|
@@ -1,2440 +0,0 @@
|
|
|
-/*
|
|
|
- * Copyright (C) 2012 ARM Ltd.
|
|
|
- * Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
- *
|
|
|
- * This program is free software; you can redistribute it and/or modify
|
|
|
- * it under the terms of the GNU General Public License version 2 as
|
|
|
- * published by the Free Software Foundation.
|
|
|
- *
|
|
|
- * This program is distributed in the hope that it will be useful,
|
|
|
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
- * GNU General Public License for more details.
|
|
|
- *
|
|
|
- * You should have received a copy of the GNU General Public License
|
|
|
- * along with this program; if not, write to the Free Software
|
|
|
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
- */
|
|
|
-
|
|
|
-#include <linux/cpu.h>
|
|
|
-#include <linux/kvm.h>
|
|
|
-#include <linux/kvm_host.h>
|
|
|
-#include <linux/interrupt.h>
|
|
|
-#include <linux/io.h>
|
|
|
-#include <linux/irq.h>
|
|
|
-#include <linux/rculist.h>
|
|
|
-#include <linux/uaccess.h>
|
|
|
-
|
|
|
-#include <asm/kvm_emulate.h>
|
|
|
-#include <asm/kvm_arm.h>
|
|
|
-#include <asm/kvm_mmu.h>
|
|
|
-#include <trace/events/kvm.h>
|
|
|
-#include <asm/kvm.h>
|
|
|
-#include <kvm/iodev.h>
|
|
|
-#include <linux/irqchip/arm-gic-common.h>
|
|
|
-
|
|
|
-#define CREATE_TRACE_POINTS
|
|
|
-#include "trace.h"
|
|
|
-
|
|
|
-/*
|
|
|
- * How the whole thing works (courtesy of Christoffer Dall):
|
|
|
- *
|
|
|
- * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
|
|
|
- * something is pending on the CPU interface.
|
|
|
- * - Interrupts that are pending on the distributor are stored on the
|
|
|
- * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
|
|
|
- * ioctls and guest mmio ops, and other in-kernel peripherals such as the
|
|
|
- * arch. timers).
|
|
|
- * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
|
|
|
- * recalculated
|
|
|
- * - To calculate the oracle, we need info for each cpu from
|
|
|
- * compute_pending_for_cpu, which considers:
|
|
|
- * - PPI: dist->irq_pending & dist->irq_enable
|
|
|
- * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
|
|
|
- * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
|
|
|
- * registers, stored on each vcpu. We only keep one bit of
|
|
|
- * information per interrupt, making sure that only one vcpu can
|
|
|
- * accept the interrupt.
|
|
|
- * - If any of the above state changes, we must recalculate the oracle.
|
|
|
- * - The same is true when injecting an interrupt, except that we only
|
|
|
- * consider a single interrupt at a time. The irq_spi_cpu array
|
|
|
- * contains the target CPU for each SPI.
|
|
|
- *
|
|
|
- * The handling of level interrupts adds some extra complexity. We
|
|
|
- * need to track when the interrupt has been EOIed, so we can sample
|
|
|
- * the 'line' again. This is achieved as such:
|
|
|
- *
|
|
|
- * - When a level interrupt is moved onto a vcpu, the corresponding
|
|
|
- * bit in irq_queued is set. As long as this bit is set, the line
|
|
|
- * will be ignored for further interrupts. The interrupt is injected
|
|
|
- * into the vcpu with the GICH_LR_EOI bit set (generate a
|
|
|
- * maintenance interrupt on EOI).
|
|
|
- * - When the interrupt is EOIed, the maintenance interrupt fires,
|
|
|
- * and clears the corresponding bit in irq_queued. This allows the
|
|
|
- * interrupt line to be sampled again.
|
|
|
- * - Note that level-triggered interrupts can also be set to pending from
|
|
|
- * writes to GICD_ISPENDRn and lowering the external input line does not
|
|
|
- * cause the interrupt to become inactive in such a situation.
|
|
|
- * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
|
|
|
- * inactive as long as the external input line is held high.
|
|
|
- *
|
|
|
- *
|
|
|
- * Initialization rules: there are multiple stages to the vgic
|
|
|
- * initialization, both for the distributor and the CPU interfaces.
|
|
|
- *
|
|
|
- * Distributor:
|
|
|
- *
|
|
|
- * - kvm_vgic_early_init(): initialization of static data that doesn't
|
|
|
- * depend on any sizing information or emulation type. No allocation
|
|
|
- * is allowed there.
|
|
|
- *
|
|
|
- * - vgic_init(): allocation and initialization of the generic data
|
|
|
- * structures that depend on sizing information (number of CPUs,
|
|
|
- * number of interrupts). Also initializes the vcpu specific data
|
|
|
- * structures. Can be executed lazily for GICv2.
|
|
|
- * [to be renamed to kvm_vgic_init??]
|
|
|
- *
|
|
|
- * CPU Interface:
|
|
|
- *
|
|
|
- * - kvm_vgic_cpu_early_init(): initialization of static data that
|
|
|
- * doesn't depend on any sizing information or emulation type. No
|
|
|
- * allocation is allowed there.
|
|
|
- */
|
|
|
-
|
|
|
-#include "vgic.h"
|
|
|
-
|
|
|
-static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
|
|
|
-static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu);
|
|
|
-static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
|
|
|
-static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
|
|
|
-static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
|
|
|
-static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
|
|
|
- int virt_irq);
|
|
|
-static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);
|
|
|
-
|
|
|
-static const struct vgic_ops *vgic_ops;
|
|
|
-static const struct vgic_params *vgic;
|
|
|
-
|
|
|
-static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
|
|
|
-{
|
|
|
- vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
|
|
|
-}
|
|
|
-
|
|
|
-static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
|
|
|
-}
|
|
|
-
|
|
|
-int kvm_vgic_map_resources(struct kvm *kvm)
|
|
|
-{
|
|
|
- return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * struct vgic_bitmap contains a bitmap made of unsigned longs, but
|
|
|
- * extracts u32s out of them.
|
|
|
- *
|
|
|
- * This does not work on 64-bit BE systems, because the bitmap access
|
|
|
- * will store two consecutive 32-bit words with the higher-addressed
|
|
|
- * register's bits at the lower index and the lower-addressed register's
|
|
|
- * bits at the higher index.
|
|
|
- *
|
|
|
- * Therefore, swizzle the register index when accessing the 32-bit word
|
|
|
- * registers to access the right register's value.
|
|
|
- */
|
|
|
-#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
|
|
|
-#define REG_OFFSET_SWIZZLE 1
|
|
|
-#else
|
|
|
-#define REG_OFFSET_SWIZZLE 0
|
|
|
-#endif
|
|
|
-
|
|
|
-static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
|
|
|
-{
|
|
|
- int nr_longs;
|
|
|
-
|
|
|
- nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
|
|
|
-
|
|
|
- b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
|
|
|
- if (!b->private)
|
|
|
- return -ENOMEM;
|
|
|
-
|
|
|
- b->shared = b->private + nr_cpus;
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_free_bitmap(struct vgic_bitmap *b)
|
|
|
-{
|
|
|
- kfree(b->private);
|
|
|
- b->private = NULL;
|
|
|
- b->shared = NULL;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Call this function to convert a u64 value to an unsigned long * bitmask
|
|
|
- * in a way that works on both 32-bit and 64-bit LE and BE platforms.
|
|
|
- *
|
|
|
- * Warning: Calling this function may modify *val.
|
|
|
- */
|
|
|
-static unsigned long *u64_to_bitmask(u64 *val)
|
|
|
-{
|
|
|
-#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
|
|
|
- *val = (*val >> 32) | (*val << 32);
|
|
|
-#endif
|
|
|
- return (unsigned long *)val;
|
|
|
-}
|
|
|
-
|
|
|
-u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
|
|
|
-{
|
|
|
- offset >>= 2;
|
|
|
- if (!offset)
|
|
|
- return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
|
|
|
- else
|
|
|
- return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
|
|
|
- int cpuid, int irq)
|
|
|
-{
|
|
|
- if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
|
- return test_bit(irq, x->private + cpuid);
|
|
|
-
|
|
|
- return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
|
|
|
-}
|
|
|
-
|
|
|
-void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
|
|
|
- int irq, int val)
|
|
|
-{
|
|
|
- unsigned long *reg;
|
|
|
-
|
|
|
- if (irq < VGIC_NR_PRIVATE_IRQS) {
|
|
|
- reg = x->private + cpuid;
|
|
|
- } else {
|
|
|
- reg = x->shared;
|
|
|
- irq -= VGIC_NR_PRIVATE_IRQS;
|
|
|
- }
|
|
|
-
|
|
|
- if (val)
|
|
|
- set_bit(irq, reg);
|
|
|
- else
|
|
|
- clear_bit(irq, reg);
|
|
|
-}
|
|
|
-
|
|
|
-static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
|
|
|
-{
|
|
|
- return x->private + cpuid;
|
|
|
-}
|
|
|
-
|
|
|
-unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
|
|
|
-{
|
|
|
- return x->shared;
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
|
|
|
-{
|
|
|
- int size;
|
|
|
-
|
|
|
- size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
|
|
|
- size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
|
|
|
-
|
|
|
- x->private = kzalloc(size, GFP_KERNEL);
|
|
|
- if (!x->private)
|
|
|
- return -ENOMEM;
|
|
|
-
|
|
|
- x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_free_bytemap(struct vgic_bytemap *b)
|
|
|
-{
|
|
|
- kfree(b->private);
|
|
|
- b->private = NULL;
|
|
|
- b->shared = NULL;
|
|
|
-}
|
|
|
-
|
|
|
-u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
|
|
|
-{
|
|
|
- u32 *reg;
|
|
|
-
|
|
|
- if (offset < VGIC_NR_PRIVATE_IRQS) {
|
|
|
- reg = x->private;
|
|
|
- offset += cpuid * VGIC_NR_PRIVATE_IRQS;
|
|
|
- } else {
|
|
|
- reg = x->shared;
|
|
|
- offset -= VGIC_NR_PRIVATE_IRQS;
|
|
|
- }
|
|
|
-
|
|
|
- return reg + (offset / sizeof(u32));
|
|
|
-}
|
|
|
-
|
|
|
-#define VGIC_CFG_LEVEL 0
|
|
|
-#define VGIC_CFG_EDGE 1
|
|
|
-
|
|
|
-static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- int irq_val;
|
|
|
-
|
|
|
- irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
|
|
|
- return irq_val == VGIC_CFG_EDGE;
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
|
|
|
- if (!vgic_dist_irq_get_level(vcpu, irq)) {
|
|
|
- vgic_dist_irq_clear_pending(vcpu, irq);
|
|
|
- if (!compute_pending_for_cpu(vcpu))
|
|
|
- clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
|
|
|
-}
|
|
|
-
|
|
|
-void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
|
|
|
-}
|
|
|
-
|
|
|
-void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
|
- set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
|
- else
|
|
|
- set_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
|
- vcpu->arch.vgic_cpu.pending_shared);
|
|
|
-}
|
|
|
-
|
|
|
-void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
|
- clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
|
- else
|
|
|
- clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
|
- vcpu->arch.vgic_cpu.pending_shared);
|
|
|
-}
|
|
|
-
|
|
|
-static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- return !vgic_irq_is_queued(vcpu, irq);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * vgic_reg_access - access vgic register
|
|
|
- * @mmio: pointer to the data describing the mmio access
|
|
|
- * @reg: pointer to the virtual backing of vgic distributor data
|
|
|
- * @offset: least significant 2 bits used for word offset
|
|
|
- * @mode: ACCESS_ mode (see defines above)
|
|
|
- *
|
|
|
- * Helper to make vgic register access easier using one of the access
|
|
|
- * modes defined for vgic register access
|
|
|
- * (read,raz,write-ignored,setbit,clearbit,write)
|
|
|
- */
|
|
|
-void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
|
|
|
- phys_addr_t offset, int mode)
|
|
|
-{
|
|
|
- int word_offset = (offset & 3) * 8;
|
|
|
- u32 mask = (1UL << (mmio->len * 8)) - 1;
|
|
|
- u32 regval;
|
|
|
-
|
|
|
- /*
|
|
|
- * Any alignment fault should have been delivered to the guest
|
|
|
- * directly (ARM ARM B3.12.7 "Prioritization of aborts").
