|
@@ -698,11 +698,6 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
|
|
|
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
|
|
|
}
|
|
|
|
|
|
-static inline bool is_cow_mapping(vm_flags_t flags)
|
|
|
-{
|
|
|
- return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* vm_normal_page -- This function gets the "struct page" associated with a pte.
|
|
|
*
|
|
@@ -1458,642 +1453,6 @@ int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
|
|
|
}
|
|
|
EXPORT_SYMBOL_GPL(zap_vma_ptes);
|
|
|
|
|
|
-/**
|
|
|
- * follow_page_mask - look up a page descriptor from a user-virtual address
|
|
|
- * @vma: vm_area_struct mapping @address
|
|
|
- * @address: virtual address to look up
|
|
|
- * @flags: flags modifying lookup behaviour
|
|
|
- * @page_mask: on output, *page_mask is set according to the size of the page
|
|
|
- *
|
|
|
- * @flags can have FOLL_ flags set, defined in <linux/mm.h>
|
|
|
- *
|
|
|
- * Returns the mapped (struct page *), %NULL if no mapping exists, or
|
|
|
- * an error pointer if there is a mapping to something not represented
|
|
|
- * by a page descriptor (see also vm_normal_page()).
|
|
|
- */
|
|
|
-struct page *follow_page_mask(struct vm_area_struct *vma,
|
|
|
- unsigned long address, unsigned int flags,
|
|
|
- unsigned int *page_mask)
|
|
|
-{
|
|
|
- pgd_t *pgd;
|
|
|
- pud_t *pud;
|
|
|
- pmd_t *pmd;
|
|
|
- pte_t *ptep, pte;
|
|
|
- spinlock_t *ptl;
|
|
|
- struct page *page;
|
|
|
- struct mm_struct *mm = vma->vm_mm;
|
|
|
-
|
|
|
- *page_mask = 0;
|
|
|
-
|
|
|
- page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
|
|
|
- if (!IS_ERR(page)) {
|
|
|
- BUG_ON(flags & FOLL_GET);
|
|
|
- goto out;
|
|
|
- }
|
|
|
-
|
|
|
- page = NULL;
|
|
|
- pgd = pgd_offset(mm, address);
|
|
|
- if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
|
|
|
- goto no_page_table;
|
|
|
-
|
|
|
- pud = pud_offset(pgd, address);
|
|
|
- if (pud_none(*pud))
|
|
|
- goto no_page_table;
|
|
|
- if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
|
|
|
- if (flags & FOLL_GET)
|
|
|
- goto out;
|
|
|
- page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
|
|
|
- goto out;
|
|
|
- }
|
|
|
- if (unlikely(pud_bad(*pud)))
|
|
|
- goto no_page_table;
|
|
|
-
|
|
|
- pmd = pmd_offset(pud, address);
|
|
|
- if (pmd_none(*pmd))
|
|
|
- goto no_page_table;
|
|
|
- if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
|
|
|
- page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
|
|
|
- if (flags & FOLL_GET) {
|
|
|
- /*
|
|
|
- * Refcount on tail pages are not well-defined and
|
|
|
- * shouldn't be taken. The caller should handle a NULL
|
|
|
- * return when trying to follow tail pages.
|
|
|
- */
|
|
|
- if (PageHead(page))
|
|
|
- get_page(page);
|
|
|
- else {
|
|
|
- page = NULL;
|
|
|
- goto out;
|
|
|
- }
|
|
|
- }
|
|
|
- goto out;
|
|
|
- }
|
|
|
- if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
|
|
|
- goto no_page_table;
|
|
|
- if (pmd_trans_huge(*pmd)) {
|
|
|
- if (flags & FOLL_SPLIT) {
|
|
|
- split_huge_page_pmd(vma, address, pmd);
|
|
|
- goto split_fallthrough;
|
|
|
- }
|
|
|
- ptl = pmd_lock(mm, pmd);
|
|
|
- if (likely(pmd_trans_huge(*pmd))) {
|
|
|
- if (unlikely(pmd_trans_splitting(*pmd))) {
|
|
|
- spin_unlock(ptl);
|
|
|
- wait_split_huge_page(vma->anon_vma, pmd);
|
|
|
- } else {
|
|
|
- page = follow_trans_huge_pmd(vma, address,
|
|
|
- pmd, flags);
|
|
|
- spin_unlock(ptl);
|
|
|
- *page_mask = HPAGE_PMD_NR - 1;
|
|
|
- goto out;
|
|
|
- }
|
|
|
- } else
|
|
|
- spin_unlock(ptl);
|
|
|
- /* fall through */
|
|
|
- }
|
|
|
-split_fallthrough:
|
|
|
- if (unlikely(pmd_bad(*pmd)))
|
|
|
- goto no_page_table;
|
|
|
-
|
|
|
- ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
|
-
|
|
|
- pte = *ptep;
|
|
|
- if (!pte_present(pte)) {
|
|
|
- swp_entry_t entry;
|
|
|
- /*
|
|
|
- * KSM's break_ksm() relies upon recognizing a ksm page
|
|
|
- * even while it is being migrated, so for that case we
|
|
|
- * need migration_entry_wait().
