|
@@ -0,0 +1,548 @@
|
|
|
|
+/*
|
|
|
|
+ Red Black Trees
|
|
|
|
+ (C) 1999 Andrea Arcangeli <andrea@suse.de>
|
|
|
|
+ (C) 2002 David Woodhouse <dwmw2@infradead.org>
|
|
|
|
+ (C) 2012 Michel Lespinasse <walken@google.com>
|
|
|
|
+
|
|
|
|
+ This program is free software; you can redistribute it and/or modify
|
|
|
|
+ it under the terms of the GNU General Public License as published by
|
|
|
|
+ the Free Software Foundation; either version 2 of the License, or
|
|
|
|
+ (at your option) any later version.
|
|
|
|
+
|
|
|
|
+ This program is distributed in the hope that it will be useful,
|
|
|
|
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
+ GNU General Public License for more details.
|
|
|
|
+
|
|
|
|
+ You should have received a copy of the GNU General Public License
|
|
|
|
+ along with this program; if not, write to the Free Software
|
|
|
|
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
+
|
|
|
|
+ linux/lib/rbtree.c
|
|
|
|
+*/
|
|
|
|
+
|
|
|
|
+#include <linux/rbtree_augmented.h>
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
|
|
|
|
+ *
|
|
|
|
+ * 1) A node is either red or black
|
|
|
|
+ * 2) The root is black
|
|
|
|
+ * 3) All leaves (NULL) are black
|
|
|
|
+ * 4) Both children of every red node are black
|
|
|
|
+ * 5) Every simple path from root to leaves contains the same number
|
|
|
|
+ * of black nodes.
|
|
|
|
+ *
|
|
|
|
+ * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
|
|
|
|
+ * consecutive red nodes in a path and every red node is therefore followed by
|
|
|
|
+ * a black. So if B is the number of black nodes on every simple path (as per
|
|
|
|
+ * 5), then the longest possible path due to 4 is 2B.
|
|
|
|
+ *
|
|
|
|
+ * We shall indicate color with case, where black nodes are uppercase and red
|
|
|
|
+ * nodes will be lowercase. Unknown color nodes shall be drawn as red within
|
|
|
|
+ * parentheses and have some accompanying text comment.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+static inline void rb_set_black(struct rb_node *rb)
|
|
|
|
+{
|
|
|
|
+ rb->__rb_parent_color |= RB_BLACK;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct rb_node *rb_red_parent(struct rb_node *red)
|
|
|
|
+{
|
|
|
|
+ return (struct rb_node *)red->__rb_parent_color;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Helper function for rotations:
|
|
|
|
+ * - old's parent and color get assigned to new
|
|
|
|
+ * - old gets assigned new as a parent and 'color' as a color.
|
|
|
|
+ */
|
|
|
|
+static inline void
|
|
|
|
+__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
|
|
|
|
+ struct rb_root *root, int color)
|
|
|
|
+{
|
|
|
|
+ struct rb_node *parent = rb_parent(old);
|
|
|
|
+ new->__rb_parent_color = old->__rb_parent_color;
|
|
|
|
+ rb_set_parent_color(old, new, color);
|
|
|
|
+ __rb_change_child(old, new, parent, root);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static __always_inline void
|
|
|
|
+__rb_insert(struct rb_node *node, struct rb_root *root,
|
|
|
|
+ void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
|
|
+{
|
|
|
|
+ struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
|
|
|
|
+
|
|
|
|
+ while (true) {
|
|
|
|
+ /*
|
|
|
|
+ * Loop invariant: node is red
|
|
|
|
+ *
|
|
|
|
+ * If there is a black parent, we are done.
|
|
|
|
+ * Otherwise, take some corrective action as we don't
|
|
|
|
+ * want a red root or two consecutive red nodes.
