+ */
|
|
|
+ if (unlikely(!adapter->sge->espibug_skb)) {
|
|
|
if (skb->protocol == htons(ETH_P_ARP) &&
|
|
|
- skb->nh.arph->ar_op == htons(ARPOP_REQUEST))
|
|
|
- adapter->sge->pskb = skb;
|
|
|
+ skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) {
|
|
|
+ adapter->sge->espibug_skb = skb;
|
|
|
+ /* We want to re-use this skb later. We
|
|
|
+ * simply bump the reference count and it
|
|
|
+ * will not be freed...
|
|
|
+ */
|
|
|
+ skb = skb_get(skb);
|
|
|
+ }
|
|
|
}
|
|
|
- cpl = (struct cpl_tx_pkt *)skb_push(skb, sizeof(*cpl));
|
|
|
+
|
|
|
+ cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
|
|
|
cpl->opcode = CPL_TX_PKT;
|
|
|
cpl->ip_csum_dis = 1; /* SW calculates IP csum */
|
|
|
cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_HW ? 0 : 1;
|
|
|
/* the length field isn't used so don't bother setting it */
|
|
|
+
|
|
|
+ st->tx_cso += (skb->ip_summed == CHECKSUM_HW);
|
|
|
+ sge->stats.tx_do_cksum += (skb->ip_summed == CHECKSUM_HW);
|
|
|
+ sge->stats.tx_reg_pkts++;
|
|
|
}
|
|
|
cpl->iff = dev->if_port;
|
|
|
|
|
@@ -1414,38 +1509,176 @@ int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
|
if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
|
|
|
cpl->vlan_valid = 1;
|
|
|
cpl->vlan = htons(vlan_tx_tag_get(skb));
|
|
|
+ st->vlan_insert++;
|
|
|
} else
|
|
|
#endif
|
|
|
cpl->vlan_valid = 0;
|
|
|
|
|
|
dev->trans_start = jiffies;
|
|
|
- return t1_sge_tx(skb, adapter, 0);
|
|
|
+ return t1_sge_tx(skb, adapter, 0, dev);
|
|
|
+}
|
|
|
|
|
|
-t1_start_xmit_fail3:
|
|
|
- printk(KERN_INFO "%s: Unable to complete checksum\n", dev->name);
|
|
|
- goto t1_start_xmit_fail1;
|
|
|
+/*
|
|
|
+ * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
|
|
|
+ */
|
|
|
+static void sge_tx_reclaim_cb(unsigned long data)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ struct sge *sge = (struct sge *)data;
|
|
|
+
|
|
|
+ for (i = 0; i < SGE_CMDQ_N; ++i) {
|
|
|
+ struct cmdQ *q = &sge->cmdQ[i];
|
|
|
+
|
|
|
+ if (!spin_trylock(&q->lock))
|
|
|
+ continue;
|
|
|
|
|
|
-t1_start_xmit_fail2:
|
|
|
- printk(KERN_INFO "%s: Invalid packet length %d, dropping\n",
|
|
|
- dev->name, skb->len);
|
|
|
+ reclaim_completed_tx(sge, q);
|
|
|
+ if (i == 0 && q->in_use) /* flush pending credits */
|
|
|
+ writel(F_CMDQ0_ENABLE,
|
|
|
+ sge->adapter->regs + A_SG_DOORBELL);
|
|
|
|
|
|
-t1_start_xmit_fail1:
|
|
|
- dev_kfree_skb_any(skb);
|
|
|
+ spin_unlock(&q->lock);
|
|
|
+ }
|
|
|
+ mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Propagate changes of the SGE coalescing parameters to the HW.
|
|
|
+ */
|
|
|
+int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
|
|
|
+{
|
|
|
+ sge->netdev->poll = t1_poll;
|
|
|
+ sge->fixed_intrtimer = p->rx_coalesce_usecs *
|
|
|
+ core_ticks_per_usec(sge->adapter);
|
|
|
+ writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-void t1_sge_set_ptimeout(adapter_t *adapter, u32 val)
|
|
|
+/*
|
|
|
+ * Allocates both RX and TX resources and configures the SGE. However,
|
|
|
+ * the hardware is not enabled yet.
|
|
|
+ */
|
|
|
+int t1_sge_configure(struct sge *sge, struct sge_params *p)
|
|
|
{
|
|
|
- struct sge *sge = adapter->sge;
|
|
|
+ if (alloc_rx_resources(sge, p))
|
|
|
+ return -ENOMEM;
|
|
|
+ if (alloc_tx_resources(sge, p)) {
|
|
|
+ free_rx_resources(sge);
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+ configure_sge(sge, p);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Now that we have sized the free lists calculate the payload
|
|
|
+ * capacity of the large buffers. Other parts of the driver use
|
|
|
+ * this to set the max offload coalescing size so that RX packets
|
|
|
+ * do not overflow our large buffers.