|
|
|
- */
|
|
|
- if (likely(!(flags & FOLL_MIGRATION)))
|
|
|
- goto no_page;
|
|
|
- if (pte_none(pte) || pte_file(pte))
|
|
|
- goto no_page;
|
|
|
- entry = pte_to_swp_entry(pte);
|
|
|
- if (!is_migration_entry(entry))
|
|
|
- goto no_page;
|
|
|
- pte_unmap_unlock(ptep, ptl);
|
|
|
- migration_entry_wait(mm, pmd, address);
|
|
|
- goto split_fallthrough;
|
|
|
- }
|
|
|
- if ((flags & FOLL_NUMA) && pte_numa(pte))
|
|
|
- goto no_page;
|
|
|
- if ((flags & FOLL_WRITE) && !pte_write(pte))
|
|
|
- goto unlock;
|
|
|
-
|
|
|
- page = vm_normal_page(vma, address, pte);
|
|
|
- if (unlikely(!page)) {
|
|
|
- if ((flags & FOLL_DUMP) ||
|
|
|
- !is_zero_pfn(pte_pfn(pte)))
|
|
|
- goto bad_page;
|
|
|
- page = pte_page(pte);
|
|
|
- }
|
|
|
-
|
|
|
- if (flags & FOLL_GET)
|
|
|
- get_page_foll(page);
|
|
|
- if (flags & FOLL_TOUCH) {
|
|
|
- if ((flags & FOLL_WRITE) &&
|
|
|
- !pte_dirty(pte) && !PageDirty(page))
|
|
|
- set_page_dirty(page);
|
|
|
- /*
|
|
|
- * pte_mkyoung() would be more correct here, but atomic care
|
|
|
- * is needed to avoid losing the dirty bit: it is easier to use
|
|
|
- * mark_page_accessed().
|
|
|
- */
|
|
|
- mark_page_accessed(page);
|
|
|
- }
|
|
|
- if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
|
|
|
- /*
|
|
|
- * The preliminary mapping check is mainly to avoid the
|
|
|
- * pointless overhead of lock_page on the ZERO_PAGE
|
|
|
- * which might bounce very badly if there is contention.
|
|
|
- *
|
|
|
- * If the page is already locked, we don't need to
|
|
|
- * handle it now - vmscan will handle it later if and
|
|
|
- * when it attempts to reclaim the page.
|
|
|
- */
|
|
|
- if (page->mapping && trylock_page(page)) {
|
|
|
- lru_add_drain(); /* push cached pages to LRU */
|
|
|
- /*
|
|
|
- * Because we lock page here, and migration is
|
|
|
- * blocked by the pte's page reference, and we
|
|
|
- * know the page is still mapped, we don't even
|
|
|
- * need to check for file-cache page truncation.
|
|
|
- */
|
|
|
- mlock_vma_page(page);
|
|
|
- unlock_page(page);
|
|
|
- }
|
|
|
- }
|
|
|
-unlock:
|
|
|
- pte_unmap_unlock(ptep, ptl);
|
|
|
-out:
|
|
|
- return page;
|
|
|
-
|
|
|
-bad_page:
|
|
|
- pte_unmap_unlock(ptep, ptl);
|
|
|
- return ERR_PTR(-EFAULT);
|
|
|
-
|
|
|
-no_page:
|
|
|
- pte_unmap_unlock(ptep, ptl);
|
|
|
- if (!pte_none(pte))
|
|
|
- return page;
|
|
|
-
|
|
|
-no_page_table:
|
|
|
- /*
|
|
|
- * When core dumping an enormous anonymous area that nobody
|
|
|
- * has touched so far, we don't want to allocate unnecessary pages or
|
|
|
- * page tables. Return error instead of NULL to skip handle_mm_fault,
|
|
|
- * then get_dump_page() will return NULL to leave a hole in the dump.
