|
@@ -43,32 +43,90 @@ static inline void vsp1_wpf_write(struct vsp1_rwpf *wpf,
|
|
|
enum wpf_flip_ctrl {
|
|
|
WPF_CTRL_VFLIP = 0,
|
|
|
WPF_CTRL_HFLIP = 1,
|
|
|
- WPF_CTRL_MAX,
|
|
|
};
|
|
|
|
|
|
+static int vsp1_wpf_set_rotation(struct vsp1_rwpf *wpf, unsigned int rotation)
|
|
|
+{
|
|
|
+ struct vsp1_video *video = wpf->video;
|
|
|
+ struct v4l2_mbus_framefmt *sink_format;
|
|
|
+ struct v4l2_mbus_framefmt *source_format;
|
|
|
+ bool rotate;
|
|
|
+ int ret = 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Only consider the 0°/180° from/to 90°/270° modifications, the rest
|
|
|
+ * is taken care of by the flipping configuration.
|
|
|
+ */
|
|
|
+ rotate = rotation == 90 || rotation == 270;
|
|
|
+ if (rotate == wpf->flip.rotate)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /* Changing rotation isn't allowed when buffers are allocated. */
|
|
|
+ mutex_lock(&video->lock);
|
|
|
+
|
|
|
+ if (vb2_is_busy(&video->queue)) {
|
|
|
+ ret = -EBUSY;
|
|
|
+ goto done;
|
|
|
+ }
|
|
|
+
|
|
|
+ sink_format = vsp1_entity_get_pad_format(&wpf->entity,
|
|
|
+ wpf->entity.config,
|
|
|
+ RWPF_PAD_SINK);
|
|
|
+ source_format = vsp1_entity_get_pad_format(&wpf->entity,
|
|
|
+ wpf->entity.config,
|
|
|
+ RWPF_PAD_SOURCE);
|
|
|
+
|
|
|
+ mutex_lock(&wpf->entity.lock);
|
|
|
+
|
|
|
+ if (rotate) {
|
|
|
+ source_format->width = sink_format->height;
|
|
|
+ source_format->height = sink_format->width;
|
|
|
+ } else {
|
|
|
+ source_format->width = sink_format->width;
|
|
|
+ source_format->height = sink_format->height;
|
|
|
+ }
|
|
|
+
|
|
|
+ wpf->flip.rotate = rotate;
|
|
|
+
|
|
|
+ mutex_unlock(&wpf->entity.lock);
|
|
|
+
|
|
|
+done:
|
|
|
+ mutex_unlock(&video->lock);
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
static int vsp1_wpf_s_ctrl(struct v4l2_ctrl *ctrl)
|
|
|
{
|
|
|
struct vsp1_rwpf *wpf =
|
|
|
container_of(ctrl->handler, struct vsp1_rwpf, ctrls);
|
|
|
- unsigned int i;
|
|
|
+ unsigned int rotation;
|
|
|
u32 flip = 0;
|
|
|
+ int ret;
|
|
|
|
|
|
- switch (ctrl->id) {
|
|
|
- case V4L2_CID_HFLIP:
|
|
|
- case V4L2_CID_VFLIP:
|
|
|
- for (i = 0; i < WPF_CTRL_MAX; ++i) {
|
|
|
- if (wpf->flip.ctrls[i])
|
|
|
- flip |= wpf->flip.ctrls[i]->val ? BIT(i) : 0;
|
|
|
- }
|
|
|
+ /* Update the rotation. */
|
|
|
+ rotation = wpf->flip.ctrls.rotate ? wpf->flip.ctrls.rotate->val : 0;
|
|
|
+ ret = vsp1_wpf_set_rotation(wpf, rotation);
|
|
|
+ if (ret < 0)
|
|
|
+ return ret;
|
|
|
|
|
|
- spin_lock_irq(&wpf->flip.lock);
|
|
|
- wpf->flip.pending = flip;
|
|
|
- spin_unlock_irq(&wpf->flip.lock);
|
|
|
- break;
|
|
|
+ /*
|
|
|
+ * Compute the flip value resulting from all three controls, with
|
|
|
+ * rotation by 180° flipping the image in both directions. Store the
|
|
|
+ * result in the pending flip field for the next frame that will be
|
|
|
+ * processed.
|
|
|
+ */
|
|
|
+ if (wpf->flip.ctrls.vflip->val)
|
|
|
+ flip |= BIT(WPF_CTRL_VFLIP);
|
|
|
|
|
|
- default:
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
+ if (wpf->flip.ctrls.hflip && wpf->flip.ctrls.hflip->val)
|
|
|
+ flip |= BIT(WPF_CTRL_HFLIP);
|
|
|
+
|
|
|
+ if (rotation == 180 || rotation == 270)
|
|
|
+ flip ^= BIT(WPF_CTRL_VFLIP) | BIT(WPF_CTRL_HFLIP);
|
|
|
+
|
|
|
+ spin_lock_irq(&wpf->flip.lock);
|
|
|
+ wpf->flip.pending = flip;
|
|
|
+ spin_unlock_irq(&wpf->flip.lock);
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
@@ -89,10 +147,10 @@ static int wpf_init_controls(struct vsp1_rwpf *wpf)
|
|
|
num_flip_ctrls = 0;
|
|
|
} else if (vsp1->info->features & VSP1_HAS_WPF_HFLIP) {
|
|
|
/*
|
|
|
- * When horizontal flip is supported the WPF implements two
|
|
|
- * controls (horizontal flip and vertical flip).
