|
@@ -66,6 +66,54 @@ void end_swap_bio_write(struct bio *bio)
|
|
|
bio_put(bio);
|
|
|
}
|
|
|
|
|
|
+static void swap_slot_free_notify(struct page *page)
|
|
|
+{
|
|
|
+ struct swap_info_struct *sis;
|
|
|
+ struct gendisk *disk;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * There is no guarantee that the page is in swap cache - the software
|
|
|
+ * suspend code (at least) uses end_swap_bio_read() against a non-
|
|
|
+ * swapcache page. So we must check PG_swapcache before proceeding with
|
|
|
+ * this optimization.
|
|
|
+ */
|
|
|
+ if (unlikely(!PageSwapCache(page)))
|
|
|
+ return;
|
|
|
+
|
|
|
+ sis = page_swap_info(page);
|
|
|
+ if (!(sis->flags & SWP_BLKDEV))
|
|
|
+ return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The swap subsystem performs lazy swap slot freeing,
|
|
|
+ * expecting that the page will be swapped out again.
|
|
|
+ * So we can avoid an unnecessary write if the page
|
|
|
+ * isn't redirtied.
|
|
|
+ * This is good for real swap storage because we can
|
|
|
+ * reduce unnecessary I/O and enhance wear-leveling
|
|
|
+ * if an SSD is used as the as swap device.
|
|
|
+ * But if in-memory swap device (eg zram) is used,
|
|
|
+ * this causes a duplicated copy between uncompressed
|
|
|
+ * data in VM-owned memory and compressed data in
|
|
|
+ * zram-owned memory. So let's free zram-owned memory
|
|
|
+ * and make the VM-owned decompressed page *dirty*,
|
|
|
+ * so the page should be swapped out somewhere again if
|
|
|
+ * we again wish to reclaim it.
|
|
|
+ */
|
|
|
+ disk = sis->bdev->bd_disk;
|
|
|
+ if (disk->fops->swap_slot_free_notify) {
|
|
|
+ swp_entry_t entry;
|
|
|
+ unsigned long offset;
|
|
|
+
|
|
|
+ entry.val = page_private(page);
|
|
|
+ offset = swp_offset(entry);
|
|
|
+
|
|
|
+ SetPageDirty(page);
|
|
|
+ disk->fops->swap_slot_free_notify(sis->bdev,
|
|
|
+ offset);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
static void end_swap_bio_read(struct bio *bio)
|
|
|
{
|
|
|
struct page *page = bio->bi_io_vec[0].bv_page;
|
|
@@ -81,49 +129,7 @@ static void end_swap_bio_read(struct bio *bio)
|
|
|
}
|
|
|
|
|
|
SetPageUptodate(page);
|
|
|
-
|
|
|
- /*
|
|
|
- * There is no guarantee that the page is in swap cache - the software
|
|
|
- * suspend code (at least) uses end_swap_bio_read() against a non-
|
|
|
- * swapcache page. So we must check PG_swapcache before proceeding with
|
|
|
- * this optimization.
|
|
|
- */
|
|
|
- if (likely(PageSwapCache(page))) {
|
|
|
- struct swap_info_struct *sis;
|
|
|
-
|
|
|
- sis = page_swap_info(page);
|
|
|
- if (sis->flags & SWP_BLKDEV) {
|
|
|
- /*
|
|
|
- * The swap subsystem performs lazy swap slot freeing,
|
|
|
- * expecting that the page will be swapped out again.
|
|
|
- * So we can avoid an unnecessary write if the page
|
|
|
- * isn't redirtied.
|
|
|
- * This is good for real swap storage because we can
|
|
|
- * reduce unnecessary I/O and enhance wear-leveling
|
|
|
- * if an SSD is used as the as swap device.
|
|
|
- * But if in-memory swap device (eg zram) is used,
|
|
|
- * this causes a duplicated copy between uncompressed
|
|
|
- * data in VM-owned memory and compressed data in
|
|
|
- * zram-owned memory. So let's free zram-owned memory
|
|
|
- * and make the VM-owned decompressed page *dirty*,
|
|
|
- * so the page should be swapped out somewhere again if
|
|
|
- * we again wish to reclaim it.
|
|
|
- */
|
|
|
- struct gendisk *disk = sis->bdev->bd_disk;
|
|
|
- if (disk->fops->swap_slot_free_notify) {
|
|
|
- swp_entry_t entry;
|
|
|
- unsigned long offset;
|
|
|
-
|
|
|
- entry.val = page_private(page);
|
|
|
- offset = swp_offset(entry);
|
|
|
-
|
|
|
- SetPageDirty(page);
|
|
|
- disk->fops->swap_slot_free_notify(sis->bdev,
|
|
|
- offset);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
+ swap_slot_free_notify(page);
|
|
|
out:
|
|
|
unlock_page(page);
|
|
|
bio_put(bio);
|
|
@@ -347,6 +353,7 @@ int swap_readpage(struct page *page)
|
|
|
|
|
|
ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
|
|
|
if (!ret) {
|
|
|
+ swap_slot_free_notify(page);
|
|
|
count_vm_event(PSWPIN);
|
|
|
return 0;
|
|
|
}
|