|
|
|
- * But we can only make this optimization where a hole would surely
|
|
|
- * be zero-filled if handle_mm_fault() actually did handle it.
|
|
|
- */
|
|
|
- if ((flags & FOLL_DUMP) &&
|
|
|
- (!vma->vm_ops || !vma->vm_ops->fault))
|
|
|
- return ERR_PTR(-EFAULT);
|
|
|
- return page;
|
|
|
-}
|
|
|
-
|
|
|
-static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
|
|
|
-{
|
|
|
- return stack_guard_page_start(vma, addr) ||
|
|
|
- stack_guard_page_end(vma, addr+PAGE_SIZE);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * __get_user_pages() - pin user pages in memory
|
|
|
- * @tsk: task_struct of target task
|
|
|
- * @mm: mm_struct of target mm
|
|
|
- * @start: starting user address
|
|
|
- * @nr_pages: number of pages from start to pin
|
|
|
- * @gup_flags: flags modifying pin behaviour
|
|
|
- * @pages: array that receives pointers to the pages pinned.
|
|
|
- * Should be at least nr_pages long. Or NULL, if caller
|
|
|
- * only intends to ensure the pages are faulted in.
|
|
|
- * @vmas: array of pointers to vmas corresponding to each page.
|
|
|
- * Or NULL if the caller does not require them.
|
|
|
- * @nonblocking: whether waiting for disk IO or mmap_sem contention
|
|
|
- *
|
|
|
- * Returns number of pages pinned. This may be fewer than the number
|
|
|
- * requested. If nr_pages is 0 or negative, returns 0. If no pages
|
|
|
- * were pinned, returns -errno. Each page returned must be released
|
|
|
- * with a put_page() call when it is finished with. vmas will only
|
|
|
- * remain valid while mmap_sem is held.
|
|
|
- *
|
|
|
- * Must be called with mmap_sem held for read or write.
|
|
|
- *
|
|
|
- * __get_user_pages walks a process's page tables and takes a reference to
|
|
|
- * each struct page that each user address corresponds to at a given
|
|
|
- * instant. That is, it takes the page that would be accessed if a user
|
|
|
- * thread accesses the given user virtual address at that instant.
|
|
|
- *
|
|
|
- * This does not guarantee that the page exists in the user mappings when
|
|
|
- * __get_user_pages returns, and there may even be a completely different
|
|
|
- * page there in some cases (eg. if mmapped pagecache has been invalidated
|
|
|
- * and subsequently re faulted). However it does guarantee that the page
|
|
|
- * won't be freed completely. And mostly callers simply care that the page
|
|
|
- * contains data that was valid *at some point in time*. Typically, an IO
|
|
|
- * or similar operation cannot guarantee anything stronger anyway because
|
|
|
- * locks can't be held over the syscall boundary.
|
|
|
- *
|
|
|
- * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
|
|
|
- * the page is written to, set_page_dirty (or set_page_dirty_lock, as
|
|
|
- * appropriate) must be called after the page is finished with, and
|
|
|
- * before put_page is called.
|
|
|
- *
|
|
|
- * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
|
|
|
- * or mmap_sem contention, and if waiting is needed to pin all pages,
|
|
|
- * *@nonblocking will be set to 0.
|
|
|
- *
|
|
|
- * In most cases, get_user_pages or get_user_pages_fast should be used
|
|
|
- * instead of __get_user_pages. __get_user_pages should be used only if
|
|
|
- * you need some special @gup_flags.