|
|
|
|
+ */
|
|
|
|
+ if (!parent) {
|
|
|
|
+ rb_set_parent_color(node, NULL, RB_BLACK);
|
|
|
|
+ break;
|
|
|
|
+ } else if (rb_is_black(parent))
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ gparent = rb_red_parent(parent);
|
|
|
|
+
|
|
|
|
+ tmp = gparent->rb_right;
|
|
|
|
+ if (parent != tmp) { /* parent == gparent->rb_left */
|
|
|
|
+ if (tmp && rb_is_red(tmp)) {
|
|
|
|
+ /*
|
|
|
|
+ * Case 1 - color flips
|
|
|
|
+ *
|
|
|
|
+ * G g
|
|
|
|
+ * / \ / \
|
|
|
|
+ * p u --> P U
|
|
|
|
+ * / /
|
|
|
|
+ * n n
|
|
|
|
+ *
|
|
|
|
+ * However, since g's parent might be red, and
|
|
|
|
+ * 4) does not allow this, we need to recurse
|
|
|
|
+ * at g.
|
|
|
|
+ */
|
|
|
|
+ rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
|
|
+ rb_set_parent_color(parent, gparent, RB_BLACK);
|
|
|
|
+ node = gparent;
|
|
|
|
+ parent = rb_parent(node);
|
|
|
|
+ rb_set_parent_color(node, parent, RB_RED);
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ tmp = parent->rb_right;
|
|
|
|
+ if (node == tmp) {
|
|
|
|
+ /*
|
|
|
|
+ * Case 2 - left rotate at parent
|
|
|
|
+ *
|
|
|
|
+ * G G
|
|
|
|
+ * / \ / \
|
|
|
|
+ * p U --> n U
|
|
|
|
+ * \ /
|
|
|
|
+ * n p
|
|
|
|
+ *
|
|
|
|
+ * This still leaves us in violation of 4), the
|
|
|
|
+ * continuation into Case 3 will fix that.
|
|
|
|
+ */
|
|
|
|
+ parent->rb_right = tmp = node->rb_left;
|
|
|
|
+ node->rb_left = parent;
|
|
|
|
+ if (tmp)
|
|
|
|
+ rb_set_parent_color(tmp, parent,
|
|
|
|
+ RB_BLACK);
|
|
|
|
+ rb_set_parent_color(parent, node, RB_RED);
|
|
|
|
+ augment_rotate(parent, node);
|
|
|
|
+ parent = node;
|
|
|
|
+ tmp = node->rb_right;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Case 3 - right rotate at gparent
|
|
|
|
+ *
|
|
|
|
+ * G P
|
|
|
|
+ * / \ / \
|
|
|
|
+ * p U --> n g
|
|
|
|
+ * / \
|
|
|
|
+ * n U
|
|
|
|
+ */
|
|
|
|
+ gparent->rb_left = tmp; /* == parent->rb_right */
|
|
|
|
+ parent->rb_right = gparent;
|
|
|
|
+ if (tmp)
|
|
|
|
+ rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
|
|
+ __rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|
|
|
+ augment_rotate(gparent, parent);
|
|
|
|
+ break;
|
|
|
|
+ } else {
|
|
|
|
+ tmp = gparent->rb_left;
|
|
|
|
+ if (tmp && rb_is_red(tmp)) {
|
|
|
|
+ /* Case 1 - color flips */
|
|
|
|
+ rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
|
|
+ rb_set_parent_color(parent, gparent, RB_BLACK);
|
|
|
|
+ node = gparent;
|
|
|
|
+ parent = rb_parent(node);
|
|
|
|
+ rb_set_parent_color(node, parent, RB_RED);
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ tmp = parent->rb_left;
|
|
|
|
+ if (node == tmp) {
|
|
|
|
+ /* Case 2 - right rotate at parent */
|
