Explorar o código

cpufreq: Documentation: Minor reformatting

This patch doesn't change the content of the documentation, but rather
reformat it to make it more readable.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Viresh Kumar %!s(int64=8) %!d(string=hai) anos
pai
achega
4e660759be
Modificáronse 1 ficheiros con 112 adicións e 93 borrados
  1. 112 93
      Documentation/cpu-freq/governors.txt

+ 112 - 93
Documentation/cpu-freq/governors.txt

@@ -111,82 +111,96 @@ directory.
 
 
 The CPUfreq governor "ondemand" sets the CPU depending on the
 The CPUfreq governor "ondemand" sets the CPU depending on the
 current usage. To do this the CPU must have the capability to
 current usage. To do this the CPU must have the capability to
-switch the frequency very quickly.  There are a number of sysfs file
-accessible parameters:
-
-sampling_rate: measured in uS (10^-6 seconds), this is how often you
-want the kernel to look at the CPU usage and to make decisions on
-what to do about the frequency.  Typically this is set to values of
-around '10000' or more. It's default value is (cmp. with users-guide.txt):
-transition_latency * 1000
-Be aware that transition latency is in ns and sampling_rate is in us, so you
-get the same sysfs value by default.
-Sampling rate should always get adjusted considering the transition latency
-To set the sampling rate 750 times as high as the transition latency
-in the bash (as said, 1000 is default), do:
-echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) \
-    >ondemand/sampling_rate
-
-sampling_rate_min:
-The sampling rate is limited by the HW transition latency:
-transition_latency * 100
-Or by kernel restrictions:
-If CONFIG_NO_HZ_COMMON is set, the limit is 10ms fixed.
-If CONFIG_NO_HZ_COMMON is not set or nohz=off boot parameter is used, the
-limits depend on the CONFIG_HZ option:
-HZ=1000: min=20000us  (20ms)
-HZ=250:  min=80000us  (80ms)
-HZ=100:  min=200000us (200ms)
-The highest value of kernel and HW latency restrictions is shown and
-used as the minimum sampling rate.
-
-up_threshold: defines what the average CPU usage between the samplings
-of 'sampling_rate' needs to be for the kernel to make a decision on
-whether it should increase the frequency.  For example when it is set
-to its default value of '95' it means that between the checking
-intervals the CPU needs to be on average more than 95% in use to then
-decide that the CPU frequency needs to be increased.  
-
-ignore_nice_load: this parameter takes a value of '0' or '1'. When
-set to '0' (its default), all processes are counted towards the
-'cpu utilisation' value.  When set to '1', the processes that are
-run with a 'nice' value will not count (and thus be ignored) in the
-overall usage calculation.  This is useful if you are running a CPU
-intensive calculation on your laptop that you do not care how long it
-takes to complete as you can 'nice' it and prevent it from taking part
-in the deciding process of whether to increase your CPU frequency.
-
-sampling_down_factor: this parameter controls the rate at which the
-kernel makes a decision on when to decrease the frequency while running
-at top speed. When set to 1 (the default) decisions to reevaluate load
-are made at the same interval regardless of current clock speed. But
-when set to greater than 1 (e.g. 100) it acts as a multiplier for the
-scheduling interval for reevaluating load when the CPU is at its top
-speed due to high load. This improves performance by reducing the overhead
-of load evaluation and helping the CPU stay at its top speed when truly
-busy, rather than shifting back and forth in speed. This tunable has no
-effect on behavior at lower speeds/lower CPU loads.
-
-powersave_bias: this parameter takes a value between 0 to 1000. It
-defines the percentage (times 10) value of the target frequency that
-will be shaved off of the target. For example, when set to 100 -- 10%,
-when ondemand governor would have targeted 1000 MHz, it will target
-1000 MHz - (10% of 1000 MHz) = 900 MHz instead. This is set to 0
-(disabled) by default.
-When AMD frequency sensitivity powersave bias driver --
-drivers/cpufreq/amd_freq_sensitivity.c is loaded, this parameter
-defines the workload frequency sensitivity threshold in which a lower
-frequency is chosen instead of ondemand governor's original target.
-The frequency sensitivity is a hardware reported (on AMD Family 16h
-Processors and above) value between 0 to 100% that tells software how
-the performance of the workload running on a CPU will change when
-frequency changes. A workload with sensitivity of 0% (memory/IO-bound)
-will not perform any better on higher core frequency, whereas a
-workload with sensitivity of 100% (CPU-bound) will perform better
-higher the frequency. When the driver is loaded, this is set to 400
-by default -- for CPUs running workloads with sensitivity value below
-40%, a lower frequency is chosen. Unloading the driver or writing 0
-will disable this feature.
+switch the frequency very quickly.
+
+Sysfs files:
+
+* sampling_rate:
+
+  Measured in uS (10^-6 seconds), this is how often you want the kernel
+  to look at the CPU usage and to make decisions on what to do about the
+  frequency.  Typically this is set to values of around '10000' or more.
+  It's default value is (cmp. with users-guide.txt): transition_latency
+  * 1000.  Be aware that transition latency is in ns and sampling_rate
+  is in us, so you get the same sysfs value by default.  Sampling rate
+  should always get adjusted considering the transition latency to set
+  the sampling rate 750 times as high as the transition latency in the
+  bash (as said, 1000 is default), do:
+
+  $ echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate
+
+* sampling_rate_min:
+
+  The sampling rate is limited by the HW transition latency:
+  transition_latency * 100
+
+  Or by kernel restrictions:
+  - If CONFIG_NO_HZ_COMMON is set, the limit is 10ms fixed.
+  - If CONFIG_NO_HZ_COMMON is not set or nohz=off boot parameter is
+    used, the limits depend on the CONFIG_HZ option:
+    HZ=1000: min=20000us  (20ms)
+    HZ=250:  min=80000us  (80ms)
+    HZ=100:  min=200000us (200ms)
+
+  The highest value of kernel and HW latency restrictions is shown and
+  used as the minimum sampling rate.
+
+* up_threshold:
+
+  This defines what the average CPU usage between the samplings of
+  'sampling_rate' needs to be for the kernel to make a decision on
+  whether it should increase the frequency.  For example when it is set
+  to its default value of '95' it means that between the checking
+  intervals the CPU needs to be on average more than 95% in use to then
+  decide that the CPU frequency needs to be increased.
+
+* ignore_nice_load:
+
+  This parameter takes a value of '0' or '1'. When set to '0' (its
+  default), all processes are counted towards the 'cpu utilisation'
+  value.  When set to '1', the processes that are run with a 'nice'
+  value will not count (and thus be ignored) in the overall usage
+  calculation.  This is useful if you are running a CPU intensive
+  calculation on your laptop that you do not care how long it takes to
+  complete as you can 'nice' it and prevent it from taking part in the
+  deciding process of whether to increase your CPU frequency.
+
+* sampling_down_factor:
+
+  This parameter controls the rate at which the kernel makes a decision
+  on when to decrease the frequency while running at top speed. When set
+  to 1 (the default) decisions to reevaluate load are made at the same
+  interval regardless of current clock speed. But when set to greater
+  than 1 (e.g. 100) it acts as a multiplier for the scheduling interval
+  for reevaluating load when the CPU is at its top speed due to high
+  load. This improves performance by reducing the overhead of load
+  evaluation and helping the CPU stay at its top speed when truly busy,
+  rather than shifting back and forth in speed. This tunable has no
+  effect on behavior at lower speeds/lower CPU loads.
+
+* powersave_bias:
+
+  This parameter takes a value between 0 to 1000. It defines the
+  percentage (times 10) value of the target frequency that will be
+  shaved off of the target. For example, when set to 100 -- 10%, when
+  ondemand governor would have targeted 1000 MHz, it will target
+  1000 MHz - (10% of 1000 MHz) = 900 MHz instead. This is set to 0
+  (disabled) by default.
+
+  When AMD frequency sensitivity powersave bias driver --
+  drivers/cpufreq/amd_freq_sensitivity.c is loaded, this parameter
+  defines the workload frequency sensitivity threshold in which a lower
+  frequency is chosen instead of ondemand governor's original target.
+  The frequency sensitivity is a hardware reported (on AMD Family 16h
+  Processors and above) value between 0 to 100% that tells software how
+  the performance of the workload running on a CPU will change when
+  frequency changes. A workload with sensitivity of 0% (memory/IO-bound)
+  will not perform any better on higher core frequency, whereas a
+  workload with sensitivity of 100% (CPU-bound) will perform better
+  higher the frequency. When the driver is loaded, this is set to 400 by
+  default -- for CPUs running workloads with sensitivity value below
+  40%, a lower frequency is chosen. Unloading the driver or writing 0
+  will disable this feature.
 