|
|
|
- */
|
|
|
-long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
|
|
|
- unsigned long start, unsigned long nr_pages,
|
|
|
- unsigned int gup_flags, struct page **pages,
|
|
|
- struct vm_area_struct **vmas, int *nonblocking)
|
|
|
-{
|
|
|
- long i;
|
|
|
- unsigned long vm_flags;
|
|
|
- unsigned int page_mask;
|
|
|
-
|
|
|
- if (!nr_pages)
|
|
|
- return 0;
|
|
|
-
|
|
|
- VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
|
|
|
-
|
|
|
- /*
|
|
|
- * If FOLL_FORCE is set then do not force a full fault as the hinting
|
|
|
- * fault information is unrelated to the reference behaviour of a task
|
|
|
- * using the address space
|
|
|
- */
|
|
|
- if (!(gup_flags & FOLL_FORCE))
|
|
|
- gup_flags |= FOLL_NUMA;
|
|
|
-
|
|
|
- i = 0;
|
|
|
-
|
|
|
- do {
|
|
|
- struct vm_area_struct *vma;
|
|
|
-
|
|
|
- vma = find_extend_vma(mm, start);
|
|
|
- if (!vma && in_gate_area(mm, start)) {
|
|
|
- unsigned long pg = start & PAGE_MASK;
|
|
|
- pgd_t *pgd;
|
|
|
- pud_t *pud;
|
|
|
- pmd_t *pmd;
|
|
|
- pte_t *pte;
|
|
|
-
|
|
|
- /* user gate pages are read-only */
|
|
|
- if (gup_flags & FOLL_WRITE)
|
|
|
- goto efault;
|
|
|
- if (pg > TASK_SIZE)
|
|
|
- pgd = pgd_offset_k(pg);
|
|
|
- else
|
|
|
- pgd = pgd_offset_gate(mm, pg);
|
|
|
- BUG_ON(pgd_none(*pgd));
|
|
|
- pud = pud_offset(pgd, pg);
|
|
|
- BUG_ON(pud_none(*pud));
|
|
|
- pmd = pmd_offset(pud, pg);
|
|
|
- if (pmd_none(*pmd))
|
|
|
- goto efault;
|
|
|
- VM_BUG_ON(pmd_trans_huge(*pmd));
|
|
|
- pte = pte_offset_map(pmd, pg);
|
|
|
- if (pte_none(*pte)) {
|
|
|
- pte_unmap(pte);
|
|
|
- goto efault;
|
|
|
- }
|
|
|
- vma = get_gate_vma(mm);
|
|
|
- if (pages) {
|
|
|
- struct page *page;
|
|
|
-
|
|
|
- page = vm_normal_page(vma, start, *pte);
|
|
|
- if (!page) {
|
|
|
- if (!(gup_flags & FOLL_DUMP) &&
|
|
|
- is_zero_pfn(pte_pfn(*pte)))
|
|
|
- page = pte_page(*pte);
|
|
|
- else {
|
|
|
- pte_unmap(pte);
|
|
|
- goto efault;
|
|
|
- }
|
|
|
- }
|
|
|
- pages[i] = page;
|
|
|
- get_page(page);
|
|
|
- }
|
|
|
- pte_unmap(pte);
|
|
|
- page_mask = 0;
|
|
|
- goto next_page;
|
|
|
- }
|
|
|
-
|
|
|
- if (!vma)
|
|
|
- goto efault;
|
|
|
- vm_flags = vma->vm_flags;
|
|
|
- if (vm_flags & (VM_IO | VM_PFNMAP))
|
|
|
- goto efault;
|
|
|
-
|
|
|
- if (gup_flags & FOLL_WRITE) {
|
|
|
- if (!(vm_flags & VM_WRITE)) {
|
|
|
- if (!(gup_flags & FOLL_FORCE))
|
|
|
- goto efault;
|
|
|
- /*
|
|
|
- * We used to let the write,force case do COW
|
|
|
- * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
|
|
|
- * ptrace could set a breakpoint in a read-only
|
|
|
- * mapping of an executable, without corrupting
|
|
|
- * the file (yet only when that file had been
|
|
|
- * opened for writing!). Anon pages in shared
|
|
|
- * mappings are surprising: now just reject it.
|
|
|
- */
|
|
|
- if (!is_cow_mapping(vm_flags)) {
|
|
|
- WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
|
|
|
- goto efault;
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- if (!(vm_flags & VM_READ)) {
|
|
|
- if (!(gup_flags & FOLL_FORCE))
|
|
|
- goto efault;
|
|
|
- /*
|
|
|
- * Is there actually any vma we can reach here
|
|
|
- * which does not have VM_MAYREAD set?