|
|
|
+ */
|
|
|
+ p->large_buf_capacity = jumbo_payload_capacity(sge);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
|
|
|
- if (is_T2(adapter))
|
|
|
- sge->ptimeout = max((u32)((HZ * val) / 1000), (u32)1);
|
|
|
+/*
|
|
|
+ * Disables the DMA engine.
|
|
|
+ */
|
|
|
+void t1_sge_stop(struct sge *sge)
|
|
|
+{
|
|
|
+ writel(0, sge->adapter->regs + A_SG_CONTROL);
|
|
|
+ (void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
|
|
|
+ if (is_T2(sge->adapter))
|
|
|
+ del_timer_sync(&sge->espibug_timer);
|
|
|
+ del_timer_sync(&sge->tx_reclaim_timer);
|
|
|
}
|
|
|
|
|
|
-u32 t1_sge_get_ptimeout(adapter_t *adapter)
|
|
|
+/*
|
|
|
+ * Enables the DMA engine.
|
|
|
+ */
|
|
|
+void t1_sge_start(struct sge *sge)
|
|
|
{
|
|
|
+ refill_free_list(sge, &sge->freelQ[0]);
|
|
|
+ refill_free_list(sge, &sge->freelQ[1]);
|
|
|
+
|
|
|
+ writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
|
|
|
+ doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
|
|
|
+ (void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
|
|
|
+
|
|
|
+ mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
|
|
|
+
|
|
|
+ if (is_T2(sge->adapter))
|
|
|
+ mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Callback for the T2 ESPI 'stuck packet feature' workaorund
|
|
|
+ */
|
|
|
+static void espibug_workaround(void *data)
|
|
|
+{
|
|
|
+ struct adapter *adapter = (struct adapter *)data;
|
|
|
struct sge *sge = adapter->sge;
|
|
|
|
|
|
- return (is_T2(adapter) ? ((sge->ptimeout * 1000) / HZ) : 0);
|
|
|
+ if (netif_running(adapter->port[0].dev)) {
|
|
|
+ struct sk_buff *skb = sge->espibug_skb;
|
|
|
+
|
|
|
+ u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
|
|
|
+
|
|
|
+ if ((seop & 0xfff0fff) == 0xfff && skb) {
|
|
|
+ if (!skb->cb[0]) {
|
|
|
+ u8 ch_mac_addr[ETH_ALEN] =
|
|
|
+ {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
|
|
|
+ memcpy(skb->data + sizeof(struct cpl_tx_pkt),
|
|
|
+ ch_mac_addr, ETH_ALEN);
|
|
|
+ memcpy(skb->data + skb->len - 10, ch_mac_addr,
|
|
|
+ ETH_ALEN);
|
|
|
+ skb->cb[0] = 0xff;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* bump the reference count to avoid freeing of the
|
|
|
+ * skb once the DMA has completed.
|
|
|
+ */
|
|
|
+ skb = skb_get(skb);
|
|
|
+ t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * Creates a t1_sge structure and returns suggested resource parameters.
|
|
|
+ */
|
|
|
+struct sge * __devinit t1_sge_create(struct adapter *adapter,
|
|
|
+ struct sge_params *p)
|
|
|
+{
|
|
|
+ struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL);
|
|
|
+
|
|
|
+ if (!sge)
|
|
|
+ return NULL;
|
|
|
+ memset(sge, 0, sizeof(*sge));
|
|
|
+
|
|
|
+ sge->adapter = adapter;
|
|
|
+ sge->netdev = adapter->port[0].dev;
|
|
|
+ sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
|
|
|
+ sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
|
|
|
+
|
|
|
+ init_timer(&sge->tx_reclaim_timer);
|
|
|
+ sge->tx_reclaim_timer.data = (unsigned long)sge;
|
|
|
+ sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
|
|
|
+
|
|
|
+ if (is_T2(sge->adapter)) {
|
|
|
+ init_timer(&sge->espibug_timer);
|
|
|
+ sge->espibug_timer.function = (void *)&espibug_workaround;
|
|
|
+ sge->espibug_timer.data = (unsigned long)sge->adapter;
|
|
|
+ sge->espibug_timeout = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ p->cmdQ_size[0] = SGE_CMDQ0_E_N;
|
|
|
+ p->cmdQ_size[1] = SGE_CMDQ1_E_N;
|
|
|
+ p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
|
|
|
+ p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
|
|
|
+ p->rx_coalesce_usecs = 50;
|
|
|
+ p->coalesce_enable = 0;
|
|
|
+ p->sample_interval_usecs = 0;
|
|
|
+ p->polling = 0;
|
|
|
+
|
|
|
+ return sge;
|
|
|
+}
|