|
|
|
+ parent->rb_left = tmp = node->rb_right;
|
|
|
|
+ node->rb_right = parent;
|
|
|
|
+ if (tmp)
|
|
|
|
+ rb_set_parent_color(tmp, parent,
|
|
|
|
+ RB_BLACK);
|
|
|
|
+ rb_set_parent_color(parent, node, RB_RED);
|
|
|
|
+ augment_rotate(parent, node);
|
|
|
|
+ parent = node;
|
|
|
|
+ tmp = node->rb_left;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* Case 3 - left rotate at gparent */
|
|
|
|
+ gparent->rb_right = tmp; /* == parent->rb_left */
|
|
|
|
+ parent->rb_left = gparent;
|
|
|
|
+ if (tmp)
|
|
|
|
+ rb_set_parent_color(tmp, gparent, RB_BLACK);
|
|
|
|
+ __rb_rotate_set_parents(gparent, parent, root, RB_RED);
|
|
|
|
+ augment_rotate(gparent, parent);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Inline version for rb_erase() use - we want to be able to inline
|
|
|
|
+ * and eliminate the dummy_rotate callback there
|
|
|
|
+ */
|
|
|
|
+static __always_inline void
|
|
|
|
+____rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
|
|
|
+ void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
|
|
+{
|
|
|
|
+ struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
|
|
|
|
+
|
|
|
|
+ while (true) {
|
|
|
|
+ /*
|
|
|
|
+ * Loop invariants:
|
|
|
|
+ * - node is black (or NULL on first iteration)
|
|
|
|
+ * - node is not the root (parent is not NULL)
|
|
|
|
+ * - All leaf paths going through parent and node have a
|
|
|
|
+ * black node count that is 1 lower than other leaf paths.
|
|
|
|
+ */
|
|
|
|
+ sibling = parent->rb_right;
|
|
|
|
+ if (node != sibling) { /* node == parent->rb_left */
|
|
|
|
+ if (rb_is_red(sibling)) {
|
|
|
|
+ /*
|
|
|
|
+ * Case 1 - left rotate at parent
|
|
|
|
+ *
|
|
|
|
+ * P S
|
|
|
|
+ * / \ / \
|
|
|
|
+ * N s --> p Sr
|
|
|
|
+ * / \ / \
|
|
|
|
+ * Sl Sr N Sl
|
|
|
|
+ */
|
|
|
|
+ parent->rb_right = tmp1 = sibling->rb_left;
|
|
|
|
+ sibling->rb_left = parent;
|
|
|
|
+ rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|
|
|
+ __rb_rotate_set_parents(parent, sibling, root,
|
|
|
|
+ RB_RED);
|
|
|
|
+ augment_rotate(parent, sibling);
|
|
|
|
+ sibling = tmp1;
|
|
|
|
+ }
|
|
|
|
+ tmp1 = sibling->rb_right;
|
|
|
|
+ if (!tmp1 || rb_is_black(tmp1)) {
|
|
|
|
+ tmp2 = sibling->rb_left;
|
|
|
|
+ if (!tmp2 || rb_is_black(tmp2)) {
|
|
|
|
+ /*
|
|
|
|
+ * Case 2 - sibling color flip
|
|
|
|
+ * (p could be either color here)
|
|
|
|
+ *
|
|
|
|
+ * (p) (p)
|
|
|
|
+ * / \ / \
|
|
|
|
+ * N S --> N s
|
|
|
|
+ * / \ / \
|
|
|
|
+ * Sl Sr Sl Sr
|
|
|
|
+ *
|
|
|
|
+ * This leaves us violating 5) which
|
|
|
|
+ * can be fixed by flipping p to black
|
|
|
|
+ * if it was red, or by recursing at p.
|
|
|
|
+ * p is red when coming from Case 1.