|
|
|
- */
|
|
|
- if (!(vm_flags & VM_MAYREAD))
|
|
|
- goto efault;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (is_vm_hugetlb_page(vma)) {
|
|
|
- i = follow_hugetlb_page(mm, vma, pages, vmas,
|
|
|
- &start, &nr_pages, i, gup_flags);
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- do {
|
|
|
- struct page *page;
|
|
|
- unsigned int foll_flags = gup_flags;
|
|
|
- unsigned int page_increm;
|
|
|
-
|
|
|
- /*
|
|
|
- * If we have a pending SIGKILL, don't keep faulting
|
|
|
- * pages and potentially allocating memory.
|
|
|
- */
|
|
|
- if (unlikely(fatal_signal_pending(current)))
|
|
|
- return i ? i : -ERESTARTSYS;
|
|
|
-
|
|
|
- cond_resched();
|
|
|
- while (!(page = follow_page_mask(vma, start,
|
|
|
- foll_flags, &page_mask))) {
|
|
|
- int ret;
|
|
|
- unsigned int fault_flags = 0;
|
|
|
-
|
|
|
- /* For mlock, just skip the stack guard page. */
|
|
|
- if (foll_flags & FOLL_MLOCK) {
|
|
|
- if (stack_guard_page(vma, start))
|
|
|
- goto next_page;
|
|
|
- }
|
|
|
- if (foll_flags & FOLL_WRITE)
|
|
|
- fault_flags |= FAULT_FLAG_WRITE;
|
|
|
- if (nonblocking)
|
|
|
- fault_flags |= FAULT_FLAG_ALLOW_RETRY;
|
|
|
- if (foll_flags & FOLL_NOWAIT)
|
|
|
- fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
|
|
|
-
|
|
|
- ret = handle_mm_fault(mm, vma, start,
|
|
|
- fault_flags);
|
|
|
-
|
|
|
- if (ret & VM_FAULT_ERROR) {
|
|
|
- if (ret & VM_FAULT_OOM)
|
|
|
- return i ? i : -ENOMEM;
|
|
|
- if (ret & (VM_FAULT_HWPOISON |
|
|
|
- VM_FAULT_HWPOISON_LARGE)) {
|
|
|
- if (i)
|
|
|
- return i;
|
|
|
- else if (gup_flags & FOLL_HWPOISON)
|
|
|
- return -EHWPOISON;
|
|
|
- else
|
|
|
- return -EFAULT;
|
|
|
- }
|
|
|
- if (ret & VM_FAULT_SIGBUS)
|
|
|
- goto efault;
|
|
|
- BUG();
|
|
|
- }
|
|
|
-
|
|
|
- if (tsk) {
|
|
|
- if (ret & VM_FAULT_MAJOR)
|
|
|
- tsk->maj_flt++;
|
|
|
- else
|
|
|
- tsk->min_flt++;
|
|
|
- }
|
|
|
-
|
|
|
- if (ret & VM_FAULT_RETRY) {
|
|
|
- if (nonblocking)
|
|
|
- *nonblocking = 0;
|
|
|
- return i;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * The VM_FAULT_WRITE bit tells us that
|
|
|
- * do_wp_page has broken COW when necessary,
|
|
|
- * even if maybe_mkwrite decided not to set
|
|
|
- * pte_write. We can thus safely do subsequent
|
|
|
- * page lookups as if they were reads. But only
|
|
|
- * do so when looping for pte_write is futile:
|
|
|
- * in some cases userspace may also be wanting
|
|
|
- * to write to the gotten user page, which a
|
|
|
- * read fault here might prevent (a readonly
|
|
|
- * page might get reCOWed by userspace write).