|
|
|
- */
|
|
|
-
|
|
|
- if (reg) {
|
|
|
- regval = *reg;
|
|
|
- } else {
|
|
|
- BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
|
|
|
- regval = 0;
|
|
|
- }
|
|
|
-
|
|
|
- if (mmio->is_write) {
|
|
|
- u32 data = mmio_data_read(mmio, mask) << word_offset;
|
|
|
- switch (ACCESS_WRITE_MASK(mode)) {
|
|
|
- case ACCESS_WRITE_IGNORED:
|
|
|
- return;
|
|
|
-
|
|
|
- case ACCESS_WRITE_SETBIT:
|
|
|
- regval |= data;
|
|
|
- break;
|
|
|
-
|
|
|
- case ACCESS_WRITE_CLEARBIT:
|
|
|
- regval &= ~data;
|
|
|
- break;
|
|
|
-
|
|
|
- case ACCESS_WRITE_VALUE:
|
|
|
- regval = (regval & ~(mask << word_offset)) | data;
|
|
|
- break;
|
|
|
- }
|
|
|
- *reg = regval;
|
|
|
- } else {
|
|
|
- switch (ACCESS_READ_MASK(mode)) {
|
|
|
- case ACCESS_READ_RAZ:
|
|
|
- regval = 0;
|
|
|
- /* fall through */
|
|
|
-
|
|
|
- case ACCESS_READ_VALUE:
|
|
|
- mmio_data_write(mmio, mask, regval >> word_offset);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
|
|
|
- phys_addr_t offset)
|
|
|
-{
|
|
|
- vgic_reg_access(mmio, NULL, offset,
|
|
|
- ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
|
|
|
- phys_addr_t offset, int vcpu_id, int access)
|
|
|
-{
|
|
|
- u32 *reg;
|
|
|
- int mode = ACCESS_READ_VALUE | access;
|
|
|
- struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
|
|
|
-
|
|
|
- reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
|
|
|
- vgic_reg_access(mmio, reg, offset, mode);
|
|
|
- if (mmio->is_write) {
|
|
|
- if (access & ACCESS_WRITE_CLEARBIT) {
|
|
|
- if (offset < 4) /* Force SGI enabled */
|
|
|
- *reg |= 0xffff;
|
|
|
- vgic_retire_disabled_irqs(target_vcpu);
|
|
|
- }
|
|
|
- vgic_update_state(kvm);
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-bool vgic_handle_set_pending_reg(struct kvm *kvm,
|
|
|
- struct kvm_exit_mmio *mmio,
|
|
|
- phys_addr_t offset, int vcpu_id)
|
|
|
-{
|
|
|
- u32 *reg, orig;
|
|
|
- u32 level_mask;
|
|
|
- int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
|
|
|
- struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
-
|
|
|
- reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
|
|
|
- level_mask = (~(*reg));
|
|
|
-
|
|
|
- /* Mark both level and edge triggered irqs as pending */
|
|
|
- reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
|
|
|
- orig = *reg;
|
|
|
- vgic_reg_access(mmio, reg, offset, mode);
|
|
|
-
|
|
|
- if (mmio->is_write) {
|
|
|
- /* Set the soft-pending flag only for level-triggered irqs */
|
|
|
- reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
|
|
|
- vcpu_id, offset);
|
|
|
- vgic_reg_access(mmio, reg, offset, mode);
|
|
|
- *reg &= level_mask;
|
|
|
-
|
|
|
- /* Ignore writes to SGIs */
|
|
|
- if (offset < 2) {
|
|
|
- *reg &= ~0xffff;
|
|
|
- *reg |= orig & 0xffff;
|
|
|
- }
|
|
|
-
|
|
|
- vgic_update_state(kvm);
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-bool vgic_handle_clear_pending_reg(struct kvm *kvm,
|
|
|
- struct kvm_exit_mmio *mmio,
|
|
|
- phys_addr_t offset, int vcpu_id)
|
|
|
-{
|
|
|
- u32 *level_active;
|
|
|
- u32 *reg, orig;
|
|
|
- int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
|
|
|
- struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
-
|
|
|
- reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
|
|
|
- orig = *reg;
|
|
|
- vgic_reg_access(mmio, reg, offset, mode);
|
|
|
- if (mmio->is_write) {
|
|
|
- /* Re-set level triggered level-active interrupts */
|
|
|
- level_active = vgic_bitmap_get_reg(&dist->irq_level,
|
|
|
- vcpu_id, offset);
|
|
|
- reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
|
|
|
- *reg |= *level_active;
|
|
|
-
|
|
|
- /* Ignore writes to SGIs */
|
|
|
- if (offset < 2) {
|
|
|
- *reg &= ~0xffff;
|
|
|
- *reg |= orig & 0xffff;
|
|
|
- }
|
|
|
-
|
|
|
- /* Clear soft-pending flags */
|
|
|
- reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
|
|
|
- vcpu_id, offset);
|
|
|
- vgic_reg_access(mmio, reg, offset, mode);
|
|
|
-
|
|
|
- vgic_update_state(kvm);
|
|
|
- return true;
|
|
|
- }
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-bool vgic_handle_set_active_reg(struct kvm *kvm,
|
|
|
- struct kvm_exit_mmio *mmio,
|
|
|
- phys_addr_t offset, int vcpu_id)
|
|
|
-{
|
|
|
- u32 *reg;
|
|
|
- struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
-
|
|
|
- reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
|
|
|
- vgic_reg_access(mmio, reg, offset,
|
|
|
- ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
|
|
|
-
|
|
|
- if (mmio->is_write) {
|
|
|
- vgic_update_state(kvm);
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-bool vgic_handle_clear_active_reg(struct kvm *kvm,
|
|
|
- struct kvm_exit_mmio *mmio,
|
|
|
- phys_addr_t offset, int vcpu_id)
|
|
|
-{
|
|
|
- u32 *reg;
|
|
|
- struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
-
|
|
|
- reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
|
|
|
- vgic_reg_access(mmio, reg, offset,
|
|
|
- ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
|
|
|
-
|
|
|
- if (mmio->is_write) {
|
|
|
- vgic_update_state(kvm);
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-static u32 vgic_cfg_expand(u16 val)
|
|
|
-{
|
|
|
- u32 res = 0;
|
|
|
- int i;
|
|
|
-
|
|
|
- /*
|
|
|
- * Turn a 16bit value like abcd...mnop into a 32bit word
|
|
|
- * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
|
|
|
- */
|
|
|
- for (i = 0; i < 16; i++)
|
|
|
- res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
|
|
|
-
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-static u16 vgic_cfg_compress(u32 val)
|
|
|
-{
|
|
|
- u16 res = 0;
|
|
|
- int i;
|
|
|
-
|
|
|
- /*
|
|
|
- * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
|
|
|
- * abcd...mnop which is what we really care about.
|
|
|
- */
|
|
|
- for (i = 0; i < 16; i++)
|
|
|
- res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
|
|
|
-
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * The distributor uses 2 bits per IRQ for the CFG register, but the
|
|
|
- * LSB is always 0. As such, we only keep the upper bit, and use the
|
|
|
- * two above functions to compress/expand the bits
|
|
|
- */
|
|
|
-bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
|
|
|
- phys_addr_t offset)
|
|
|
-{
|
|
|
- u32 val;
|
|
|
-
|
|
|
- if (offset & 4)
|
|
|
- val = *reg >> 16;
|
|
|
- else
|
|
|
- val = *reg & 0xffff;
|
|
|
-
|
|
|
- val = vgic_cfg_expand(val);
|
|
|
- vgic_reg_access(mmio, &val, offset,
|
|
|
- ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
|
- if (mmio->is_write) {
|
|
|
- /* Ignore writes to read-only SGI and PPI bits */
|
|
|
- if (offset < 8)
|
|
|
- return false;
|
|
|
-
|
|
|
- val = vgic_cfg_compress(val);
|
|
|
- if (offset & 4) {
|
|
|
- *reg &= 0xffff;
|
|
|
- *reg |= val << 16;
|
|
|
- } else {
|
|
|
- *reg &= 0xffff << 16;
|
|
|
- *reg |= val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
|
|
|
- * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
|
|
|
- *
|
|
|
- * Move any IRQs that have already been assigned to LRs back to the
|
|
|
- * emulated distributor state so that the complete emulated state can be read
|
|
|
- * from the main emulation structures without investigating the LRs.