 
 
 
 2.5 Conservative
 2.5 Conservative
@@ -200,23 +214,28 @@ CPU.  This behaviour more suitable in a battery powered environment.
 The governor is tweaked in the same manner as the "ondemand" governor
 The governor is tweaked in the same manner as the "ondemand" governor
 through sysfs with the addition of:
 through sysfs with the addition of:
 
 
-freq_step: this describes what percentage steps the cpu freq should be
-increased and decreased smoothly by.  By default the cpu frequency will
-increase in 5% chunks of your maximum cpu frequency.  You can change this
-value to anywhere between 0 and 100 where '0' will effectively lock your
-CPU at a speed regardless of its load whilst '100' will, in theory, make
-it behave identically to the "ondemand" governor.
-
-down_threshold: same as the 'up_threshold' found for the "ondemand"
-governor but for the opposite direction.  For example when set to its
-default value of '20' it means that if the CPU usage needs to be below
-20% between samples to have the frequency decreased.
-
-sampling_down_factor: similar functionality as in "ondemand" governor.
-But in "conservative", it controls the rate at which the kernel makes
-a decision on when to decrease the frequency while running in any
-speed. Load for frequency increase is still evaluated every
-sampling rate.
+* freq_step:
+
+  This describes what percentage steps the cpu freq should be increased
+  and decreased smoothly by.  By default the cpu frequency will increase
+  in 5% chunks of your maximum cpu frequency.  You can change this value
+  to anywhere between 0 and 100 where '0' will effectively lock your CPU
+  at a speed regardless of its load whilst '100' will, in theory, make
+  it behave identically to the "ondemand" governor.
+
+* down_threshold:
+
+  Same as the 'up_threshold' found for the "ondemand" governor but for
+  the opposite direction.  For example when set to its default value of
+  '20' it means that if the CPU usage needs to be below 20% between
+  samples to have the frequency decreased.
+
+* sampling_down_factor:
+
+  Similar functionality as in "ondemand" governor.  But in
+  "conservative", it controls the rate at which the kernel makes a
+  decision on when to decrease the frequency while running in any speed.
+  Load for frequency increase is still evaluated every sampling rate.
 
 
 3. The Governor Interface in the CPUfreq Core
 3. The Governor Interface in the CPUfreq Core
 =============================================
 =============================================