|
|
|
|
+ */
|
|
|
|
+ rb_set_parent_color(sibling, parent,
|
|
|
|
+ RB_RED);
|
|
|
|
+ if (rb_is_red(parent))
|
|
|
|
+ rb_set_black(parent);
|
|
|
|
+ else {
|
|
|
|
+ node = parent;
|
|
|
|
+ parent = rb_parent(node);
|
|
|
|
+ if (parent)
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ /*
|
|
|
|
+ * Case 3 - right rotate at sibling
|
|
|
|
+ * (p could be either color here)
|
|
|
|
+ *
|
|
|
|
+ * (p) (p)
|
|
|
|
+ * / \ / \
|
|
|
|
+ * N S --> N Sl
|
|
|
|
+ * / \ \
|
|
|
|
+ * sl Sr s
|
|
|
|
+ * \
|
|
|
|
+ * Sr
|
|
|
|
+ */
|
|
|
|
+ sibling->rb_left = tmp1 = tmp2->rb_right;
|
|
|
|
+ tmp2->rb_right = sibling;
|
|
|
|
+ parent->rb_right = tmp2;
|
|
|
|
+ if (tmp1)
|
|
|
|
+ rb_set_parent_color(tmp1, sibling,
|
|
|
|
+ RB_BLACK);
|
|
|
|
+ augment_rotate(sibling, tmp2);
|
|
|
|
+ tmp1 = sibling;
|
|
|
|
+ sibling = tmp2;
|
|
|
|
+ }
|
|
|
|
+ /*
|
|
|
|
+ * Case 4 - left rotate at parent + color flips
|
|
|
|
+ * (p and sl could be either color here.
|
|
|
|
+ * After rotation, p becomes black, s acquires
|
|
|
|
+ * p's color, and sl keeps its color)
|
|
|
|
+ *
|
|
|
|
+ * (p) (s)
|
|
|
|
+ * / \ / \
|
|
|
|
+ * N S --> P Sr
|
|
|
|
+ * / \ / \
|
|
|
|
+ * (sl) sr N (sl)
|
|
|
|
+ */
|
|
|
|
+ parent->rb_right = tmp2 = sibling->rb_left;
|
|
|
|
+ sibling->rb_left = parent;
|
|
|
|
+ rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|
|
|
+ if (tmp2)
|
|
|
|
+ rb_set_parent(tmp2, parent);
|
|
|
|
+ __rb_rotate_set_parents(parent, sibling, root,
|
|
|
|
+ RB_BLACK);
|
|
|
|
+ augment_rotate(parent, sibling);
|
|
|
|
+ break;
|
|
|
|
+ } else {
|
|
|
|
+ sibling = parent->rb_left;
|
|
|
|
+ if (rb_is_red(sibling)) {
|
|
|
|
+ /* Case 1 - right rotate at parent */
|
|
|
|
+ parent->rb_left = tmp1 = sibling->rb_right;
|
|
|
|
+ sibling->rb_right = parent;
|
|
|
|
+ rb_set_parent_color(tmp1, parent, RB_BLACK);
|
|
|
|
+ __rb_rotate_set_parents(parent, sibling, root,
|
|
|
|
+ RB_RED);
|
|
|
|
+ augment_rotate(parent, sibling);
|
|
|
|
+ sibling = tmp1;
|
|
|
|
+ }
|
|
|
|
+ tmp1 = sibling->rb_left;
|
|
|
|
+ if (!tmp1 || rb_is_black(tmp1)) {
|
|
|
|
+ tmp2 = sibling->rb_right;
|
|
|
|
+ if (!tmp2 || rb_is_black(tmp2)) {
|
|
|
|
+ /* Case 2 - sibling color flip */
|
|
|
|
+ rb_set_parent_color(sibling, parent,
|
|
|
|
+ RB_RED);
|
|
|
|
+ if (rb_is_red(parent))
|
|
|
|
+ rb_set_black(parent);
|
|
|
|
+ else {
|
|
|
|
+ node = parent;
|
|
|
|
+ parent = rb_parent(node);
|
|
|
|
+ if (parent)
|
|
|
|
+ continue;
|
|
|
|
+ }
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ /* Case 3 - right rotate at sibling */
|
|
|
|
+ sibling->rb_right = tmp1 = tmp2->rb_left;
|
|
|
|
+ tmp2->rb_left = sibling;
|
|
|
|
+ parent->rb_left = tmp2;
|
|
|
|
+ if (tmp1)
|
|
|
|
+ rb_set_parent_color(tmp1, sibling,
|
|
|
|
+ RB_BLACK);
|
|
|
|
+ augment_rotate(sibling, tmp2);
|
|
|
|
+ tmp1 = sibling;
|
|
|
|
+ sibling = tmp2;
|
|
|
|
+ }
|
|
|
|
+ /* Case 4 - left rotate at parent + color flips */
|
|
|
|
+ parent->rb_left = tmp2 = sibling->rb_right;
|
|
|
|
+ sibling->rb_right = parent;
|
|
|
|
+ rb_set_parent_color(tmp1, sibling, RB_BLACK);
|
|
|
|
+ if (tmp2)
|
|
|
|
+ rb_set_parent(tmp2, parent);
|
|
|
|
+ __rb_rotate_set_parents(parent, sibling, root,
|
|
|
|
+ RB_BLACK);
|
|
|
|
+ augment_rotate(parent, sibling);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Non-inline version for rb_erase_augmented() use */
|
|
|
|
+void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
|
|
|
|
+ void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
|
|
+{
|
|
|
|
+ ____rb_erase_color(parent, root, augment_rotate);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Non-augmented rbtree manipulation functions.