|
|
|
- */
|
|
|
-void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- u64 elrsr = vgic_get_elrsr(vcpu);
|
|
|
- unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
|
|
|
- int i;
|
|
|
-
|
|
|
- for_each_clear_bit(i, elrsr_ptr, vgic->nr_lr) {
|
|
|
- struct vgic_lr lr = vgic_get_lr(vcpu, i);
|
|
|
-
|
|
|
- /*
|
|
|
- * There are three options for the state bits:
|
|
|
- *
|
|
|
- * 01: pending
|
|
|
- * 10: active
|
|
|
- * 11: pending and active
|
|
|
- */
|
|
|
- BUG_ON(!(lr.state & LR_STATE_MASK));
|
|
|
-
|
|
|
- /* Reestablish SGI source for pending and active IRQs */
|
|
|
- if (lr.irq < VGIC_NR_SGIS)
|
|
|
- add_sgi_source(vcpu, lr.irq, lr.source);
|
|
|
-
|
|
|
- /*
|
|
|
- * If the LR holds an active (10) or a pending and active (11)
|
|
|
- * interrupt then move the active state to the
|
|
|
- * distributor tracking bit.
|
|
|
- */
|
|
|
- if (lr.state & LR_STATE_ACTIVE)
|
|
|
- vgic_irq_set_active(vcpu, lr.irq);
|
|
|
-
|
|
|
- /*
|
|
|
- * Reestablish the pending state on the distributor and the
|
|
|
- * CPU interface and mark the LR as free for other use.
|
|
|
- */
|
|
|
- vgic_retire_lr(i, vcpu);
|
|
|
-
|
|
|
- /* Finally update the VGIC state. */
|
|
|
- vgic_update_state(vcpu->kvm);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-const
|
|
|
-struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
|
|
|
- int len, gpa_t offset)
|
|
|
-{
|
|
|
- while (ranges->len) {
|
|
|
- if (offset >= ranges->base &&
|
|
|
- (offset + len) <= (ranges->base + ranges->len))
|
|
|
- return ranges;
|
|
|
- ranges++;
|
|
|
- }
|
|
|
-
|
|
|
- return NULL;
|
|
|
-}
|
|
|
-
|
|
|
-static bool vgic_validate_access(const struct vgic_dist *dist,
|
|
|
- const struct vgic_io_range *range,
|
|
|
- unsigned long offset)
|
|
|
-{
|
|
|
- int irq;
|
|
|
-
|
|
|
- if (!range->bits_per_irq)
|
|
|
- return true; /* Not an irq-based access */
|
|
|
-
|
|
|
- irq = offset * 8 / range->bits_per_irq;
|
|
|
- if (irq >= dist->nr_irqs)
|
|
|
- return false;
|
|
|
-
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Call the respective handler function for the given range.
|
|
|
- * We split up any 64 bit accesses into two consecutive 32 bit
|
|
|
- * handler calls and merge the result afterwards.
|
|
|
- * We do this in a little endian fashion regardless of the host's
|
|
|
- * or guest's endianness, because the GIC is always LE and the rest of
|
|
|
- * the code (vgic_reg_access) also puts it in a LE fashion already.
|
|
|
- * At this point we have already identified the handle function, so
|
|
|
- * range points to that one entry and offset is relative to this.
|
|
|
- */
|
|
|
-static bool call_range_handler(struct kvm_vcpu *vcpu,
|
|
|
- struct kvm_exit_mmio *mmio,
|
|
|
- unsigned long offset,
|
|
|
- const struct vgic_io_range *range)
|
|
|
-{
|
|
|
- struct kvm_exit_mmio mmio32;
|
|
|
- bool ret;
|
|
|
-
|
|
|
- if (likely(mmio->len <= 4))
|
|
|
- return range->handle_mmio(vcpu, mmio, offset);
|
|
|
-
|
|
|
- /*
|
|
|
- * Any access bigger than 4 bytes (that we currently handle in KVM)
|
|
|
- * is actually 8 bytes long, caused by a 64-bit access
|
|
|
- */
|
|
|
-
|
|
|
- mmio32.len = 4;
|
|
|
- mmio32.is_write = mmio->is_write;
|
|
|
- mmio32.private = mmio->private;
|
|
|
-
|
|
|
- mmio32.phys_addr = mmio->phys_addr + 4;
|
|
|
- mmio32.data = &((u32 *)mmio->data)[1];
|
|
|
- ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
|
|
|
-
|
|
|
- mmio32.phys_addr = mmio->phys_addr;
|
|
|
- mmio32.data = &((u32 *)mmio->data)[0];
|
|
|
- ret |= range->handle_mmio(vcpu, &mmio32, offset);
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * vgic_handle_mmio_access - handle an in-kernel MMIO access
|
|
|
- * This is called by the read/write KVM IO device wrappers below.
|
|
|
- * @vcpu: pointer to the vcpu performing the access
|
|
|
- * @this: pointer to the KVM IO device in charge
|
|
|
- * @addr: guest physical address of the access
|
|
|
- * @len: size of the access
|
|
|
- * @val: pointer to the data region
|
|
|
- * @is_write: read or write access
|
|
|
- *
|
|
|
- * returns true if the MMIO access could be performed
|
|
|
- */
|
|
|
-static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
|
|
|
- struct kvm_io_device *this, gpa_t addr,
|
|
|
- int len, void *val, bool is_write)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- struct vgic_io_device *iodev = container_of(this,
|
|
|
- struct vgic_io_device, dev);
|
|
|
- const struct vgic_io_range *range;
|
|
|
- struct kvm_exit_mmio mmio;
|
|
|
- bool updated_state;
|
|
|
- gpa_t offset;
|
|
|
-
|
|
|
- offset = addr - iodev->addr;
|
|
|
- range = vgic_find_range(iodev->reg_ranges, len, offset);
|
|
|
- if (unlikely(!range || !range->handle_mmio)) {
|
|
|
- pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
|
|
|
- return -ENXIO;
|
|
|
- }
|
|
|
-
|
|
|
- mmio.phys_addr = addr;
|
|
|
- mmio.len = len;
|
|
|
- mmio.is_write = is_write;
|
|
|
- mmio.data = val;
|
|
|
- mmio.private = iodev->redist_vcpu;
|
|
|
-
|
|
|
- spin_lock(&dist->lock);
|
|
|
- offset -= range->base;
|
|
|
- if (vgic_validate_access(dist, range, offset)) {
|
|
|
- updated_state = call_range_handler(vcpu, &mmio, offset, range);
|
|
|
- } else {
|
|
|
- if (!is_write)
|
|
|
- memset(val, 0, len);
|
|
|
- updated_state = false;
|
|
|
- }
|
|
|
- spin_unlock(&dist->lock);
|
|
|
-
|
|
|
- if (updated_state)
|
|
|
- vgic_kick_vcpus(vcpu->kvm);
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
|
|
|
- struct kvm_io_device *this,
|
|
|
- gpa_t addr, int len, void *val)
|
|
|
-{
|
|
|
- return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
|
|
|
- struct kvm_io_device *this,
|
|
|
- gpa_t addr, int len, const void *val)
|
|
|
-{
|
|
|
- return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
|
|
|
- true);
|
|
|
-}
|
|
|
-
|
|
|
-static struct kvm_io_device_ops vgic_io_ops = {
|
|
|
- .read = vgic_handle_mmio_read,
|
|
|
- .write = vgic_handle_mmio_write,
|
|
|
-};
|
|
|
-
|
|
|
-/**
|
|
|
- * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
|
|
|
- * @kvm: The VM structure pointer
|
|
|
- * @base: The (guest) base address for the register frame
|
|
|
- * @len: Length of the register frame window
|
|
|
- * @ranges: Describing the handler functions for each register
|
|
|
- * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
|
|
|
- * @iodev: Points to memory to be passed on to the handler
|
|
|
- *
|
|
|
- * @iodev stores the parameters of this function to be usable by the handler
|
|
|
- * respectively the dispatcher function (since the KVM I/O bus framework lacks
|
|
|
- * an opaque parameter). Initialization is done in this function, but the
|
|
|
- * reference should be valid and unique for the whole VGIC lifetime.
|
|
|
- * If the register frame is not mapped for a specific VCPU, pass -1 to
|
|
|
- * @redist_vcpu_id.
|
|
|
- */
|
|
|
-int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
|
|
|
- const struct vgic_io_range *ranges,
|
|
|
- int redist_vcpu_id,
|
|
|
- struct vgic_io_device *iodev)
|
|
|
-{
|
|
|
- struct kvm_vcpu *vcpu = NULL;
|
|
|
- int ret;
|
|
|
-
|
|
|
- if (redist_vcpu_id >= 0)
|
|
|
- vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
|
|
|
-
|
|
|
- iodev->addr = base;
|
|
|
- iodev->len = len;
|
|
|
- iodev->reg_ranges = ranges;
|
|
|
- iodev->redist_vcpu = vcpu;
|
|
|
-
|
|
|
- kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
|
|
|
-
|
|
|
- mutex_lock(&kvm->slots_lock);
|
|
|
-
|
|
|
- ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
|
|
|
- &iodev->dev);
|
|
|
- mutex_unlock(&kvm->slots_lock);
|
|
|
-
|
|
|
- /* Mark the iodev as invalid if registration fails. */
|
|
|
- if (ret)
|
|
|
- iodev->dev.ops = NULL;
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_nr_shared_irqs(struct vgic_dist *dist)
|
|
|
-{
|
|
|
- return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
|
|
|
-}
|
|
|
-
|
|
|
-static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- unsigned long *active, *enabled, *act_percpu, *act_shared;
|
|
|
- unsigned long active_private, active_shared;
|
|
|
- int nr_shared = vgic_nr_shared_irqs(dist);
|
|
|
- int vcpu_id;
|
|
|
-
|
|
|
- vcpu_id = vcpu->vcpu_id;
|
|
|
- act_percpu = vcpu->arch.vgic_cpu.active_percpu;
|
|
|
- act_shared = vcpu->arch.vgic_cpu.active_shared;
|
|
|
-
|
|
|
- active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
|
|
|
- enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
|
|
|
- bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
|
|
|
-
|
|
|
- active = vgic_bitmap_get_shared_map(&dist->irq_active);
|
|
|
- enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
|
|
|
- bitmap_and(act_shared, active, enabled, nr_shared);
|
|
|
- bitmap_and(act_shared, act_shared,
|
|
|
- vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
|
|
|
- nr_shared);
|
|
|
-
|
|
|
- active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
|
|
|
- active_shared = find_first_bit(act_shared, nr_shared);
|
|
|
-
|
|
|
- return (active_private < VGIC_NR_PRIVATE_IRQS ||
|
|
|
- active_shared < nr_shared);
|
|
|
-}
|
|
|
-
|
|
|
-static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
|
|
|
- unsigned long pending_private, pending_shared;
|
|
|
- int nr_shared = vgic_nr_shared_irqs(dist);
|
|
|
- int vcpu_id;
|
|
|
-
|
|
|
- vcpu_id = vcpu->vcpu_id;
|
|
|
- pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
|
|
|
- pend_shared = vcpu->arch.vgic_cpu.pending_shared;
|
|
|
-
|
|
|
- if (!dist->enabled) {
|
|
|
- bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
|
|
|
- bitmap_zero(pend_shared, nr_shared);
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
|
|
|
- enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
|
|
|
- bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
|
|
|
-
|
|
|
- pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
|
|
|
- enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
|
|
|
- bitmap_and(pend_shared, pending, enabled, nr_shared);
|
|
|
- bitmap_and(pend_shared, pend_shared,
|
|
|
- vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
|
|
|
- nr_shared);
|
|
|
-
|
|
|
- pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
|
|
|
- pending_shared = find_first_bit(pend_shared, nr_shared);
|
|
|
- return (pending_private < VGIC_NR_PRIVATE_IRQS ||
|
|
|
- pending_shared < vgic_nr_shared_irqs(dist));
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Update the interrupt state and determine which CPUs have pending
|
|
|
- * or active interrupts. Must be called with distributor lock held.
