|
@@ -25,6 +25,7 @@ struct stm32_pwm {
|
|
|
struct regmap *regmap;
|
|
|
u32 max_arr;
|
|
|
bool have_complementary_output;
|
|
|
+ u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
|
|
|
};
|
|
|
|
|
|
struct stm32_breakinput {
|
|
@@ -62,6 +63,178 @@ static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
|
|
|
return -EINVAL;
|
|
|
}
|
|
|
|
|
|
+#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
|
|
|
+#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
|
|
|
+#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
|
|
|
+#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
|
|
|
+
|
|
|
+/*
|
|
|
+ * Capture using PWM input mode:
|
|
|
+ * ___ ___
|
|
|
+ * TI[1, 2, 3 or 4]: ........._| |________|
|
|
|
+ * ^0 ^1 ^2
|
|
|
+ * . . .
|
|
|
+ * . . XXXXX
|
|
|
+ * . . XXXXX |
|
|
|
+ * . XXXXX . |
|
|
|
+ * XXXXX . . |
|
|
|
+ * COUNTER: ______XXXXX . . . |_XXX
|
|
|
+ * start^ . . . ^stop
|
|
|
+ * . . . .
|
|
|
+ * v v . v
|
|
|
+ * v
|
|
|
+ * CCR1/CCR3: tx..........t0...........t2
|
|
|
+ * CCR2/CCR4: tx..............t1.........
|
|
|
+ *
|
|
|
+ * DMA burst transfer: | |
|
|
|
+ * v v
|
|
|
+ * DMA buffer: { t0, tx } { t2, t1 }
|
|
|
+ * DMA done: ^
|
|
|
+ *
|
|
|
+ * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
|
|
|
+ * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
|
|
|
+ * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
|
|
|
+ * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
|
|
|
+ * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
|
|
|
+ *
|
|
|
+ * DMA done, compute:
|
|
|
+ * - Period = t2 - t0
|
|
|
+ * - Duty cycle = t1 - t0
|
|
|
+ */
|
|
|
+static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
|
|
|
+ unsigned long tmo_ms, u32 *raw_prd,
|
|
|
+ u32 *raw_dty)
|
|
|
+{
|
|
|
+ struct device *parent = priv->chip.dev->parent;
|
|
|
+ enum stm32_timers_dmas dma_id;
|
|
|
+ u32 ccen, ccr;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ /* Ensure registers have been updated, enable counter and capture */
|
|
|
+ regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
|
|
|
+ regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
|
|
|
+
|
|
|
+ /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
|
|
|
+ dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
|
|
|
+ ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
|
|
|
+ ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
|
|
|
+ regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
|
|
|
+ * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
|
|
|
+ * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
|
|
|
+ * or { CCR3, CCR4 }, { CCR3, CCR4 }
|
|
|
+ */
|
|
|
+ ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
|
|
|
+ 2, tmo_ms);
|
|
|
+ if (ret)
|
|
|
+ goto stop;
|
|
|
+
|
|
|
+ /* Period: t2 - t0 (take care of counter overflow) */
|
|
|
+ if (priv->capture[0] <= priv->capture[2])
|
|
|
+ *raw_prd = priv->capture[2] - priv->capture[0];
|
|
|
+ else
|
|
|
+ *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
|
|
|
+
|
|
|
+ /* Duty cycle capture requires at least two capture units */
|
|
|
+ if (pwm->chip->npwm < 2)
|
|
|
+ *raw_dty = 0;
|
|
|
+ else if (priv->capture[0] <= priv->capture[3])
|
|
|
+ *raw_dty = priv->capture[3] - priv->capture[0];
|
|
|
+ else
|
|
|
+ *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
|
|
|
+
|
|
|
+ if (*raw_dty > *raw_prd) {
|
|
|
+ /*
|
|
|
+ * Race beetween PWM input and DMA: it may happen
|
|
|
+ * falling edge triggers new capture on TI2/4 before DMA
|
|
|
+ * had a chance to read CCR2/4. It means capture[1]
|
|
|
+ * contains period + duty_cycle. So, subtract period.
|
|
|
+ */
|
|
|
+ *raw_dty -= *raw_prd;
|
|
|
+ }
|
|
|
+
|
|
|
+stop:
|
|
|
+ regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
|
|
|
+ regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
|
|
|
+ struct pwm_capture *result, unsigned long tmo_ms)
|
|
|
+{
|
|
|
+ struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
|
|
|
+ unsigned long long prd, div, dty;
|
|
|
+ unsigned long rate;
|
|
|
+ unsigned int psc = 0;
|
|
|
+ u32 raw_prd, raw_dty;
|
|
|
+ int ret = 0;
|
|
|
+
|
|
|
+ mutex_lock(&priv->lock);
|
|
|
+
|
|
|
+ if (active_channels(priv)) {
|
|
|
+ ret = -EBUSY;
|
|
|
+ goto unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret = clk_enable(priv->clk);
|
|
|
+ if (ret) {
|
|
|
+ dev_err(priv->chip.dev, "failed to enable counter clock\n");
|
|
|
+ goto unlock;
|
|
|
+ }
|
|
|
+
|
|
|
+ rate = clk_get_rate(priv->clk);
|
|
|
+ if (!rate) {
|
|
|
+ ret = -EINVAL;
|
|
|
+ goto clk_dis;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* prescaler: fit timeout window provided by upper layer */
|
|
|
+ div = (unsigned long long)rate * (unsigned long long)tmo_ms;
|
|
|
+ do_div(div, MSEC_PER_SEC);
|
|
|
+ prd = div;
|
|
|
+ while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
|
|
|
+ psc++;
|
|
|
+ div = prd;
|
|
|
+ do_div(div, psc + 1);
|
|
|
+ }
|
|
|
+ regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
|
|
|
+ regmap_write(priv->regmap, TIM_PSC, psc);
|
|
|
+
|
|
|
+ /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
|
|
|
+ regmap_update_bits(priv->regmap,
|
|
|
+ pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
|
|
|
+ TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
|
|
|
+ TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
|
|
|
+ TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
|
|
|
+
|
|
|
+ /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
|
|
|
+ regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
|
|
|
+ TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
|
|
|
+ TIM_CCER_CC2P : TIM_CCER_CC4P);
|
|
|
+
|
|
|
+ ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
|
|
|
+ if (ret)
|
|
|
+ goto stop;
|
|
|
+
|
|
|
+ prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
|
|
|
+ result->period = DIV_ROUND_UP_ULL(prd, rate);
|
|
|
+ dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
|
|
|
+ result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
|
|
|
+stop:
|
|
|
+ regmap_write(priv->regmap, TIM_CCER, 0);
|
|
|
+ regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
|
|
|
+ regmap_write(priv->regmap, TIM_PSC, 0);
|
|
|
+clk_dis:
|
|
|
+ clk_disable(priv->clk);
|
|
|
+unlock:
|
|
|
+ mutex_unlock(&priv->lock);
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
|
|
|
int duty_ns, int period_ns)
|
|
|
{
|
|
@@ -230,6 +403,9 @@ static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
|
|
|
static const struct pwm_ops stm32pwm_ops = {
|
|
|
.owner = THIS_MODULE,
|
|
|
.apply = stm32_pwm_apply_locked,
|
|
|
+#if IS_ENABLED(CONFIG_DMA_ENGINE)
|
|
|
+ .capture = stm32_pwm_capture,
|
|
|
+#endif
|
|
|
};
|
|
|
|
|
|
static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
|