|
|
|
+ * When horizontal flip is supported the WPF implements three
|
|
|
+ * controls (horizontal flip, vertical flip and rotation).
|
|
|
*/
|
|
|
- num_flip_ctrls = 2;
|
|
|
+ num_flip_ctrls = 3;
|
|
|
} else if (vsp1->info->features & VSP1_HAS_WPF_VFLIP) {
|
|
|
/*
|
|
|
* When only vertical flip is supported the WPF implements a
|
|
@@ -107,17 +165,19 @@ static int wpf_init_controls(struct vsp1_rwpf *wpf)
|
|
|
vsp1_rwpf_init_ctrls(wpf, num_flip_ctrls);
|
|
|
|
|
|
if (num_flip_ctrls >= 1) {
|
|
|
- wpf->flip.ctrls[WPF_CTRL_VFLIP] =
|
|
|
+ wpf->flip.ctrls.vflip =
|
|
|
v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
|
|
|
V4L2_CID_VFLIP, 0, 1, 1, 0);
|
|
|
}
|
|
|
|
|
|
- if (num_flip_ctrls == 2) {
|
|
|
- wpf->flip.ctrls[WPF_CTRL_HFLIP] =
|
|
|
+ if (num_flip_ctrls == 3) {
|
|
|
+ wpf->flip.ctrls.hflip =
|
|
|
v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
|
|
|
V4L2_CID_HFLIP, 0, 1, 1, 0);
|
|
|
-
|
|
|
- v4l2_ctrl_cluster(2, wpf->flip.ctrls);
|
|
|
+ wpf->flip.ctrls.rotate =
|
|
|
+ v4l2_ctrl_new_std(&wpf->ctrls, &vsp1_wpf_ctrl_ops,
|
|
|
+ V4L2_CID_ROTATE, 0, 270, 90, 0);
|
|
|
+ v4l2_ctrl_cluster(3, &wpf->flip.ctrls.vflip);
|
|
|
}
|
|
|
|
|
|
if (wpf->ctrls.error) {
|
|
@@ -222,8 +282,8 @@ static void wpf_configure(struct vsp1_entity *entity,
|
|
|
const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
|
|
|
struct vsp1_rwpf_memory mem = wpf->mem;
|
|
|
unsigned int flip = wpf->flip.active;
|
|
|
- unsigned int width = source_format->width;
|
|
|
- unsigned int height = source_format->height;
|
|
|
+ unsigned int width = sink_format->width;
|
|
|
+ unsigned int height = sink_format->height;
|
|
|
unsigned int offset;
|
|
|
|
|
|
/*
|
|
@@ -246,45 +306,78 @@ static void wpf_configure(struct vsp1_entity *entity,
|
|
|
/*
|
|
|
* Update the memory offsets based on flipping configuration.
|
|
|
* The destination addresses point to the locations where the
|
|
|
- * VSP starts writing to memory, which can be different corners
|
|
|
- * of the image depending on vertical flipping.
|
|
|
+ * VSP starts writing to memory, which can be any corner of the
|
|
|
+ * image depending on the combination of flipping and rotation.
|
|
|
*/
|
|
|
- if (pipe->partitions > 1) {
|
|
|
- const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
|
|
|
|
|
|
- /*
|
|
|
- * Horizontal flipping is handled through a line buffer
|
|
|
- * and doesn't modify the start address, but still needs
|
|
|
- * to be handled when image partitioning is in effect to
|
|
|
- * order the partitions correctly.
|
|
|
- */
|
|
|
- if (flip & BIT(WPF_CTRL_HFLIP))
|
|
|
- offset = format->width - pipe->partition.left
|
|
|
- - pipe->partition.width;
|
|
|
+ /*
|
|
|
+ * First take the partition left coordinate into account.
|
|
|
+ * Compute the offset to order the partitions correctly on the
|
|
|
+ * output based on whether flipping is enabled. Consider
|
|
|
+ * horizontal flipping when rotation is disabled but vertical
|
|
|
+ * flipping when rotation is enabled, as rotating the image
|
|
|
+ * switches the horizontal and vertical directions. The offset
|
|
|
+ * is applied horizontally or vertically accordingly.