|
|
|
- */
|
|
|
-void vgic_update_state(struct kvm *kvm)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
- struct kvm_vcpu *vcpu;
|
|
|
- int c;
|
|
|
-
|
|
|
- kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
|
- if (compute_pending_for_cpu(vcpu))
|
|
|
- set_bit(c, dist->irq_pending_on_cpu);
|
|
|
-
|
|
|
- if (compute_active_for_cpu(vcpu))
|
|
|
- set_bit(c, dist->irq_active_on_cpu);
|
|
|
- else
|
|
|
- clear_bit(c, dist->irq_active_on_cpu);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
|
|
|
-{
|
|
|
- return vgic_ops->get_lr(vcpu, lr);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
|
|
|
- struct vgic_lr vlr)
|
|
|
-{
|
|
|
- vgic_ops->set_lr(vcpu, lr, vlr);
|
|
|
-}
|
|
|
-
|
|
|
-static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- return vgic_ops->get_elrsr(vcpu);
|
|
|
-}
|
|
|
-
|
|
|
-static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- return vgic_ops->get_eisr(vcpu);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- vgic_ops->clear_eisr(vcpu);
|
|
|
-}
|
|
|
-
|
|
|
-static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- return vgic_ops->get_interrupt_status(vcpu);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- vgic_ops->enable_underflow(vcpu);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- vgic_ops->disable_underflow(vcpu);
|
|
|
-}
|
|
|
-
|
|
|
-void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
|
|
|
-{
|
|
|
- vgic_ops->get_vmcr(vcpu, vmcr);
|
|
|
-}
|
|
|
-
|
|
|
-void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
|
|
|
-{
|
|
|
- vgic_ops->set_vmcr(vcpu, vmcr);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void vgic_enable(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- vgic_ops->enable(vcpu);
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
|
|
|
-
|
|
|
- vgic_irq_clear_queued(vcpu, vlr.irq);
|
|
|
-
|
|
|
- /*
|
|
|
- * We must transfer the pending state back to the distributor before
|
|
|
- * retiring the LR, otherwise we may loose edge-triggered interrupts.
|
|
|
- */
|
|
|
- if (vlr.state & LR_STATE_PENDING) {
|
|
|
- vgic_dist_irq_set_pending(vcpu, vlr.irq);
|
|
|
- vlr.hwirq = 0;
|
|
|
- }
|
|
|
-
|
|
|
- vlr.state = 0;
|
|
|
- vgic_set_lr(vcpu, lr_nr, vlr);
|
|
|
-}
|
|
|
-
|
|
|
-static bool dist_active_irq(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
|
|
|
-}
|
|
|
-
|
|
|
-bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int virt_irq)
|
|
|
-{
|
|
|
- int i;
|
|
|
-
|
|
|
- for (i = 0; i < vgic->nr_lr; i++) {
|
|
|
- struct vgic_lr vlr = vgic_get_lr(vcpu, i);
|
|
|
-
|
|
|
- if (vlr.irq == virt_irq && vlr.state & LR_STATE_ACTIVE)
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- return vgic_irq_is_active(vcpu, virt_irq);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * An interrupt may have been disabled after being made pending on the
|
|
|
- * CPU interface (the classic case is a timer running while we're
|
|
|
- * rebooting the guest - the interrupt would kick as soon as the CPU
|
|
|
- * interface gets enabled, with deadly consequences).
|
|
|
- *
|
|
|
- * The solution is to examine already active LRs, and check the
|
|
|
- * interrupt is still enabled. If not, just retire it.
|
|
|
- */
|
|
|
-static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- u64 elrsr = vgic_get_elrsr(vcpu);
|
|
|
- unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
|
|
|
- int lr;
|
|
|
-
|
|
|
- for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
|
|
|
- struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
|
|
|
-
|
|
|
- if (!vgic_irq_is_enabled(vcpu, vlr.irq))
|
|
|
- vgic_retire_lr(lr, vcpu);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
|
|
|
- int lr_nr, struct vgic_lr vlr)
|
|
|
-{
|
|
|
- if (vgic_irq_is_active(vcpu, irq)) {
|
|
|
- vlr.state |= LR_STATE_ACTIVE;
|
|
|
- kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
|
|
|
- vgic_irq_clear_active(vcpu, irq);
|
|
|
- vgic_update_state(vcpu->kvm);
|
|
|
- } else {
|
|
|
- WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
|
|
|
- vlr.state |= LR_STATE_PENDING;
|
|
|
- kvm_debug("Set pending: 0x%x\n", vlr.state);
|
|
|
- }
|
|
|
-
|
|
|
- if (!vgic_irq_is_edge(vcpu, irq))
|
|
|
- vlr.state |= LR_EOI_INT;
|
|
|
-
|
|
|
- if (vlr.irq >= VGIC_NR_SGIS) {
|
|
|
- struct irq_phys_map *map;
|
|
|
- map = vgic_irq_map_search(vcpu, irq);
|
|
|
-
|
|
|
- if (map) {
|
|
|
- vlr.hwirq = map->phys_irq;
|
|
|
- vlr.state |= LR_HW;
|
|
|
- vlr.state &= ~LR_EOI_INT;
|
|
|
-
|
|
|
- /*
|
|
|
- * Make sure we're not going to sample this
|
|
|
- * again, as a HW-backed interrupt cannot be
|
|
|
- * in the PENDING_ACTIVE stage.
|
|
|
- */
|
|
|
- vgic_irq_set_queued(vcpu, irq);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- vgic_set_lr(vcpu, lr_nr, vlr);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Queue an interrupt to a CPU virtual interface. Return true on success,
|
|
|
- * or false if it wasn't possible to queue it.
|
|
|
- * sgi_source must be zero for any non-SGI interrupts.
|
|
|
- */
|
|
|
-bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- u64 elrsr = vgic_get_elrsr(vcpu);
|
|
|
- unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
|
|
|
- struct vgic_lr vlr;
|
|
|
- int lr;
|
|
|
-
|
|
|
- /* Sanitize the input... */
|
|
|
- BUG_ON(sgi_source_id & ~7);
|
|
|
- BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
|
|
|
- BUG_ON(irq >= dist->nr_irqs);
|
|
|
-
|
|
|
- kvm_debug("Queue IRQ%d\n", irq);
|
|
|
-
|
|
|
- /* Do we have an active interrupt for the same CPUID? */
|
|
|
- for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
|
|
|
- vlr = vgic_get_lr(vcpu, lr);
|
|
|
- if (vlr.irq == irq && vlr.source == sgi_source_id) {
|
|
|
- kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
|
|
|
- vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
|
|
|
- return true;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Try to use another LR for this interrupt */
|
|
|
- lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
|
|
|
- if (lr >= vgic->nr_lr)
|
|
|
- return false;
|
|
|
-
|
|
|
- kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
|
|
|
-
|
|
|
- vlr.irq = irq;
|
|
|
- vlr.source = sgi_source_id;
|
|
|
- vlr.state = 0;
|
|
|
- vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
|
|
|
-
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
-static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
|
|
|
-{
|
|
|
- if (!vgic_can_sample_irq(vcpu, irq))
|
|
|
- return true; /* level interrupt, already queued */
|
|
|
-
|
|
|
- if (vgic_queue_irq(vcpu, 0, irq)) {
|
|
|
- if (vgic_irq_is_edge(vcpu, irq)) {
|
|
|
- vgic_dist_irq_clear_pending(vcpu, irq);
|
|
|
- vgic_cpu_irq_clear(vcpu, irq);
|
|
|
- } else {
|
|
|
- vgic_irq_set_queued(vcpu, irq);
|
|
|
- }
|
|
|
-
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Fill the list registers with pending interrupts before running the
|
|
|
- * guest.
|
|
|
- */
|
|
|
-static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- unsigned long *pa_percpu, *pa_shared;
|
|
|
- int i, vcpu_id;
|
|
|
- int overflow = 0;
|
|
|
- int nr_shared = vgic_nr_shared_irqs(dist);
|
|
|
-
|
|
|
- vcpu_id = vcpu->vcpu_id;
|
|
|
-
|
|
|
- pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
|
|
|
- pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
|
|
|
-
|
|
|
- bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
|
|
|
- VGIC_NR_PRIVATE_IRQS);
|
|
|
- bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
|
|
|
- nr_shared);
|
|
|
- /*
|
|
|
- * We may not have any pending interrupt, or the interrupts
|
|
|
- * may have been serviced from another vcpu. In all cases,
|
|
|
- * move along.