|
|
|
|
+ *
|
|
|
|
+ * We use dummy augmented callbacks here, and have the compiler optimize them
|
|
|
|
+ * out of the rb_insert_color() and rb_erase() function definitions.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
|
|
|
|
+static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
|
|
|
|
+static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
|
|
|
|
+
|
|
|
|
+static const struct rb_augment_callbacks dummy_callbacks = {
|
|
|
|
+ dummy_propagate, dummy_copy, dummy_rotate
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+void rb_insert_color(struct rb_node *node, struct rb_root *root)
|
|
|
|
+{
|
|
|
|
+ __rb_insert(node, root, dummy_rotate);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void rb_erase(struct rb_node *node, struct rb_root *root)
|
|
|
|
+{
|
|
|
|
+ struct rb_node *rebalance;
|
|
|
|
+ rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
|
|
|
|
+ if (rebalance)
|
|
|
|
+ ____rb_erase_color(rebalance, root, dummy_rotate);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Augmented rbtree manipulation functions.
|
|
|
|
+ *
|
|
|
|
+ * This instantiates the same __always_inline functions as in the non-augmented
|
|
|
|
+ * case, but this time with user-defined callbacks.
|
|
|
|
+ */
|
|
|
|
+
|
|
|
|
+void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
|
|
|
|
+ void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
|
|
|
|
+{
|
|
|
|
+ __rb_insert(node, root, augment_rotate);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This function returns the first node (in sort order) of the tree.
|
|
|
|
+ */
|
|
|
|
+struct rb_node *rb_first(const struct rb_root *root)
|
|
|
|
+{
|
|
|
|
+ struct rb_node *n;
|
|
|
|
+
|
|
|
|
+ n = root->rb_node;
|
|
|
|
+ if (!n)
|
|
|
|
+ return NULL;
|
|
|
|
+ while (n->rb_left)
|
|
|
|
+ n = n->rb_left;
|
|
|
|
+ return n;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct rb_node *rb_last(const struct rb_root *root)
|
|
|
|
+{
|
|
|
|
+ struct rb_node *n;
|
|
|
|
+
|
|
|
|
+ n = root->rb_node;
|
|
|
|
+ if (!n)
|
|
|
|
+ return NULL;
|
|
|
|
+ while (n->rb_right)
|
|
|
|
+ n = n->rb_right;
|
|
|
|
+ return n;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct rb_node *rb_next(const struct rb_node *node)
|
|
|
|
+{
|
|
|
|
+ struct rb_node *parent;
|
|
|
|
+
|
|
|
|
+ if (RB_EMPTY_NODE(node))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If we have a right-hand child, go down and then left as far
|
|
|
|
+ * as we can.
