|
@@ -506,11 +506,6 @@ static struct kvm_memslots *kvm_alloc_memslots(void)
|
|
|
if (!slots)
|
|
|
return NULL;
|
|
|
|
|
|
- /*
|
|
|
- * Init kvm generation close to the maximum to easily test the
|
|
|
- * code of handling generation number wrap-around.
|
|
|
- */
|
|
|
- slots->generation = -150;
|
|
|
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
|
|
|
slots->id_to_index[i] = slots->memslots[i].id = i;
|
|
|
|
|
@@ -641,9 +636,16 @@ static struct kvm *kvm_create_vm(unsigned long type)
|
|
|
|
|
|
r = -ENOMEM;
|
|
|
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
|
|
|
- kvm->memslots[i] = kvm_alloc_memslots();
|
|
|
- if (!kvm->memslots[i])
|
|
|
+ struct kvm_memslots *slots = kvm_alloc_memslots();
|
|
|
+ if (!slots)
|
|
|
goto out_err_no_srcu;
|
|
|
+ /*
|
|
|
+ * Generations must be different for each address space.
|
|
|
+ * Init kvm generation close to the maximum to easily test the
|
|
|
+ * code of handling generation number wrap-around.
|
|
|
+ */
|
|
|
+ slots->generation = i * 2 - 150;
|
|
|
+ rcu_assign_pointer(kvm->memslots[i], slots);
|
|
|
}
|
|
|
|
|
|
if (init_srcu_struct(&kvm->srcu))
|
|
@@ -870,8 +872,14 @@ static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
|
|
|
* Increment the new memslot generation a second time. This prevents
|
|
|
* vm exits that race with memslot updates from caching a memslot
|
|
|
* generation that will (potentially) be valid forever.
|
|
|
+ *
|
|
|
+ * Generations must be unique even across address spaces. We do not need
|
|
|
+ * a global counter for that, instead the generation space is evenly split
|
|
|
+ * across address spaces. For example, with two address spaces, address
|
|
|
+ * space 0 will use generations 0, 4, 8, ... while * address space 1 will
|
|
|
+ * use generations 2, 6, 10, 14, ...
|
|
|
*/
|
|
|
- slots->generation++;
|
|
|
+ slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
|
|
|
|
|
|
kvm_arch_memslots_updated(kvm, slots);
|
|
|
|