|
|
|
- */
|
|
|
- if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu))
|
|
|
- goto epilog;
|
|
|
-
|
|
|
- /* SGIs */
|
|
|
- for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
|
|
|
- if (!queue_sgi(vcpu, i))
|
|
|
- overflow = 1;
|
|
|
- }
|
|
|
-
|
|
|
- /* PPIs */
|
|
|
- for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
|
|
|
- if (!vgic_queue_hwirq(vcpu, i))
|
|
|
- overflow = 1;
|
|
|
- }
|
|
|
-
|
|
|
- /* SPIs */
|
|
|
- for_each_set_bit(i, pa_shared, nr_shared) {
|
|
|
- if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
|
|
|
- overflow = 1;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-epilog:
|
|
|
- if (overflow) {
|
|
|
- vgic_enable_underflow(vcpu);
|
|
|
- } else {
|
|
|
- vgic_disable_underflow(vcpu);
|
|
|
- /*
|
|
|
- * We're about to run this VCPU, and we've consumed
|
|
|
- * everything the distributor had in store for
|
|
|
- * us. Claim we don't have anything pending. We'll
|
|
|
- * adjust that if needed while exiting.
|
|
|
- */
|
|
|
- clear_bit(vcpu_id, dist->irq_pending_on_cpu);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static int process_queued_irq(struct kvm_vcpu *vcpu,
|
|
|
- int lr, struct vgic_lr vlr)
|
|
|
-{
|
|
|
- int pending = 0;
|
|
|
-
|
|
|
- /*
|
|
|
- * If the IRQ was EOIed (called from vgic_process_maintenance) or it
|
|
|
- * went from active to non-active (called from vgic_sync_hwirq) it was
|
|
|
- * also ACKed and we we therefore assume we can clear the soft pending
|
|
|
- * state (should it had been set) for this interrupt.
|
|
|
- *
|
|
|
- * Note: if the IRQ soft pending state was set after the IRQ was
|
|
|
- * acked, it actually shouldn't be cleared, but we have no way of
|
|
|
- * knowing that unless we start trapping ACKs when the soft-pending
|
|
|
- * state is set.
|
|
|
- */
|
|
|
- vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
|
|
|
-
|
|
|
- /*
|
|
|
- * Tell the gic to start sampling this interrupt again.
|
|
|
- */
|
|
|
- vgic_irq_clear_queued(vcpu, vlr.irq);
|
|
|
-
|
|
|
- /* Any additional pending interrupt? */
|
|
|
- if (vgic_irq_is_edge(vcpu, vlr.irq)) {
|
|
|
- BUG_ON(!(vlr.state & LR_HW));
|
|
|
- pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
|
|
|
- } else {
|
|
|
- if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
|
|
|
- vgic_cpu_irq_set(vcpu, vlr.irq);
|
|
|
- pending = 1;
|
|
|
- } else {
|
|
|
- vgic_dist_irq_clear_pending(vcpu, vlr.irq);
|
|
|
- vgic_cpu_irq_clear(vcpu, vlr.irq);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Despite being EOIed, the LR may not have
|
|
|
- * been marked as empty.
|
|
|
- */
|
|
|
- vlr.state = 0;
|
|
|
- vlr.hwirq = 0;
|
|
|
- vgic_set_lr(vcpu, lr, vlr);
|
|
|
-
|
|
|
- return pending;
|
|
|
-}
|
|
|
-
|
|
|
-static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- u32 status = vgic_get_interrupt_status(vcpu);
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- struct kvm *kvm = vcpu->kvm;
|
|
|
- int level_pending = 0;
|
|
|
-
|
|
|
- kvm_debug("STATUS = %08x\n", status);
|
|
|
-
|
|
|
- if (status & INT_STATUS_EOI) {
|
|
|
- /*
|
|
|
- * Some level interrupts have been EOIed. Clear their
|
|
|
- * active bit.
|
|
|
- */
|
|
|
- u64 eisr = vgic_get_eisr(vcpu);
|
|
|
- unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
|
|
|
- int lr;
|
|
|
-
|
|
|
- for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
|
|
|
- struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
|
|
|
-
|
|
|
- WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
|
|
|
- WARN_ON(vlr.state & LR_STATE_MASK);
|
|
|
-
|
|
|
-
|
|
|
- /*
|
|
|
- * kvm_notify_acked_irq calls kvm_set_irq()
|
|
|
- * to reset the IRQ level, which grabs the dist->lock
|
|
|
- * so we call this before taking the dist->lock.
|
|
|
- */
|
|
|
- kvm_notify_acked_irq(kvm, 0,
|
|
|
- vlr.irq - VGIC_NR_PRIVATE_IRQS);
|
|
|
-
|
|
|
- spin_lock(&dist->lock);
|
|
|
- level_pending |= process_queued_irq(vcpu, lr, vlr);
|
|
|
- spin_unlock(&dist->lock);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (status & INT_STATUS_UNDERFLOW)
|
|
|
- vgic_disable_underflow(vcpu);
|
|
|
-
|
|
|
- /*
|
|
|
- * In the next iterations of the vcpu loop, if we sync the vgic state
|
|
|
- * after flushing it, but before entering the guest (this happens for
|
|
|
- * pending signals and vmid rollovers), then make sure we don't pick
|
|
|
- * up any old maintenance interrupts here.
|
|
|
- */
|
|
|
- vgic_clear_eisr(vcpu);
|
|
|
-
|
|
|
- return level_pending;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Save the physical active state, and reset it to inactive.
|
|
|
- *
|
|
|
- * Return true if there's a pending forwarded interrupt to queue.
|
|
|
- */
|
|
|
-static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- bool level_pending;
|
|
|
-
|
|
|
- if (!(vlr.state & LR_HW))
|
|
|
- return false;
|
|
|
-
|
|
|
- if (vlr.state & LR_STATE_ACTIVE)
|
|
|
- return false;
|
|
|
-
|
|
|
- spin_lock(&dist->lock);
|
|
|
- level_pending = process_queued_irq(vcpu, lr, vlr);
|
|
|
- spin_unlock(&dist->lock);
|
|
|
- return level_pending;
|
|
|
-}
|
|
|
-
|
|
|
-/* Sync back the VGIC state after a guest run */
|
|
|
-static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- u64 elrsr;
|
|
|
- unsigned long *elrsr_ptr;
|
|
|
- int lr, pending;
|
|
|
- bool level_pending;
|
|
|
-
|
|
|
- level_pending = vgic_process_maintenance(vcpu);
|
|
|
-
|
|
|
- /* Deal with HW interrupts, and clear mappings for empty LRs */
|
|
|
- for (lr = 0; lr < vgic->nr_lr; lr++) {
|
|
|
- struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
|
|
|
-
|
|
|
- level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
|
|
|
- BUG_ON(vlr.irq >= dist->nr_irqs);
|
|
|
- }
|
|
|
-
|
|
|
- /* Check if we still have something up our sleeve... */
|
|
|
- elrsr = vgic_get_elrsr(vcpu);
|
|
|
- elrsr_ptr = u64_to_bitmask(&elrsr);
|
|
|
- pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
|
|
|
- if (level_pending || pending < vgic->nr_lr)
|
|
|
- set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
|
|
|
-}
|
|
|
-
|
|
|
-void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- if (!irqchip_in_kernel(vcpu->kvm))
|
|
|
- return;
|
|
|
-
|
|
|
- spin_lock(&dist->lock);
|
|
|
- __kvm_vgic_flush_hwstate(vcpu);
|
|
|
- spin_unlock(&dist->lock);
|
|
|
-}
|
|
|
-
|
|
|
-void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- if (!irqchip_in_kernel(vcpu->kvm))
|
|
|
- return;
|
|
|
-
|
|
|
- __kvm_vgic_sync_hwstate(vcpu);
|
|
|
-}
|
|
|
-
|
|
|
-int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
-
|
|
|
- if (!irqchip_in_kernel(vcpu->kvm))
|
|
|
- return 0;
|
|
|
-
|
|
|
- return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
|
|
|
-}
|
|
|
-
|
|
|
-void vgic_kick_vcpus(struct kvm *kvm)
|
|
|
-{
|
|
|
- struct kvm_vcpu *vcpu;
|
|
|
- int c;
|
|
|
-
|
|
|
- /*
|
|
|
- * We've injected an interrupt, time to find out who deserves
|
|
|
- * a good kick...
|
|
|
- */
|
|
|
- kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
|
- if (kvm_vgic_vcpu_pending_irq(vcpu))
|
|
|
- kvm_vcpu_kick(vcpu);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
|
|
|
-{
|
|
|
- int edge_triggered = vgic_irq_is_edge(vcpu, irq);
|
|
|
-
|
|
|
- /*
|
|
|
- * Only inject an interrupt if:
|
|
|
- * - edge triggered and we have a rising edge
|
|
|
- * - level triggered and we change level
|
|
|
- */
|
|
|
- if (edge_triggered) {
|
|
|
- int state = vgic_dist_irq_is_pending(vcpu, irq);
|
|
|
- return level > state;
|
|
|
- } else {
|
|
|
- int state = vgic_dist_irq_get_level(vcpu, irq);
|
|
|
- return level != state;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
|
|
|
- unsigned int irq_num, bool level)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
- struct kvm_vcpu *vcpu;
|
|
|
- int edge_triggered, level_triggered;
|
|
|
- int enabled;
|
|
|
- bool ret = true, can_inject = true;
|
|
|
-
|
|
|
- trace_vgic_update_irq_pending(cpuid, irq_num, level);
|
|
|
-
|
|
|
- if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
|
|
|
- return -EINVAL;
|
|
|
-
|
|
|
- spin_lock(&dist->lock);
|
|
|
-
|
|
|
- vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
|
- edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
|
|
|
- level_triggered = !edge_triggered;
|
|
|
-
|
|
|
- if (!vgic_validate_injection(vcpu, irq_num, level)) {
|
|
|
- ret = false;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
|
|
|
- cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
|
|
|
- if (cpuid == VCPU_NOT_ALLOCATED) {
|
|
|
- /* Pretend we use CPU0, and prevent injection */
|
|
|
- cpuid = 0;
|
|
|
- can_inject = false;
|
|
|
- }
|
|
|
- vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
|
- }
|
|
|
-
|
|
|
- kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
|
|
|
-
|
|
|
- if (level) {
|
|
|
- if (level_triggered)
|
|
|
- vgic_dist_irq_set_level(vcpu, irq_num);
|
|
|
- vgic_dist_irq_set_pending(vcpu, irq_num);
|
|
|
- } else {
|
|
|
- if (level_triggered) {
|
|
|
- vgic_dist_irq_clear_level(vcpu, irq_num);
|
|
|
- if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
|
|
|
- vgic_dist_irq_clear_pending(vcpu, irq_num);
|
|
|
- vgic_cpu_irq_clear(vcpu, irq_num);
|
|
|
- if (!compute_pending_for_cpu(vcpu))
|
|
|
- clear_bit(cpuid, dist->irq_pending_on_cpu);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- ret = false;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- enabled = vgic_irq_is_enabled(vcpu, irq_num);
|
|
|
-
|
|
|
- if (!enabled || !can_inject) {
|
|
|
- ret = false;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- if (!vgic_can_sample_irq(vcpu, irq_num)) {
|
|
|
- /*
|
|
|
- * Level interrupt in progress, will be picked up
|
|
|
- * when EOId.