|
|
|
+ */
|
|
|
+ if (flip & BIT(WPF_CTRL_HFLIP) && !wpf->flip.rotate)
|
|
|
+ offset = format->width - pipe->partition.left
|
|
|
+ - pipe->partition.width;
|
|
|
+ else if (flip & BIT(WPF_CTRL_VFLIP) && wpf->flip.rotate)
|
|
|
+ offset = format->height - pipe->partition.left
|
|
|
+ - pipe->partition.width;
|
|
|
+ else
|
|
|
+ offset = pipe->partition.left;
|
|
|
+
|
|
|
+ for (i = 0; i < format->num_planes; ++i) {
|
|
|
+ unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
|
|
|
+ unsigned int vsub = i > 0 ? fmtinfo->vsub : 1;
|
|
|
+
|
|
|
+ if (wpf->flip.rotate)
|
|
|
+ mem.addr[i] += offset / vsub
|
|
|
+ * format->plane_fmt[i].bytesperline;
|
|
|
else
|
|
|
- offset = pipe->partition.left;
|
|
|
-
|
|
|
- mem.addr[0] += offset * fmtinfo->bpp[0] / 8;
|
|
|
- if (format->num_planes > 1) {
|
|
|
- mem.addr[1] += offset / fmtinfo->hsub
|
|
|
- * fmtinfo->bpp[1] / 8;
|
|
|
- mem.addr[2] += offset / fmtinfo->hsub
|
|
|
- * fmtinfo->bpp[2] / 8;
|
|
|
- }
|
|
|
+ mem.addr[i] += offset / hsub
|
|
|
+ * fmtinfo->bpp[i] / 8;
|
|
|
}
|
|
|
|
|
|
if (flip & BIT(WPF_CTRL_VFLIP)) {
|
|
|
- mem.addr[0] += (format->height - 1)
|
|
|
+ /*
|
|
|
+ * When rotating the output (after rotation) image
|
|
|
+ * height is equal to the partition width (before
|
|
|
+ * rotation). Otherwise it is equal to the output
|
|
|
+ * image height.
|
|
|
+ */
|
|
|
+ if (wpf->flip.rotate)
|
|
|
+ height = pipe->partition.width;
|
|
|
+ else
|
|
|
+ height = format->height;
|
|
|
+
|
|
|
+ mem.addr[0] += (height - 1)
|
|
|
* format->plane_fmt[0].bytesperline;
|
|
|
|
|
|
if (format->num_planes > 1) {
|
|
|
- offset = (format->height / wpf->fmtinfo->vsub - 1)
|
|
|
+ offset = (height / fmtinfo->vsub - 1)
|
|
|
* format->plane_fmt[1].bytesperline;
|
|
|
mem.addr[1] += offset;
|
|
|
mem.addr[2] += offset;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ if (wpf->flip.rotate && !(flip & BIT(WPF_CTRL_HFLIP))) {
|
|
|
+ unsigned int hoffset = max(0, (int)format->width - 16);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Compute the output coordinate. The partition
|
|
|
+ * horizontal (left) offset becomes a vertical offset.
|
|
|
+ */
|
|
|
+ for (i = 0; i < format->num_planes; ++i) {
|
|
|
+ unsigned int hsub = i > 0 ? fmtinfo->hsub : 1;
|
|
|
+
|
|
|
+ mem.addr[i] += hoffset / hsub
|
|
|
+ * fmtinfo->bpp[i] / 8;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
/*
|
|
|
* On Gen3 hardware the SPUVS bit has no effect on 3-planar
|
|
|
* formats. Swap the U and V planes manually in that case.
|
|
@@ -306,6 +399,9 @@ static void wpf_configure(struct vsp1_entity *entity,
|
|
|
|
|
|
outfmt = fmtinfo->hwfmt << VI6_WPF_OUTFMT_WRFMT_SHIFT;
|
|
|
|
|
|
+ if (wpf->flip.rotate)
|
|
|
+ outfmt |= VI6_WPF_OUTFMT_ROT;
|
|
|
+
|
|
|
if (fmtinfo->alpha)
|
|
|
outfmt |= VI6_WPF_OUTFMT_PXA;
|
|
|
if (fmtinfo->swap_yc)
|
|
@@ -367,9 +463,18 @@ static void wpf_configure(struct vsp1_entity *entity,
|
|
|
VI6_WFP_IRQ_ENB_DFEE);
|
|
|
}
|
|
|
|
|
|
+static unsigned int wpf_max_width(struct vsp1_entity *entity,
|
|
|
+ struct vsp1_pipeline *pipe)
|
|
|
+{
|
|
|
+ struct vsp1_rwpf *wpf = to_rwpf(&entity->subdev);
|
|
|
+
|
|
|
+ return wpf->flip.rotate ? 256 : wpf->max_width;
|
|
|
+}
|
|
|
+
|
|
|
static const struct vsp1_entity_operations wpf_entity_ops = {
|
|
|
.destroy = vsp1_wpf_destroy,
|
|
|
.configure = wpf_configure,
|
|
|
+ .max_width = wpf_max_width,
|
|
|
};
|
|
|
|
|
|
/* -----------------------------------------------------------------------------
|