|
|
|
|
+ */
|
|
|
|
+ if (node->rb_right) {
|
|
|
|
+ node = node->rb_right;
|
|
|
|
+ while (node->rb_left)
|
|
|
|
+ node=node->rb_left;
|
|
|
|
+ return (struct rb_node *)node;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * No right-hand children. Everything down and left is smaller than us,
|
|
|
|
+ * so any 'next' node must be in the general direction of our parent.
|
|
|
|
+ * Go up the tree; any time the ancestor is a right-hand child of its
|
|
|
|
+ * parent, keep going up. First time it's a left-hand child of its
|
|
|
|
+ * parent, said parent is our 'next' node.
|
|
|
|
+ */
|
|
|
|
+ while ((parent = rb_parent(node)) && node == parent->rb_right)
|
|
|
|
+ node = parent;
|
|
|
|
+
|
|
|
|
+ return parent;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct rb_node *rb_prev(const struct rb_node *node)
|
|
|
|
+{
|
|
|
|
+ struct rb_node *parent;
|
|
|
|
+
|
|
|
|
+ if (RB_EMPTY_NODE(node))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If we have a left-hand child, go down and then right as far
|
|
|
|
+ * as we can.
|
|
|
|
+ */
|
|
|
|
+ if (node->rb_left) {
|
|
|
|
+ node = node->rb_left;
|
|
|
|
+ while (node->rb_right)
|
|
|
|
+ node=node->rb_right;
|
|
|
|
+ return (struct rb_node *)node;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * No left-hand children. Go up till we find an ancestor which
|
|
|
|
+ * is a right-hand child of its parent.
|
|
|
|
+ */
|
|
|
|
+ while ((parent = rb_parent(node)) && node == parent->rb_left)
|
|
|
|
+ node = parent;
|
|
|
|
+
|
|
|
|
+ return parent;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void rb_replace_node(struct rb_node *victim, struct rb_node *new,
|
|
|
|
+ struct rb_root *root)
|
|
|
|
+{
|
|
|
|
+ struct rb_node *parent = rb_parent(victim);
|
|
|
|
+
|
|
|
|
+ /* Set the surrounding nodes to point to the replacement */
|
|
|
|
+ __rb_change_child(victim, new, parent, root);
|
|
|
|
+ if (victim->rb_left)
|
|
|
|
+ rb_set_parent(victim->rb_left, new);
|
|
|
|
+ if (victim->rb_right)
|
|
|
|
+ rb_set_parent(victim->rb_right, new);
|
|
|
|
+
|
|
|
|
+ /* Copy the pointers/colour from the victim to the replacement */
|
|
|
|
+ *new = *victim;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
|
|
|
|
+{
|
|
|
|
+ for (;;) {
|
|
|
|
+ if (node->rb_left)
|
|
|
|
+ node = node->rb_left;
|
|
|
|
+ else if (node->rb_right)
|
|
|
|
+ node = node->rb_right;
|
|
|
|
+ else
|
|
|
|
+ return (struct rb_node *)node;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct rb_node *rb_next_postorder(const struct rb_node *node)
|
|
|
|
+{
|
|
|
|
+ const struct rb_node *parent;
|
|
|
|
+ if (!node)
|
|
|
|
+ return NULL;
|
|
|
|
+ parent = rb_parent(node);
|
|
|
|
+
|
|
|
|
+ /* If we're sitting on node, we've already seen our children */
|
|
|
|
+ if (parent && node == parent->rb_left && parent->rb_right) {
|
|
|
|
+ /* If we are the parent's left node, go to the parent's right
|
|
|
|
+ * node then all the way down to the left */
|
|
|
|
+ return rb_left_deepest_node(parent->rb_right);
|
|
|
|
+ } else
|
|
|
|
+ /* Otherwise we are the parent's right node, and the parent
|
|
|
|
+ * should be next */
|
|
|
|
+ return (struct rb_node *)parent;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+struct rb_node *rb_first_postorder(const struct rb_root *root)
|
|
|
|
+{
|
|
|
|
+ if (!root->rb_node)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ return rb_left_deepest_node(root->rb_node);
|
|
|
|
+}
|