|
|
|
- */
|
|
|
- ret = false;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- if (level) {
|
|
|
- vgic_cpu_irq_set(vcpu, irq_num);
|
|
|
- set_bit(cpuid, dist->irq_pending_on_cpu);
|
|
|
- }
|
|
|
-
|
|
|
-out:
|
|
|
- spin_unlock(&dist->lock);
|
|
|
-
|
|
|
- if (ret) {
|
|
|
- /* kick the specified vcpu */
|
|
|
- kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_lazy_init(struct kvm *kvm)
|
|
|
-{
|
|
|
- int ret = 0;
|
|
|
-
|
|
|
- if (unlikely(!vgic_initialized(kvm))) {
|
|
|
- /*
|
|
|
- * We only provide the automatic initialization of the VGIC
|
|
|
- * for the legacy case of a GICv2. Any other type must
|
|
|
- * be explicitly initialized once setup with the respective
|
|
|
- * KVM device call.
|
|
|
- */
|
|
|
- if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
|
|
|
- return -EBUSY;
|
|
|
-
|
|
|
- mutex_lock(&kvm->lock);
|
|
|
- ret = vgic_init(kvm);
|
|
|
- mutex_unlock(&kvm->lock);
|
|
|
- }
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
|
|
|
- * @kvm: The VM structure pointer
|
|
|
- * @cpuid: The CPU for PPIs
|
|
|
- * @irq_num: The IRQ number that is assigned to the device. This IRQ
|
|
|
- * must not be mapped to a HW interrupt.
|
|
|
- * @level: Edge-triggered: true: to trigger the interrupt
|
|
|
- * false: to ignore the call
|
|
|
- * Level-sensitive true: raise the input signal
|
|
|
- * false: lower the input signal
|
|
|
- *
|
|
|
- * The GIC is not concerned with devices being active-LOW or active-HIGH for
|
|
|
- * level-sensitive interrupts. You can think of the level parameter as 1
|
|
|
- * being HIGH and 0 being LOW and all devices being active-HIGH.
|
|
|
- */
|
|
|
-int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
|
|
|
- bool level)
|
|
|
-{
|
|
|
- struct irq_phys_map *map;
|
|
|
- int ret;
|
|
|
-
|
|
|
- ret = vgic_lazy_init(kvm);
|
|
|
- if (ret)
|
|
|
- return ret;
|
|
|
-
|
|
|
- map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
|
|
|
- if (map)
|
|
|
- return -EINVAL;
|
|
|
-
|
|
|
- return vgic_update_irq_pending(kvm, cpuid, irq_num, level);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
|
|
|
- * @kvm: The VM structure pointer
|
|
|
- * @cpuid: The CPU for PPIs
|
|
|
- * @virt_irq: The virtual IRQ to be injected
|
|
|
- * @level: Edge-triggered: true: to trigger the interrupt
|
|
|
- * false: to ignore the call
|
|
|
- * Level-sensitive true: raise the input signal
|
|
|
- * false: lower the input signal
|
|
|
- *
|
|
|
- * The GIC is not concerned with devices being active-LOW or active-HIGH for
|
|
|
- * level-sensitive interrupts. You can think of the level parameter as 1
|
|
|
- * being HIGH and 0 being LOW and all devices being active-HIGH.
|
|
|
- */
|
|
|
-int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
|
|
|
- unsigned int virt_irq, bool level)
|
|
|
-{
|
|
|
- int ret;
|
|
|
-
|
|
|
- ret = vgic_lazy_init(kvm);
|
|
|
- if (ret)
|
|
|
- return ret;
|
|
|
-
|
|
|
- return vgic_update_irq_pending(kvm, cpuid, virt_irq, level);
|
|
|
-}
|
|
|
-
|
|
|
-static irqreturn_t vgic_maintenance_handler(int irq, void *data)
|
|
|
-{
|
|
|
- /*
|
|
|
- * We cannot rely on the vgic maintenance interrupt to be
|
|
|
- * delivered synchronously. This means we can only use it to
|
|
|
- * exit the VM, and we perform the handling of EOIed
|
|
|
- * interrupts on the exit path (see vgic_process_maintenance).
|
|
|
- */
|
|
|
- return IRQ_HANDLED;
|
|
|
-}
|
|
|
-
|
|
|
-static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
|
|
|
- int virt_irq)
|
|
|
-{
|
|
|
- if (virt_irq < VGIC_NR_PRIVATE_IRQS)
|
|
|
- return &vcpu->arch.vgic_cpu.irq_phys_map_list;
|
|
|
- else
|
|
|
- return &vcpu->kvm->arch.vgic.irq_phys_map_list;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
|
|
|
- * @vcpu: The VCPU pointer
|
|
|
- * @virt_irq: The virtual IRQ number for the guest
|
|
|
- * @phys_irq: The hardware IRQ number of the host
|
|
|
- *
|
|
|
- * Establish a mapping between a guest visible irq (@virt_irq) and a
|
|
|
- * hardware irq (@phys_irq). On injection, @virt_irq will be associated with
|
|
|
- * the physical interrupt represented by @phys_irq. This mapping can be
|
|
|
- * established multiple times as long as the parameters are the same.
|
|
|
- *
|
|
|
- * Returns 0 on success or an error value otherwise.
|
|
|
- */
|
|
|
-int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, int virt_irq, int phys_irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
|
|
|
- struct irq_phys_map *map;
|
|
|
- struct irq_phys_map_entry *entry;
|
|
|
- int ret = 0;
|
|
|
-
|
|
|
- /* Create a new mapping */
|
|
|
- entry = kzalloc(sizeof(*entry), GFP_KERNEL);
|
|
|
- if (!entry)
|
|
|
- return -ENOMEM;
|
|
|
-
|
|
|
- spin_lock(&dist->irq_phys_map_lock);
|
|
|
-
|
|
|
- /* Try to match an existing mapping */
|
|
|
- map = vgic_irq_map_search(vcpu, virt_irq);
|
|
|
- if (map) {
|
|
|
- /* Make sure this mapping matches */
|
|
|
- if (map->phys_irq != phys_irq)
|
|
|
- ret = -EINVAL;
|
|
|
-
|
|
|
- /* Found an existing, valid mapping */
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- map = &entry->map;
|
|
|
- map->virt_irq = virt_irq;
|
|
|
- map->phys_irq = phys_irq;
|
|
|
-
|
|
|
- list_add_tail_rcu(&entry->entry, root);
|
|
|
-
|
|
|
-out:
|
|
|
- spin_unlock(&dist->irq_phys_map_lock);
|
|
|
- /* If we've found a hit in the existing list, free the useless
|
|
|
- * entry */
|
|
|
- if (ret || map != &entry->map)
|
|
|
- kfree(entry);
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
|
|
|
- int virt_irq)
|
|
|
-{
|
|
|
- struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
|
|
|
- struct irq_phys_map_entry *entry;
|
|
|
- struct irq_phys_map *map;
|
|
|
-
|
|
|
- rcu_read_lock();
|
|
|
-
|
|
|
- list_for_each_entry_rcu(entry, root, entry) {
|
|
|
- map = &entry->map;
|
|
|
- if (map->virt_irq == virt_irq) {
|
|
|
- rcu_read_unlock();
|
|
|
- return map;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- rcu_read_unlock();
|
|
|
-
|
|
|
- return NULL;
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
|
|
|
-{
|
|
|
- struct irq_phys_map_entry *entry;
|
|
|
-
|
|
|
- entry = container_of(rcu, struct irq_phys_map_entry, rcu);
|
|
|
- kfree(entry);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
|
|
|
- * @vcpu: The VCPU pointer
|
|
|
- * @virt_irq: The virtual IRQ number to be unmapped
|
|
|
- *
|
|
|
- * Remove an existing mapping between virtual and physical interrupts.
|
|
|
- */
|
|
|
-int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int virt_irq)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
- struct irq_phys_map_entry *entry;
|
|
|
- struct list_head *root;
|
|
|
-
|
|
|
- root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
|
|
|
-
|
|
|
- spin_lock(&dist->irq_phys_map_lock);
|
|
|
-
|
|
|
- list_for_each_entry(entry, root, entry) {
|
|
|
- if (entry->map.virt_irq == virt_irq) {
|
|
|
- list_del_rcu(&entry->entry);
|
|
|
- call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- spin_unlock(&dist->irq_phys_map_lock);
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
- struct irq_phys_map_entry *entry;
|
|
|
-
|
|
|
- spin_lock(&dist->irq_phys_map_lock);
|
|
|
-
|
|
|
- list_for_each_entry(entry, root, entry) {
|
|
|
- list_del_rcu(&entry->entry);
|
|
|
- call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
|
|
|
- }
|
|
|
-
|
|
|
- spin_unlock(&dist->irq_phys_map_lock);
|
|
|
-}
|
|
|
-
|
|
|
-void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
-
|
|
|
- kfree(vgic_cpu->pending_shared);
|
|
|
- kfree(vgic_cpu->active_shared);
|
|
|
- kfree(vgic_cpu->pend_act_shared);
|
|
|
- vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
|
|
|
- vgic_cpu->pending_shared = NULL;
|
|
|
- vgic_cpu->active_shared = NULL;
|
|
|
- vgic_cpu->pend_act_shared = NULL;
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
|
|
|
-{
|
|
|
- struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
- int nr_longs = BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
|
|
|
- int sz = nr_longs * sizeof(unsigned long);
|
|
|
- vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
|
|
|
- vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
|
|
|
- vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
|
|
|
-
|
|
|
- if (!vgic_cpu->pending_shared
|
|
|
- || !vgic_cpu->active_shared
|
|
|
- || !vgic_cpu->pend_act_shared) {
|
|
|
- kvm_vgic_vcpu_destroy(vcpu);
|
|
|
- return -ENOMEM;
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
|
|
|
- *
|
|
|
- * No memory allocation should be performed here, only static init.