|
|
|
- */
|
|
|
- if ((ret & VM_FAULT_WRITE) &&
|
|
|
- !(vma->vm_flags & VM_WRITE))
|
|
|
- foll_flags &= ~FOLL_WRITE;
|
|
|
-
|
|
|
- cond_resched();
|
|
|
- }
|
|
|
- if (IS_ERR(page))
|
|
|
- return i ? i : PTR_ERR(page);
|
|
|
- if (pages) {
|
|
|
- pages[i] = page;
|
|
|
-
|
|
|
- flush_anon_page(vma, page, start);
|
|
|
- flush_dcache_page(page);
|
|
|
- page_mask = 0;
|
|
|
- }
|
|
|
-next_page:
|
|
|
- if (vmas) {
|
|
|
- vmas[i] = vma;
|
|
|
- page_mask = 0;
|
|
|
- }
|
|
|
- page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
|
|
|
- if (page_increm > nr_pages)
|
|
|
- page_increm = nr_pages;
|
|
|
- i += page_increm;
|
|
|
- start += page_increm * PAGE_SIZE;
|
|
|
- nr_pages -= page_increm;
|
|
|
- } while (nr_pages && start < vma->vm_end);
|
|
|
- } while (nr_pages);
|
|
|
- return i;
|
|
|
-efault:
|
|
|
- return i ? : -EFAULT;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(__get_user_pages);
|
|
|
-
|
|
|
-/*
|
|
|
- * fixup_user_fault() - manually resolve a user page fault
|
|
|
- * @tsk: the task_struct to use for page fault accounting, or
|
|
|
- * NULL if faults are not to be recorded.
|
|
|
- * @mm: mm_struct of target mm
|
|
|
- * @address: user address
|
|
|
- * @fault_flags:flags to pass down to handle_mm_fault()
|
|
|
- *
|
|
|
- * This is meant to be called in the specific scenario where for locking reasons
|
|
|
- * we try to access user memory in atomic context (within a pagefault_disable()
|
|
|
- * section), this returns -EFAULT, and we want to resolve the user fault before
|
|
|
- * trying again.
|
|
|
- *
|
|
|
- * Typically this is meant to be used by the futex code.
|
|
|
- *
|
|
|
- * The main difference with get_user_pages() is that this function will
|
|
|
- * unconditionally call handle_mm_fault() which will in turn perform all the
|
|
|
- * necessary SW fixup of the dirty and young bits in the PTE, while
|
|
|
- * handle_mm_fault() only guarantees to update these in the struct page.
|
|
|
- *
|
|
|
- * This is important for some architectures where those bits also gate the
|
|
|
- * access permission to the page because they are maintained in software. On
|
|
|
- * such architectures, gup() will not be enough to make a subsequent access
|
|
|
- * succeed.
|
|
|
- *
|
|
|
- * This should be called with the mm_sem held for read.
|
|
|
- */
|
|
|
-int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
|
|
|
- unsigned long address, unsigned int fault_flags)
|
|
|
-{
|
|
|
- struct vm_area_struct *vma;
|
|
|
- vm_flags_t vm_flags;
|
|
|
- int ret;
|
|
|
-
|
|
|
- vma = find_extend_vma(mm, address);
|
|
|
- if (!vma || address < vma->vm_start)
|
|
|
- return -EFAULT;
|
|
|
-
|
|
|
- vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
|
|
|
- if (!(vm_flags & vma->vm_flags))
|
|
|
- return -EFAULT;
|
|
|
-
|
|
|
- ret = handle_mm_fault(mm, vma, address, fault_flags);
|
|
|
- if (ret & VM_FAULT_ERROR) {
|
|
|
- if (ret & VM_FAULT_OOM)
|
|
|
- return -ENOMEM;
|
|
|
- if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
|
|
|
- return -EHWPOISON;
|
|
|
- if (ret & VM_FAULT_SIGBUS)
|
|
|
- return -EFAULT;
|
|
|
- BUG();
|
|
|
- }
|
|
|
- if (tsk) {
|
|
|
- if (ret & VM_FAULT_MAJOR)
|
|
|
- tsk->maj_flt++;
|
|
|
- else
|
|
|
- tsk->min_flt++;
|
|
|
- }
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * get_user_pages() - pin user pages in memory
|
|
|
- * @tsk: the task_struct to use for page fault accounting, or
|
|
|
- * NULL if faults are not to be recorded.
|
|
|
- * @mm: mm_struct of target mm
|
|
|
- * @start: starting user address
|
|
|
- * @nr_pages: number of pages from start to pin
|
|
|
- * @write: whether pages will be written to by the caller
|
|
|
- * @force: whether to force access even when user mapping is currently
|
|
|
- * protected (but never forces write access to shared mapping).
|
|
|
- * @pages: array that receives pointers to the pages pinned.
|
|
|
- * Should be at least nr_pages long. Or NULL, if caller
|
|
|
- * only intends to ensure the pages are faulted in.