|
|
|
- */
|
|
|
-void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
|
|
|
-{
|
|
|
- struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
|
- INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
|
|
|
- *
|
|
|
- * The host's GIC naturally limits the maximum amount of VCPUs a guest
|
|
|
- * can use.
|
|
|
- */
|
|
|
-int kvm_vgic_get_max_vcpus(void)
|
|
|
-{
|
|
|
- return vgic->max_gic_vcpus;
|
|
|
-}
|
|
|
-
|
|
|
-void kvm_vgic_destroy(struct kvm *kvm)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
- struct kvm_vcpu *vcpu;
|
|
|
- int i;
|
|
|
-
|
|
|
- kvm_for_each_vcpu(i, vcpu, kvm)
|
|
|
- kvm_vgic_vcpu_destroy(vcpu);
|
|
|
-
|
|
|
- vgic_free_bitmap(&dist->irq_enabled);
|
|
|
- vgic_free_bitmap(&dist->irq_level);
|
|
|
- vgic_free_bitmap(&dist->irq_pending);
|
|
|
- vgic_free_bitmap(&dist->irq_soft_pend);
|
|
|
- vgic_free_bitmap(&dist->irq_queued);
|
|
|
- vgic_free_bitmap(&dist->irq_cfg);
|
|
|
- vgic_free_bytemap(&dist->irq_priority);
|
|
|
- if (dist->irq_spi_target) {
|
|
|
- for (i = 0; i < dist->nr_cpus; i++)
|
|
|
- vgic_free_bitmap(&dist->irq_spi_target[i]);
|
|
|
- }
|
|
|
- kfree(dist->irq_sgi_sources);
|
|
|
- kfree(dist->irq_spi_cpu);
|
|
|
- kfree(dist->irq_spi_mpidr);
|
|
|
- kfree(dist->irq_spi_target);
|
|
|
- kfree(dist->irq_pending_on_cpu);
|
|
|
- kfree(dist->irq_active_on_cpu);
|
|
|
- vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
|
|
|
- dist->irq_sgi_sources = NULL;
|
|
|
- dist->irq_spi_cpu = NULL;
|
|
|
- dist->irq_spi_target = NULL;
|
|
|
- dist->irq_pending_on_cpu = NULL;
|
|
|
- dist->irq_active_on_cpu = NULL;
|
|
|
- dist->nr_cpus = 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Allocate and initialize the various data structures. Must be called
|
|
|
- * with kvm->lock held!
|
|
|
- */
|
|
|
-int vgic_init(struct kvm *kvm)
|
|
|
-{
|
|
|
- struct vgic_dist *dist = &kvm->arch.vgic;
|
|
|
- struct kvm_vcpu *vcpu;
|
|
|
- int nr_cpus, nr_irqs;
|
|
|
- int ret, i, vcpu_id;
|
|
|
-
|
|
|
- if (vgic_initialized(kvm))
|
|
|
- return 0;
|
|
|
-
|
|
|
- nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
|
|
|
- if (!nr_cpus) /* No vcpus? Can't be good... */
|
|
|
- return -ENODEV;
|
|
|
-
|
|
|
- /*
|
|
|
- * If nobody configured the number of interrupts, use the
|
|
|
- * legacy one.
|
|
|
- */
|
|
|
- if (!dist->nr_irqs)
|
|
|
- dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
|
|
|
-
|
|
|
- nr_irqs = dist->nr_irqs;
|
|
|
-
|
|
|
- ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
|
|
|
- ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
|
|
|
- ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
|
|
|
- ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
|
|
|
- ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
|
|
|
- ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
|
|
|
- ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
|
|
|
- ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
|
|
|
-
|
|
|
- if (ret)
|
|
|
- goto out;
|
|
|
-
|
|
|
- dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
|
|
|
- dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
|
|
|
- dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
|
|
|
- GFP_KERNEL);
|
|
|
- dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
|
|
|
- GFP_KERNEL);
|
|
|
- dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
|
|
|
- GFP_KERNEL);
|
|
|
- if (!dist->irq_sgi_sources ||
|
|
|
- !dist->irq_spi_cpu ||
|
|
|
- !dist->irq_spi_target ||
|
|
|
- !dist->irq_pending_on_cpu ||
|
|
|
- !dist->irq_active_on_cpu) {
|
|
|
- ret = -ENOMEM;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- for (i = 0; i < nr_cpus; i++)
|
|
|
- ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
|
|
|
- nr_cpus, nr_irqs);
|
|
|
-
|
|
|
- if (ret)
|
|
|
- goto out;
|
|
|
-
|
|
|
- ret = kvm->arch.vgic.vm_ops.init_model(kvm);
|
|
|
- if (ret)
|
|
|
- goto out;
|
|
|
-
|
|
|
- kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
|
|
|
- ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
|
|
|
- if (ret) {
|
|
|
- kvm_err("VGIC: Failed to allocate vcpu memory\n");
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Enable and configure all SGIs to be edge-triggere and
|
|
|
- * configure all PPIs as level-triggered.
|
|
|
- */
|
|
|
- for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
|
|
|
- if (i < VGIC_NR_SGIS) {
|
|
|
- /* SGIs */
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_enabled,
|
|
|
- vcpu->vcpu_id, i, 1);
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_cfg,
|
|
|
- vcpu->vcpu_id, i,
|
|
|
- VGIC_CFG_EDGE);
|
|
|
- } else if (i < VGIC_NR_PRIVATE_IRQS) {
|
|
|
- /* PPIs */
|
|
|
- vgic_bitmap_set_irq_val(&dist->irq_cfg,
|
|
|
- vcpu->vcpu_id, i,
|
|
|
- VGIC_CFG_LEVEL);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- vgic_enable(vcpu);
|
|
|
- }
|
|
|
-
|
|
|
-out:
|
|
|
- if (ret)
|
|
|
- kvm_vgic_destroy(kvm);
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-static int init_vgic_model(struct kvm *kvm, int type)
|
|
|
-{
|
|
|
- switch (type) {
|
|
|
- case KVM_DEV_TYPE_ARM_VGIC_V2:
|
|
|
- vgic_v2_init_emulation(kvm);
|
|
|
- break;
|
|
|
-#ifdef CONFIG_KVM_ARM_VGIC_V3
|
|
|
- case KVM_DEV_TYPE_ARM_VGIC_V3:
|
|
|
- vgic_v3_init_emulation(kvm);
|
|
|
- break;
|
|
|
-#endif
|
|
|
- default:
|
|
|
- return -ENODEV;
|
|
|
- }
|
|
|
-
|
|
|
- if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
|
|
|
- return -E2BIG;
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * kvm_vgic_early_init - Earliest possible vgic initialization stage
|
|
|
- *
|
|
|
- * No memory allocation should be performed here, only static init.
|
|
|
- */
|
|
|
-void kvm_vgic_early_init(struct kvm *kvm)
|
|
|
-{
|
|
|
- spin_lock_init(&kvm->arch.vgic.lock);
|
|
|
- spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
|
|
|
- INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
|
|
|
-}
|
|
|
-
|
|
|
-int kvm_vgic_create(struct kvm *kvm, u32 type)
|
|
|
-{
|
|
|
- int i, vcpu_lock_idx = -1, ret;
|
|
|
- struct kvm_vcpu *vcpu;
|
|
|
-
|
|
|
- mutex_lock(&kvm->lock);
|
|
|
-
|
|
|
- if (irqchip_in_kernel(kvm)) {
|
|
|
- ret = -EEXIST;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * This function is also called by the KVM_CREATE_IRQCHIP handler,
|
|
|
- * which had no chance yet to check the availability of the GICv2
|
|
|
- * emulation. So check this here again. KVM_CREATE_DEVICE does
|
|
|
- * the proper checks already.
|
|
|
- */
|
|
|
- if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
|
|
|
- ret = -ENODEV;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Any time a vcpu is run, vcpu_load is called which tries to grab the
|
|
|
- * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
|
|
|
- * that no other VCPUs are run while we create the vgic.
|
|
|
- */
|
|
|
- ret = -EBUSY;
|
|
|
- kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
|
- if (!mutex_trylock(&vcpu->mutex))
|
|
|
- goto out_unlock;
|
|
|
- vcpu_lock_idx = i;
|
|
|
- }
|
|
|
-
|
|
|
- kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
|
- if (vcpu->arch.has_run_once)
|
|
|
- goto out_unlock;
|
|
|
- }
|
|
|
- ret = 0;
|
|
|
-
|
|
|
- ret = init_vgic_model(kvm, type);
|
|
|
- if (ret)
|
|
|
- goto out_unlock;
|
|
|
-
|
|
|
- kvm->arch.vgic.in_kernel = true;
|
|
|
- kvm->arch.vgic.vgic_model = type;
|
|
|
- kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
|
|
|
- kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
|
|
|
- kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
|
|
|
- kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
|
|
|
-
|
|
|
-out_unlock:
|
|
|
- for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
|
|
|
- vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
|
|
|
- mutex_unlock(&vcpu->mutex);
|
|
|
- }
|
|
|
-
|
|
|
-out:
|
|
|
- mutex_unlock(&kvm->lock);
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_ioaddr_overlap(struct kvm *kvm)
|
|
|
-{
|
|
|
- phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
|
|
|
- phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
|
|
|
-
|
|
|
- if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
|
|
|
- return 0;
|
|
|
- if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
|
|
|
- (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
|
|
|
- return -EBUSY;
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
|
|
|
- phys_addr_t addr, phys_addr_t size)
|
|
|
-{
|
|
|
- int ret;
|
|
|
-
|
|
|
- if (addr & ~KVM_PHYS_MASK)
|
|
|
- return -E2BIG;
|
|
|
-
|
|
|
- if (addr & (SZ_4K - 1))
|
|
|
- return -EINVAL;
|
|
|
-
|
|
|
- if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
|
|
|
- return -EEXIST;
|
|
|
- if (addr + size < addr)
|
|
|
- return -EINVAL;
|
|
|
-
|
|
|
- *ioaddr = addr;
|
|
|
- ret = vgic_ioaddr_overlap(kvm);
|
|
|
- if (ret)
|
|
|
- *ioaddr = VGIC_ADDR_UNDEF;
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * kvm_vgic_addr - set or get vgic VM base addresses
|
|
|
- * @kvm: pointer to the vm struct
|
|
|
- * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
|
|
|
- * @addr: pointer to address value
|
|
|
- * @write: if true set the address in the VM address space, if false read the
|
|
|
- * address
|
|
|
- *
|
|
|
- * Set or get the vgic base addresses for the distributor and the virtual CPU
|
|
|
- * interface in the VM physical address space. These addresses are properties
|
|
|
- * of the emulated core/SoC and therefore user space initially knows this
|
|
|
- * information.
|
|
|
- */
|
|
|
-int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
|
|
|
-{
|
|
|
- int r = 0;
|
|
|
- struct vgic_dist *vgic = &kvm->arch.vgic;
|
|
|
- int type_needed;
|
|
|
- phys_addr_t *addr_ptr, block_size;
|
|
|
- phys_addr_t alignment;
|
|
|
-
|
|
|
- mutex_lock(&kvm->lock);
|
|
|
- switch (type) {
|
|
|
- case KVM_VGIC_V2_ADDR_TYPE_DIST:
|
|
|
- type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
|
|
|
- addr_ptr = &vgic->vgic_dist_base;
|
|
|
- block_size = KVM_VGIC_V2_DIST_SIZE;
|
|
|
- alignment = SZ_4K;
|
|
|
- break;
|
|
|
- case KVM_VGIC_V2_ADDR_TYPE_CPU:
|
|
|
- type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
|
|
|
- addr_ptr = &vgic->vgic_cpu_base;
|
|
|
- block_size = KVM_VGIC_V2_CPU_SIZE;
|
|
|
- alignment = SZ_4K;
|
|
|
- break;
|
|
|
-#ifdef CONFIG_KVM_ARM_VGIC_V3
|
|
|
- case KVM_VGIC_V3_ADDR_TYPE_DIST:
|
|
|
- type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
|
|
|
- addr_ptr = &vgic->vgic_dist_base;
|
|
|
- block_size = KVM_VGIC_V3_DIST_SIZE;
|
|
|
- alignment = SZ_64K;
|
|
|
- break;
|
|
|
- case KVM_VGIC_V3_ADDR_TYPE_REDIST:
|
|
|
- type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
|
|
|
- addr_ptr = &vgic->vgic_redist_base;
|
|
|
- block_size = KVM_VGIC_V3_REDIST_SIZE;
|
|
|
- alignment = SZ_64K;
|
|
|
- break;
|
|
|
-#endif
|
|
|
- default:
|
|
|
- r = -ENODEV;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- if (vgic->vgic_model != type_needed) {
|
|
|
- r = -ENODEV;
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- if (write) {
|
|
|
- if (!IS_ALIGNED(*addr, alignment))
|
|
|
- r = -EINVAL;
|
|
|
- else
|
|
|
- r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
|
|
|
- block_size);
|
|
|
- } else {
|
|
|
- *addr = *addr_ptr;
|
|
|
- }
|
|
|
-
|
|
|
-out:
|
|
|
- mutex_unlock(&kvm->lock);
|
|
|
- return r;
|
|
|
-}
|
|
|
-
|
|
|
-int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
|
-{
|
|
|
- int r;
|
|
|
-
|
|
|
- switch (attr->group) {
|
|
|
- case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
|
- u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
|
- u64 addr;
|
|
|
- unsigned long type = (unsigned long)attr->attr;
|
|
|
-
|
|
|
- if (copy_from_user(&addr, uaddr, sizeof(addr)))
|
|
|
- return -EFAULT;
|
|
|
-
|
|
|
- r = kvm_vgic_addr(dev->kvm, type, &addr, true);
|
|
|
- return (r == -ENODEV) ? -ENXIO : r;
|
|
|
- }
|
|
|
- case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
|
|
|
- u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
|
- u32 val;
|
|
|
- int ret = 0;
|
|
|
-
|
|
|
- if (get_user(val, uaddr))
|
|
|
- return -EFAULT;
|
|
|
-
|
|
|
- /*
|
|
|
- * We require:
|
|
|
- * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
|
|
|
- * - at most 1024 interrupts
|
|
|
- * - a multiple of 32 interrupts
|
|
|
- */
|
|
|
- if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
|
|
|
- val > VGIC_MAX_IRQS ||
|
|
|
- (val & 31))
|
|
|
- return -EINVAL;
|
|
|
-
|
|
|
- mutex_lock(&dev->kvm->lock);
|
|
|
-
|
|
|
- if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
|
|
|
- ret = -EBUSY;
|
|
|
- else
|
|
|
- dev->kvm->arch.vgic.nr_irqs = val;
|
|
|
-
|
|
|
- mutex_unlock(&dev->kvm->lock);
|
|
|
-
|
|
|
- return ret;
|
|
|
- }
|
|
|
- case KVM_DEV_ARM_VGIC_GRP_CTRL: {
|
|
|
- switch (attr->attr) {
|
|
|
- case KVM_DEV_ARM_VGIC_CTRL_INIT:
|
|
|
- r = vgic_init(dev->kvm);
|
|
|
- return r;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return -ENXIO;
|
|
|
-}
|
|
|
-
|
|
|
-int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
|
|
|
-{
|
|
|
- int r = -ENXIO;
|
|
|
-
|
|
|
- switch (attr->group) {
|
|
|
- case KVM_DEV_ARM_VGIC_GRP_ADDR: {
|
|
|
- u64 __user *uaddr = (u64 __user *)(long)attr->addr;
|
|
|
- u64 addr;
|
|
|
- unsigned long type = (unsigned long)attr->attr;
|
|
|
-
|
|
|
- r = kvm_vgic_addr(dev->kvm, type, &addr, false);
|
|
|
- if (r)
|
|
|
- return (r == -ENODEV) ? -ENXIO : r;
|
|
|
-
|
|
|
- if (copy_to_user(uaddr, &addr, sizeof(addr)))
|
|
|
- return -EFAULT;
|
|
|
- break;
|
|
|
- }
|
|
|
- case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
|
|
|
- u32 __user *uaddr = (u32 __user *)(long)attr->addr;
|
|
|
-
|
|
|
- r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- return r;
|
|
|
-}
|
|
|
-
|
|
|
-int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
|
|
|
-{
|
|
|
- if (vgic_find_range(ranges, 4, offset))
|
|
|
- return 0;
|
|
|
- else
|
|
|
- return -ENXIO;
|
|
|
-}
|
|
|
-
|
|
|
-static void vgic_init_maintenance_interrupt(void *info)
|
|
|
-{
|
|
|
- enable_percpu_irq(vgic->maint_irq, 0);
|
|
|
-}
|
|
|
-
|
|
|
-static int vgic_cpu_notify(struct notifier_block *self,
|
|
|
- unsigned long action, void *cpu)
|
|
|
-{
|
|
|
- switch (action) {
|
|
|
- case CPU_STARTING:
|
|
|
- case CPU_STARTING_FROZEN:
|
|
|
- vgic_init_maintenance_interrupt(NULL);
|
|
|
- break;
|
|
|
- case CPU_DYING:
|
|
|
- case CPU_DYING_FROZEN:
|
|
|
- disable_percpu_irq(vgic->maint_irq);
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- return NOTIFY_OK;
|
|
|
-}
|
|
|
-
|
|
|
-static struct notifier_block vgic_cpu_nb = {
|
|
|
- .notifier_call = vgic_cpu_notify,
|
|
|
-};
|
|
|
-
|
|
|
-static int kvm_vgic_probe(void)
|
|
|
-{
|
|
|
- const struct gic_kvm_info *gic_kvm_info;
|
|
|
- int ret;
|
|
|
-
|
|
|
- gic_kvm_info = gic_get_kvm_info();
|
|
|
- if (!gic_kvm_info)
|
|
|
- return -ENODEV;
|
|
|
-
|
|
|
- switch (gic_kvm_info->type) {
|
|
|
- case GIC_V2:
|
|
|
- ret = vgic_v2_probe(gic_kvm_info, &vgic_ops, &vgic);
|
|
|
- break;
|
|
|
- case GIC_V3:
|
|
|
- ret = vgic_v3_probe(gic_kvm_info, &vgic_ops, &vgic);
|
|
|
- break;
|
|
|
- default:
|
|
|
- ret = -ENODEV;
|
|
|
- }
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-int kvm_vgic_hyp_init(void)
|
|
|
-{
|
|
|
- int ret;
|
|
|
-
|
|
|
- ret = kvm_vgic_probe();
|
|
|
- if (ret) {
|
|
|
- kvm_err("error: KVM vGIC probing failed\n");
|
|
|
- return ret;
|
|
|
- }
|
|
|
-
|
|
|
- ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
|
|
|
- "vgic", kvm_get_running_vcpus());
|
|
|
- if (ret) {
|
|
|
- kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
|
|
|
- return ret;
|
|
|
- }
|
|
|
-
|
|
|
- ret = __register_cpu_notifier(&vgic_cpu_nb);
|
|
|
- if (ret) {
|
|
|
- kvm_err("Cannot register vgic CPU notifier\n");
|
|
|
- goto out_free_irq;
|
|
|
- }
|
|
|
-
|
|
|
- on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
|
|
|
-
|
|
|
- return 0;
|
|
|
-
|
|
|
-out_free_irq:
|
|
|
- free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-int kvm_irq_map_gsi(struct kvm *kvm,
|
|
|
- struct kvm_kernel_irq_routing_entry *entries,
|
|
|
- int gsi)
|
|
|
-{
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
|
|
|
-{
|
|
|
- return pin;
|
|
|
-}
|
|
|
-
|
|
|
-int kvm_set_irq(struct kvm *kvm, int irq_source_id,
|
|
|
- u32 irq, int level, bool line_status)
|
|
|
-{
|
|
|
- unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
|
|
|
-
|
|
|
- trace_kvm_set_irq(irq, level, irq_source_id);
|
|
|
-
|
|
|
- BUG_ON(!vgic_initialized(kvm));
|
|
|
-
|
|
|
- return kvm_vgic_inject_irq(kvm, 0, spi, level);
|
|
|
-}
|
|
|
-
|
|
|
-/* MSI not implemented yet */
|
|
|
-int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
|
|
|
- struct kvm *kvm, int irq_source_id,
|
|
|
- int level, bool line_status)
|
|
|
-{
|
|
|
- return 0;
|
|
|
-}
|