|
|
|
- * @vmas: array of pointers to vmas corresponding to each page.
|
|
|
- * Or NULL if the caller does not require them.
|
|
|
- *
|
|
|
- * Returns number of pages pinned. This may be fewer than the number
|
|
|
- * requested. If nr_pages is 0 or negative, returns 0. If no pages
|
|
|
- * were pinned, returns -errno. Each page returned must be released
|
|
|
- * with a put_page() call when it is finished with. vmas will only
|
|
|
- * remain valid while mmap_sem is held.
|
|
|
- *
|
|
|
- * Must be called with mmap_sem held for read or write.
|
|
|
- *
|
|
|
- * get_user_pages walks a process's page tables and takes a reference to
|
|
|
- * each struct page that each user address corresponds to at a given
|
|
|
- * instant. That is, it takes the page that would be accessed if a user
|
|
|
- * thread accesses the given user virtual address at that instant.
|
|
|
- *
|
|
|
- * This does not guarantee that the page exists in the user mappings when
|
|
|
- * get_user_pages returns, and there may even be a completely different
|
|
|
- * page there in some cases (eg. if mmapped pagecache has been invalidated
|
|
|
- * and subsequently re faulted). However it does guarantee that the page
|
|
|
- * won't be freed completely. And mostly callers simply care that the page
|
|
|
- * contains data that was valid *at some point in time*. Typically, an IO
|
|
|
- * or similar operation cannot guarantee anything stronger anyway because
|
|
|
- * locks can't be held over the syscall boundary.
|
|
|
- *
|
|
|
- * If write=0, the page must not be written to. If the page is written to,
|
|
|
- * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
|
|
|
- * after the page is finished with, and before put_page is called.
|
|
|
- *
|
|
|
- * get_user_pages is typically used for fewer-copy IO operations, to get a
|
|
|
- * handle on the memory by some means other than accesses via the user virtual
|
|
|
- * addresses. The pages may be submitted for DMA to devices or accessed via
|
|
|
- * their kernel linear mapping (via the kmap APIs). Care should be taken to
|
|
|
- * use the correct cache flushing APIs.
|
|
|
- *
|
|
|
- * See also get_user_pages_fast, for performance critical applications.
|
|
|
- */
|
|
|
-long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
|
|
|
- unsigned long start, unsigned long nr_pages, int write,
|
|
|
- int force, struct page **pages, struct vm_area_struct **vmas)
|
|
|
-{
|
|
|
- int flags = FOLL_TOUCH;
|
|
|
-
|
|
|
- if (pages)
|
|
|
- flags |= FOLL_GET;
|
|
|
- if (write)
|
|
|
- flags |= FOLL_WRITE;
|
|
|
- if (force)
|
|
|
- flags |= FOLL_FORCE;
|
|
|
-
|
|
|
- return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
|
|
|
- NULL);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(get_user_pages);
|
|
|
-
|
|
|
-/**
|
|
|
- * get_dump_page() - pin user page in memory while writing it to core dump
|
|
|
- * @addr: user address
|
|
|
- *
|
|
|
- * Returns struct page pointer of user page pinned for dump,
|
|
|
- * to be freed afterwards by page_cache_release() or put_page().
|
|
|
- *
|
|
|
- * Returns NULL on any kind of failure - a hole must then be inserted into
|
|
|
- * the corefile, to preserve alignment with its headers; and also returns
|
|
|
- * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
|
|
|
- * allowing a hole to be left in the corefile to save diskspace.
|
|
|
- *
|
|
|
- * Called without mmap_sem, but after all other threads have been killed.
|
|
|
- */
|
|
|
-#ifdef CONFIG_ELF_CORE
|
|
|
-struct page *get_dump_page(unsigned long addr)
|
|
|
-{
|
|
|
- struct vm_area_struct *vma;
|
|
|
- struct page *page;
|
|
|
-
|
|
|
- if (__get_user_pages(current, current->mm, addr, 1,
|
|
|
- FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
|
|
|
- NULL) < 1)
|
|
|
- return NULL;
|
|
|
- flush_cache_page(vma, addr, page_to_pfn(page));
|
|
|
- return page;
|
|
|
-}
|
|
|
-#endif /* CONFIG_ELF_CORE */
|
|
|
-
|
|
|
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
|
|
|
spinlock_t **ptl)
|
|
|
{
|